Research

Why Crypto API Data Isn’t Cheap: Costs, Realities & Smart Solutions

Explore why accessing blockchain data through crypto APIs can be costly, what drives these expenses, and proven strategies for efficient API usage in crypto apps.
Token Metrics Team
6
MIN

As blockchain and crypto adoption surges, the demand for fast, reliable programmatic access to market and on-chain data has exploded. Developers, analysts, and startups rely extensively on crypto APIs to power apps, dashboards, and even AI-driven agents. Yet, many quickly realize: rich crypto API access can be surprisingly expensive. Why is this the case? What are the actual drivers of cost, and how can organizations optimize their API usage without sacrificing performance?

What Makes Crypto API Calls Costly?

Unlike traditional financial APIs, crypto APIs must handle large, decentralized datasets in real-time. The process of collecting, validating, enriching, and delivering this data to users is resource-heavy. Here’s why:

  • On-Chain Data Volume: Blockchains, especially giants like Ethereum, generate massive volumes of transactional data every second. Extracting relevant information—blocks, transactions, token transfers—requires continuous syncing, substantial compute power, and scalable storage.
  • Real-Time Demands: Market participants expect split-second access to price feeds and trading signals. This level of freshness necessitates robust server infrastructure and redundancy, both of which drive up operational costs for API providers.
  • API Rate Limits: To control demand and maintain stability, providers often limit free or basic tier calls. Higher usage tiers or premium data (such as historical, on-chain analytics, or low-latency endpoints) incur greater costs.
  • Security & Uptime: DDoS protection, API key management, and high-availability architectures are not trivial to develop or maintain. Reliable APIs also need to manage constant upgrades as networks evolve.

How Do Crypto API Pricing Models Work?

Crypto API providers use a range of models to manage infrastructure costs while scaling access:

  1. Freemium: Limited requests per month for free, with charges for higher usage, more endpoints, or additional features.
  2. Tiered Subscriptions: Packages based on maximum monthly API calls, unique endpoints, or support level.
  3. Pay-As-You-Go: Billing only for what’s consumed. This is common for high-frequency or enterprise clients needing flexibility.
  4. Enterprise Licensing: Flat annual fees for unlimited or very high-volume access, often paired with service-level agreements and dedicated support channels.

Ultimately, high-usage scenarios—like building real-time dashboards, AI analytics bots, or data aggregation platforms—will encounter notable costs, especially if they require both historical and live-chain data.

Balancing Performance with Cost-Efficiency

For many teams, efficiency isn't just about reducing API spend—it's about avoiding bottlenecks that can slow user experience or data integrity. Key trade-offs to consider:

  • Data Granularity: Do you need tick-by-tick price updates or is hourly resolution sufficient? Finer granularity means more calls and more costs.
  • Batch Requests: Some APIs support aggregating multiple queries into a single call, reducing overhead.
  • WebSockets vs. REST: Persistent connections (WebSockets) can deliver streaming updates more efficiently than repeated polling via REST calls.
  • Selective Endpoint Use: Only request what’s needed for your specific feature or user story, trimming unnecessary API consumption.
  • Caching & Throttling: Intelligent local caching and request throttling can dramatically cut your API bill and preserve provider bandwidth.

Practical Tips for Developers: Optimizing Crypto API Usage

To build scalable, cost-effective apps, dev teams can adopt several best practices:

  • Audit API usage patterns regularly. Identify redundant or duplicate calls.
  • Set clear API rate limits in code—as a safeguard against accidental overages.
  • Use built-in API analytics to monitor consumption and plan for capacity based on peak vs. average demand.
  • Explore multi-provider strategies. Balancing calls among a mix of APIs can de-risk single-provider outages and, in some cases, optimize pricing.
  • Establish automated alerts for quota limits or unusual spikes in usage to avoid service disruptions.
  • Consider using AI to predict traffic or data needs, pre-fetching only essential info when likely to be needed.

Many modern crypto analytics platforms, such as Token Metrics, also offer intelligent API solutions and reporting to support these optimization efforts.

The evolving crypto ecosystem is pushing both infrastructure and cost models. Emerging trends include:

  • AI-Powered Data Extraction: Companies are leveraging AI to parse, clean, and classify blockchain data more efficiently, reducing operational overhead.
  • Decentralized Data Networks: Platforms aggregating data from decentralized sources (oracles, peer nodes) may offer lower-cost and more resilient alternatives.
  • Dynamic Pricing: Expect APIs to increasingly adopt demand-driven pricing, scaling costs with market volatility or network congestion.
  • Better Developer Tooling: As the sector matures, expect even more robust SDKs, flexibility in integration, and user-friendly analytics for tracking both usage and billing.

While API costs will likely remain a factor in crypto development budgets, ongoing innovation is opening new opportunities to discover value and build smarter.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Why are crypto API calls so expensive compared to other APIs?

Crypto APIs often handle vast, rapidly updating blockchain datasets. The requirements for real-time data parsing, high uptime, and managing decentralized sources drive infrastructure and operational costs significantly above traditional APIs.

How can developers reduce their crypto API costs?

Optimizing call frequency, implementing data caching, batching requests, and leveraging efficient endpoints can substantially cut usage and associated expenses. Monitoring consumption and exploring competitive providers also helps control costs.

Are there any free or affordable crypto APIs available?

Many providers, including Token Metrics, offer limited free tiers with restrictions on call volume or accessible endpoints. These plans are suitable for prototyping and testing, but scaling up typically requires moving to paid or subscription models.

What risks exist if you exceed API call limits?

Users may face temporary suspension, degraded performance, unexpected charges, or total loss of access. It's best practice to monitor usage and set up automated safeguards to avoid exceeding quotas.

How does Token Metrics' API stand out for crypto developers?

Token Metrics API combines real-time pricing, trading signals, and sophisticated on-chain analytics through a single, streamlined interface. Developers can integrate actionable insights with minimal overhead and flexible pricing options.

Disclaimer

This blog post is for informational and educational purposes only. It does not constitute investment advice, trading recommendations, or an offer to buy or sell any crypto asset. Always conduct your own research and consult a qualified professional before making data integration or financial decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Understanding Public vs Private Crypto APIs: Key Differences Explained

Token Metrics Team
5
MIN

APIs power much of the innovation in the crypto space, but developers and analysts often face a key technical crossroads: Should you use a public or a private crypto API? Each API type serves different use cases and comes with its own set of advantages, limitations, and security requirements. Understanding these differences is critical for building effective crypto platforms, bots, and research tools.

What Are Crypto APIs?

Crypto APIs (Application Programming Interfaces) are sets of rules that let software applications interact with blockchain data, exchanges, wallets, or analytical tools. APIs bring order to a decentralized landscape, making it possible to access real-time prices, submit transactions, retrieve on-chain activity, or gather analytics—often without manually interacting with the blockchain itself.

There are two primary categories of crypto APIs:

  • Public APIs – Open, broadly accessible interfaces providing non-sensitive data or public blockchain information.
  • Private APIs – Restricted endpoints requiring authentication and permissions, allowing access to user-specific or sensitive operations.

But how do these two categories truly differ, and why does it matter for crypto application development and data consumption?

Public Crypto APIs: Open Access to Blockchain Data

Public crypto APIs typically provide access to information that is either non-sensitive or already visible on public blockchains. Examples include:

  • Market prices and trading volume
  • Blockchain explorer data (transactions, blocks, network statistics)
  • Token metadata and listings
  • General protocol or exchange status

Key traits of public APIs:

  • No login required: Most public APIs are accessible without authentication, although rate limits may be enforced to prevent abuse.
  • Great for data feeds: Ideal for researchers, portfolio trackers, or analytics dashboards needing large-scale, up-to-date datasets.
  • Limited functionality: Public APIs do not let you interact with personal accounts, make trades, or perform actions that expose user data.

For instance, if you want to build a website displaying the latest Bitcoin price or trending DeFi projects, you’d usually rely on public crypto APIs.

Private Crypto APIs: Secure, Authenticated Endpoints

Private crypto APIs open the door to more sensitive and powerful functionality, but require strict controls. They are generally used for:

  • Accessing user-specific account balances
  • Placing, modifying, or cancelling trades on an exchange
  • Transferring funds or managing API keys
  • Retrieving private analytics, custom watchlists, or signals

Key characteristics include:

  • Authentication required: Commonly via API keys, OAuth tokens, or signatures. This protects user data and controls access.
  • Security and privacy orientations: Implemented with strict rate limiting, encryption in transit, and granular permissions.
  • Risk of exposure: Poorly managed private keys or API credentials can lead to loss of control over accounts or assets.

Developers building personal portfolio management tools, automated trading bots, or custodial dashboards integrate private crypto APIs to enable a customized, authenticated user experience.

Key Differences: Public vs Private Crypto APIs

Understanding the distinctions helps teams design more robust crypto products:

  • Access & Security: Public APIs are low-risk and have minimal restrictions, whereas private APIs can expose user or financial data if mishandled.
  • Rate Limiting: Public APIs have moderate limits to ensure fair usage, while private endpoints often get higher quotas based on trust and verification.
  • Functional Scope: Public endpoints only relay general data; private endpoints enable actionable operations like trading or transferring assets.
  • Use Case Alignment: Public APIs suit real-time charts, analytics, and research, while private APIs drive account-specific dashboards, bots, and custom integrations.

The choice often comes down to your project requirements: If you just need publicly available blockchain data or market feeds, public APIs suffice. If your solution needs to modify user data or interact on behalf of a user, private APIs with strong authentication are mandatory.

Choosing the Right API for Secure Crypto Development

Several factors help determine whether a public or private crypto API is appropriate:

  1. Data Sensitivity: Is the data or action user-specific or can it be safely shared with the public?
  2. Application Purpose: Are you building an analytics dashboard (public API) or a trading bot (private API)?
  3. Security Posture: Does your team have processes for securely storing and rotating API keys?
  4. API Provider Reputation: Evaluate available documentation, historical uptime, and support—especially with private APIs.

Following best practices for handling API credentials—such as storing secrets off-chain, using environment variables, and enforcing minimal permission scopes—can greatly reduce risk.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Frequently Asked Questions: Public vs Private Crypto APIs

What can I build with public crypto APIs?

Public crypto APIs help developers launch apps like price tickers, market dashboards, blockchain explorers, and analytics tools that require broadly accessible, non-sensitive data. They are ideal for gathering real-time feeds or tracking on-chain activity without user authentication.

How do private crypto APIs handle security?

Private crypto APIs protect endpoints with authentication mechanisms like API keys, OAuth, or digital signatures. This ensures only authorized clients can fetch sensitive information or perform actions like trading or withdrawals. API providers also employ rate limits and monitor usage for suspicious behavior.

Are rate limits different for public vs private APIs?

Yes. Public APIs often have stricter rate limits to prevent abuse, since anyone can access them. Private API users, once authenticated, may receive higher quotas, prioritizing account-specific operations.

What are the risks of using private API keys in crypto?

Exposed, leaked, or improperly stored private API keys can allow malicious actors to access accounts, make unauthorized trades, or withdraw funds. Always use environment variables, restrict permissions, and rotate keys periodically.

How do I choose the best crypto API provider?

Look for reliability, comprehensive documentation, secure authentication, supportive developer communities, and transparent pricing. Solutions like Token Metrics combine robust data coverage and AI-powered insights for flexible crypto app development.

Disclaimer

This article is for informational purposes only and does not constitute financial or investment advice. Always perform your own research and implement strong security practices when developing crypto applications or integrating APIs.

Research

API Security Essentials: How to Authenticate and Protect Your API Requests

Token Metrics Team
6
MIN

APIs power everything from mobile apps to crypto trading platforms. As they become the backbone of digital finance and decentralized applications, securing API endpoints is more critical than ever. A single vulnerability can expose sensitive data, undermine user trust, or even lead to costly breaches. So, how can you authenticate and secure your API requests effectively?

Understanding API Authentication Fundamentals

API authentication is the process of verifying that API requests come from legitimate sources. This step is essential to prevent unauthorized access and data leaks, especially in industries handling sensitive information like cryptocurrency and finance. There are several standard authentication methods:

  • API Keys: Basic yet popular; clients receive a unique token identifying their requests. However, keys alone are not sufficient unless properly managed and kept confidential.
  • OAuth 2.0: An authorization framework used by many leading platforms for delegated user access without exposing credentials. It supports fine-grained permissions and token expiration for higher security.
  • JWT (JSON Web Tokens): Encoded tokens containing user and permission data, signed for integrity. JWTs are commonly used in stateless authentication flows due to their portability and standardization.
  • HMAC (Hash-based Message Authentication Code): Ensures both authenticity and integrity by letting clients sign API requests using a shared secret, verifying that the data has not been altered in transit.

Choosing the right authentication mechanism depends on your application's needs, security requirements, and threat model. For example, high-value crypto data or transaction endpoints require more robust solutions than public info APIs.

Securing API Requests: Encryption and Data Protection

Authentication can only go so far without communication channel security. APIs must use encryption to safeguard data in transit. Here’s how to reinforce API requests against interception and tampering:

  • HTTPS/TLS: Mandatory for all API traffic. Encrypted connections prevent man-in-the-middle attacks and secure private data exchanged with your API.
  • Certificate Pinning: Reduces the risk of certificate authority (CA) compromise by ensuring API clients only connect to trusted, recognized servers.
  • Encrypt Sensitive Payloads: For especially private information (e.g., wallet keys, user identifiers), encrypt payloads beyond transport encryption before sending.
  • Limit Data Exposure: Only return necessary data in API responses. Overexposed APIs create unnecessary risk, especially when returning critical financial or identity information.

Data protection is not purely about outside attackers. Proper encryption and data minimization also reduce compliance risk and support privacy best practices relevant to digital assets.

Best Practices for API Key and Secret Management

API keys and secrets are valuable attack targets—treat them like passwords. Here are practical steps to keep them secure:

  • Never Embed Secrets in Client-Side Code: Keys in JavaScript or mobile apps can be easily extracted and abused. Always handle sensitive tokens on a secure backend server.
  • Implement Key Rotation: Change secrets regularly and immediately revoke compromised keys. Automated rotation limits potential damage from leaks.
  • Use Scoped Permissions: Assign only the minimum required privileges to API keys. Fine-grained permissions restrict what actions a compromised key could perform.
  • Storage in Secret Managers: Use established tools (e.g., AWS Secrets Manager, HashiCorp Vault) for storing and accessing keys, rather than environment variables or config files.
  • Monitor Key Usage: Set up alerts for abnormal key activity—such as new locations, excessive requests, or usage spikes—to catch and act on suspicious behavior quickly.

In the world of crypto APIs, where unauthorized trades or fund transfers can have major consequences, diligent key management is foundational to API security.

Additional API Security Controls and Threat Prevention

Authentication and encryption are essential, but holistic API security requires additional layers of defense:

  • Rate Limiting & Throttling: Prevents API abuse and distributed denial-of-service (DDoS) attacks by restricting the number of requests per minute or hour for each client.
  • IP Allowlisting: Restrict API access to approved server or office ranges to limit exposure in case keys are leaked.
  • Input Validation & Sanitization: Defend against injection attacks by ensuring only properly formatted, expected data can be submitted to your API endpoints.
  • Logging and Audit Trails: Record who accessed what and when. Detailed logs help identify breaches quickly and fulfill regulatory audit requirements.
  • Regular Penetration Testing: Simulate attacks to find and patch weaknesses before they are exploited in production environments.

Effective API security is an ongoing process. Stay updated with the latest threats and best practices—especially as new technologies and decentralized protocols evolve in the crypto sector.

How AI and Secure APIs Are Shaping Crypto Development

The rapid growth of digital assets has driven demand for real-time data, automated trading strategies, and personalized user experiences. Crypto APIs, especially those leveraging AI, enable everything from on-chain analytics to dynamic risk scoring. However, these capabilities also come with heightened security stakes: AI-driven agents making transactions or analyzing blockchain data depend on reliable, tamper-proof sources.

Integrating secure APIs backed by strong authentication and threat prevention supports:

  • Accurate, timely access to pricing and blockchain analytics
  • Protection against malicious interference in trading signals or execution
  • Compliance with increasing regulatory and cybersecurity requirements
  • Trust in AI-driven decision support systems for both individual and institutional users

Using advanced API security controls helps crypto app developers maximize innovation while safeguarding users and market integrity.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Securing API Requests

What is the difference between API authentication and authorization?

Authentication confirms the identity of the API requestor, while authorization defines what resources and actions that identity can access or perform. Both are needed for secure API usage.

Should I use API keys, OAuth, or JWT for my crypto app?

The choice depends on your use case. API keys are simple for service-to-service communication. OAuth offers stronger, user-specific security. JWT excels in stateless authentication. Many robust crypto APIs use combinations depending on endpoint sensitivity.

How can I safely distribute API keys to users?

Provide keys using secure, authenticated user portals. Avoid email or plaintext transmission. Always ensure users understand to treat API credentials like passwords and never share or expose them.

What are common mistakes that weaken API security?

Embedding secrets in frontend code, not enforcing HTTPS, failing to rotate keys, ignoring rate limits, and returning too much sensitive data are common but avoidable risks.

How often should I review and update my API security settings?

Review security policies and settings at least quarterly, or following any significant change (e.g., new endpoints, user roles, or integration partners). Promptly address newly discovered vulnerabilities and emerging threats.

Disclaimer

This content is for educational and informational purposes only. It does not constitute technology, investment, or legal advice. Security strategies and technologies evolve rapidly; always consult with cybersecurity professionals before implementing any measures in critical or regulated environments.

Research

Top Programming Languages for Working with Crypto APIs

Token Metrics Team
6
MIN

As the crypto ecosystem expands, APIs are the bridge connecting developers to real-time prices, blockchain data, and decentralized tools. Choosing the right programming language is critical—whether you're building trading bots, portfolio trackers, or AI research agents for digital assets. How do you select the most effective language for working with crypto APIs? Let's break down the options, trade-offs, and best practices for developers entering this dynamic space.

Python: The Leading Choice for Crypto APIs

Python stands out as the top choice for many developers building crypto-powered applications. Its simple syntax, robust standard libraries, and thriving open-source community have propelled it to the forefront of blockchain and crypto development. Here's why:

  • Extensive library support: Powerful packages such as requests, web3.py, and ccxt simplify everything from basic REST calls to advanced blockchain and exchange integrations.
  • AI and data science integration: Python's dominance in AI and machine learning (through libraries like TensorFlow and scikit-learn) makes it ideal if you want to combine crypto market data with analytics or modeling.
  • Rapid prototyping: Python's readability increases development speed, allowing teams to quickly test new crypto strategies or data queries.
  • Strong community and documentation: There are abundant tutorials and prebuilt modules for most major exchanges and blockchains, lowering the entry barrier for newcomers.

Python is especially popular for backend services, trading bots, analytics dashboards, and AI-driven crypto research platforms. Its versatility makes it an excellent starting point for most crypto API projects.

JavaScript and Node.js: For Both Web and Backend

JavaScript's ubiquity in web development—and the rise of Node.js for backend—have cemented its importance in the crypto API landscape. Here's why developers favor JavaScript:

  • Full-stack flexibility: With frameworks like React or Vue.js on the frontend, and Node.js on the backend, developers can seamlessly create interactive dApps and dashboards that communicate with blockchain or exchange APIs.
  • Real-time capabilities: Libraries like web3.js make it easy to connect web applications directly to Ethereum and other blockchains, powering features like wallet integration and token swaps.
  • Growing DeFi ecosystem: Many decentralized finance (DeFi) products and Web3 tools have rich JavaScript or TypeScript SDKs for easy adoption.
  • Strong community: JavaScript's vast ecosystem ensures that support is available for integrating most major crypto APIs, whether for simple price data or advanced smart contract interactions.

JavaScript and Node.js are top picks for projects focused on user-facing dashboards, live trading interfaces, and dApp development where real-time interaction is crucial.

Compiled Languages: Go, Java, and C#

For developers who prioritize performance and scalability, compiled languages like Go, Java, and C# come into play:

  • Go (Golang): Known for its concurrency support and efficiency, Go is popular for blockchain node clients (e.g., Ethereum's Geth) and high-throughput servers that need to process large amounts of real-time crypto data via APIs. Its static typing helps reduce runtime errors, and its small binaries make deployment easy.
  • Java: Java remains a leading choice in enterprise environments where reliability and security are paramount. Java powers several blockchain SDKs (such as BitcoinJ) and is often favored for building robust backend crypto services.
  • C#: Particularly useful for Windows-based environments and gaming platforms leveraging blockchain assets. Libraries like NBitcoin enable smooth API integration with Bitcoin and related networks.

While these languages often require more boilerplate and steeper learning curves than Python or JavaScript, they excel in situations where uptime, parallel processing, and performance are vital.

Smart Contract and Blockchain-Specific Languages: Solidity & Rust

When your project needs to interact deeply with blockchain networks beyond just APIs—such as deploying smart contracts or working at the protocol level—specialized languages become essential:

  • Solidity: The dominant language for Ethereum smart contracts, Solidity is essential for developers building and querying contracts directly. While typically not used to interact with APIs, it's often complemented by Python (web3.py) or JavaScript (web3.js) scripts that handle API calls and contract interactions together.
  • Rust: Fast rising in popularity, Rust powers next-gen blockchains like Solana and Near. Its emphasis on memory safety and concurrency makes it ideal for performance-critical crypto platforms. Rust also supports tooling for building high-speed client libraries and backend services that consume blockchain APIs.

For API-focused projects, these languages play a role primarily when paired with a more general-purpose language (like Python or JavaScript) for off-chain tasks, with the specialized code handling on-chain logic.

Factors to Consider When Choosing a Language for Crypto APIs

The ideal programming language depends on a few project-specific factors:

  • Project type: Analytics and research tools often favor Python; user-facing platforms lean towards JavaScript/Node.js; and mission-critical applications may benefit from Go or Java.
  • API documentation and libraries: Mature APIs will have client libraries in popular languages. Libraries like Token Metrics API, Binance, or Coinbase typically support Python, JavaScript, and Java.
  • Security considerations: Languages with clear type systems and strong error handling (like Rust and Go) may reduce API integration risks.
  • Team expertise: Leverage your team’s current language strengths to minimize onboarding time and maximize productivity.
  • Ecosystem support: Evaluate how active the language’s crypto developer community is for support and ongoing maintenance of crypto API wrappers or SDKs.

Ultimately, the best crypto API projects balance technical strengths, developer proficiency, and the support network a programming language provides.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Is Python better than JavaScript for working with crypto APIs?

Both Python and JavaScript are leading choices. Python excels for backend analytics and AI-driven tools, while JavaScript is often used for building interactive dApps and web interfaces directly leveraging APIs. The right choice often depends on your application requirements and team expertise.

What libraries can help integrate APIs in crypto apps?

Popular libraries include web3.py and ccxt for Python, web3.js and ethers.js for JavaScript, as well as client SDKs provided by leading exchanges and data providers. Token Metrics also offers a powerful API for market data and analytics.

How can I enhance API security in crypto projects?

Use secure API key management, implement rate limiting, utilize HTTPS for data transmission, and validate all external responses. Choosing a strongly-typed language (like Go or Rust) and leveraging well-maintained libraries can reduce vulnerabilities.

Should I learn Solidity or Rust for API development?

Solidity and Rust are best suited for smart contract and protocol-level blockchain work—not direct API integration. For most API-driven crypto projects, Python, JavaScript, or Go are more practical; learn Solidity or Rust if you plan to develop on-chain logic or new blockchain platforms.

How does Token Metrics support developers working with crypto APIs?

Token Metrics delivers AI-driven crypto analytics and signals via a unified API, empowering developers to build research, trading, or analytical tools rapidly. The platform provides robust documentation and versatile endpoints compatible with major programming languages.

Disclaimer

This content is for informational and educational purposes only. It does not constitute investment, financial, or legal advice. Use all programming languages, APIs, and crypto tools at your own risk and always conduct thorough technical due diligence before integrating third-party services or tools into your projects.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products