Research

Building High-Performance APIs with FastAPI

Learn how FastAPI delivers high-performance Python APIs: architecture, async best practices, deployment, monitoring, and integrating AI inference pipelines for scalable services.
Token Metrics Team
5
MIN

FastAPI has emerged as a go-to framework for building fast, scalable, and developer-friendly APIs in Python. Whether you are prototyping a machine learning inference endpoint, building internal microservices, or exposing realtime data to clients, understanding FastAPI’s design principles and best practices can save development time and operational costs. This guide walks through the technology fundamentals, pragmatic design patterns, deployment considerations, and how to integrate modern AI tools safely and efficiently.

Overview: What Makes FastAPI Fast?

FastAPI is built on Starlette for the web parts and Pydantic for data validation. It leverages Python’s async/await syntax and ASGI (Asynchronous Server Gateway Interface) to handle high concurrency with non-blocking I/O. Key features that contribute to its performance profile include:

  • Async-first architecture: Native support for asynchronous endpoints enables efficient multiplexing of I/O-bound tasks.
  • Automatic validation and docs: Pydantic-based validation reduces runtime errors and generates OpenAPI schemas and interactive docs out of the box.
  • Small, focused stack: Minimal middleware and lean core reduce overhead compared to some full-stack frameworks.

In practice, correctly using async patterns and avoiding blocking calls (e.g., heavy CPU-bound tasks or synchronous DB drivers) is critical to achieve the theoretical throughput FastAPI promises.

Design Patterns & Best Practices

Adopt these patterns to keep your FastAPI codebase maintainable and performant:

  1. Separate concerns: Keep routing, business logic, and data access in separate modules. Use dependency injection for database sessions, authentication, and configuration.
  2. Prefer async I/O: Use async database drivers (e.g., asyncpg for PostgreSQL), async HTTP clients (httpx), and async message brokers when possible. If you must call blocking code, run it in a thread pool via asyncio.to_thread or FastAPI’s background tasks.
  3. Schema-driven DTOs: Define request and response models with Pydantic to validate inputs and serialize outputs consistently. This reduces defensive coding and improves API contract clarity.
  4. Version your APIs: Use path or header-based versioning to avoid breaking consumers when iterating rapidly.
  5. Pagination and rate limiting: For endpoints that return large collections, implement pagination and consider rate-limiting to protect downstream systems.

Applying these patterns leads to clearer contracts, fewer runtime errors, and easier scaling.

Performance Tuning and Monitoring

Beyond using async endpoints, real-world performance tuning focuses on observability and identifying bottlenecks:

  • Profiling: Profile endpoints under representative load to find hotspots. Tools like py-spy or Scalene can reveal CPU vs. I/O contention.
  • Tracing and metrics: Integrate OpenTelemetry or Prometheus to gather latency, error rates, and resource metrics. Correlate traces across services to diagnose distributed latency.
  • Connection pooling: Ensure database and HTTP clients use connection pools tuned for your concurrency levels.
  • Caching: Use HTTP caching headers, in-memory caches (Redis, Memcached), or application-level caches for expensive or frequently requested data.
  • Async worker offloading: Offload CPU-heavy or long-running tasks to background workers (e.g., Celery, Dramatiq, or RQ) to keep request latency low.

Measure before and after changes. Small configuration tweaks (worker counts, keepalive settings) often deliver outsized latency improvements compared to code rewrites.

Deployment, Security, and Scaling

Productionizing FastAPI requires attention to hosting, process management, and security hardening:

  • ASGI server: Use a robust ASGI server such as Uvicorn or Hypercorn behind a process manager (systemd) or a supervisor like Gunicorn with Uvicorn workers.
  • Containerization: Containerize with multi-stage Dockerfiles to keep images small. Use environment variables and secrets management for configuration.
  • Load balancing: Place a reverse proxy (NGINX, Traefik) or cloud load balancer in front of your ASGI processes to manage TLS, routing, and retries.
  • Security: Validate and sanitize inputs, enforce strict CORS policies, and implement authentication and authorization (OAuth2, JWT) consistently. Keep dependencies updated and monitor for CVEs.
  • Autoscaling: In cloud environments, autoscale based on request latency and queue depth. For stateful workloads or in-memory caches, ensure sticky session or state replication strategies.

Combine operational best practices with continuous monitoring to keep services resilient as traffic grows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: How fast is FastAPI compared to Flask or Django?

FastAPI often outperforms traditional WSGI frameworks like Flask or Django for I/O-bound workloads because it leverages ASGI and async endpoints. Benchmarks depend heavily on endpoint logic, database drivers, and deployment configuration. For CPU-bound tasks, raw Python performance is similar; offload heavy computation to workers.

FAQ: Should I rewrite existing Flask endpoints to FastAPI?

Rewrite only if you need asynchronous I/O, better schema validation, or automatic OpenAPI docs. For many projects, incremental migration or adding new async services is a lower-risk approach than a full rewrite.

FAQ: How do I handle background tasks and long-running jobs?

Use background workers or task queues (Celery, Dramatiq) for long-running jobs. FastAPI provides BackgroundTasks for simple fire-and-forget operations, but distributed task systems are better for retries, scheduling, and scaling.

FAQ: What are common pitfalls when using async in FastAPI?

Common pitfalls include calling blocking I/O inside async endpoints (e.g., synchronous DB drivers), not using connection pools properly, and overusing threads. Always verify that third-party libraries are async-compatible or run them in a thread pool.

FAQ: How can FastAPI integrate with AI models and inference pipelines?

FastAPI is a good fit for serving model inference because it can handle concurrent requests and easily serialize inputs and outputs. For heavy inference workloads, serve models with dedicated inference servers (TorchServe, TensorFlow Serving) or containerized model endpoints and use FastAPI as a thin orchestration layer. Implement batching, request timeouts, and model versioning to manage performance and reliability.

Disclaimer

This article is educational and technical in nature. It does not provide investment, legal, or professional advice. Evaluate tools and design decisions according to your project requirements and compliance obligations.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Meme Coins in 2025: Why They’re Still Outperforming the Crypto Market

Token Metrics Team
8 min
MIN

Introduction:
Even in a sluggish crypto market, meme coins continue to outperform many other asset classes. In 2025, these highly speculative assets are not only surviving—some are thriving. This blog examines the current state of the meme coin market, what’s driving the activity, and how on-chain data and crypto analytics can help decode the chaos.

Meme Coins: Still Relevant in 2025?

Despite a broadly bearish macro environment, meme coins remain among the few bright spots in the crypto market. In the latest Token Metrics research webinar, several meme tokens showed outsized returns, including:

  • Gorbagana – up over 50% in a day
  • Useless Coin – jumped 40% in 24 hours
  • Startup Coin – nearly 9x returns over the past month

These tokens operate at low market caps and often launch with little or no formal whitepaper or utility. However, the power of narrative, social engagement, and rapid speculation continues to drive short-term gains.

Why Meme Coins Are Performing in a Bear Market

1. Low Liquidity, High Volatility:
Small-cap meme tokens can easily generate parabolic moves with modest capital inflows.

2. Community-Led Narratives:
Tokens like Useless Coin and Startup thrive on viral momentum from crypto-native communities, particularly on X (Twitter) and Telegram.

3. Whale Activity as a Signal:
Token Metrics analysts observed that whales have been accumulating select meme coins. This isn’t an endorsement—but it’s a data point. Monitoring on-chain whale behavior offers clues about where smart money is moving.

The Gobagana Case Study

Gobagana was cited as a high-risk Solana fork with minimal public information, yet it rapidly gained traction. On-chain analysis revealed:

  • Whale wallets accumulating in the early phase
  • Early VC insiders (e.g., those connected to Big Brain VC) engaging with the token
  • Rapid social engagement despite a small follower base

The takeaway? Even opaque meme coins can trigger major rallies—particularly if accumulation patterns align with social volume.

Risk Management and Red Flags

The meme coin market is not without risk. The Token Metrics team emphasized several cautions:

  • Illiquidity: Many meme tokens have low volume and limited exchange listings.
  • Exit scams or soft rugs: Teams can abandon the project after price pumps.
  • Price discovery volatility: Tokens may have no clear valuation baseline and can retrace sharply.

As such, these assets are often best approached with a high-risk tolerance and clear entry/exit rules.

How to Track Meme Coins Like a Quant

Using crypto analytics platforms like Token Metrics can help make sense of meme coin volatility. Tools that help include:

  • Real-time sentiment analysis
  • Whale wallet tracking
  • Price-to-volume anomaly detection
  • Bullish/bearish signal tracking

In 2025, data is more important than hype. While memes may dominate the narrative, only data reveals when the momentum shifts.

Meme Coins vs. Infrastructure Projects

Interestingly, while meme coins have been surging, many infrastructure or protocol tokens remain flat. This divergence suggests that retail attention is still focused on short-term speculation.

That said, once Bitcoin breaks key resistance levels, we could see capital rotate into AI, DeFi, and infrastructure themes. Meme coins may be the “canary in the coal mine” indicating renewed retail appetite.

Final Thoughts

Meme coins remain the wild west of crypto—but they aren’t going away. In fact, they’re becoming more sophisticated, with deeper liquidity pools, faster launches, and increased integration with social media bots and automated token creators.

As always, meme coin trading demands discipline, skepticism, and a robust toolkit. Watch the whales, follow the data, and never trade what you don’t understand.

Research

How to Find Hidden Crypto Gems with 100x Potential (Step-by-Step Guide) | Token Metrics Moonshots

Token Metrics Team
8 min
MIN

In the fast-paced world of cryptocurrency, discovering hidden gems—often called moonshots—can lead to life-changing returns. But the real challenge lies in separating hype from actual potential. In this guide, we’ll break down what crypto moonshots are, how they work, and how you can use Token Metrics to reliably find tokens with 100x upside.

What Are Moonshot Tokens?

The term moonshot comes from the idea of a crypto token “going to the moon,” or rapidly increasing in price. These are usually low-cap tokens with a compelling narrative, innovative technology, or early-stage market presence that give them high upside potential.

Key Characteristics of Moonshot Tokens:

  • Market Cap Below $50M – Smaller market caps have more room to grow.
  • High Risk / High Reward – Volatility is expected, but the upside can be enormous.
  • Early Entry – Timing matters. Getting in early before mainstream awareness is key.
  • Backed by Fundamentals – Even moonshots need solid technology, use cases, or backing.

How Do Crypto Moonshots Work?

Moonshots rely on the combination of innovation, market timing, and community adoption. They often start unnoticed, then experience exponential growth once crypto traders and influencers catch on.

The Lifecycle of a Typical Moonshot:

  1. Discovery Phase – A few savvy investors or analysts spot the token.
  2. Accumulation Phase – Early adopters buy in quietly, keeping prices low.
  3. Breakout Phase – News spreads, and trading volume spikes.
  4. Parabolic Run – FOMO (Fear of Missing Out) kicks in, driving price up rapidly.
  5. Profit-Taking or Collapse – Smart traders exit with gains; latecomers may be left holding the bag.

To avoid the trap of hype-driven tokens, it's essential to use data and analytics, not emotions. That’s where Token Metrics becomes your secret weapon.

How to Use Token Metrics to Find Monshots?

Token Metrics is an AI-powered crypto analytics platform that helps you discover high-potential tokens with real-time data, grades, and backtested indicators. Here’s a step-by-step guide to using Token Metrics to uncover 100x opportunities:

Step 1: Go to the Ratings Page

Start from the main dashboard of the Token Metrics app.

  • Navigate to the “Ratings” tab.
  • This page ranks thousands of tokens using AI-based Trader Grade and Investor Grade, factoring in technical indicators, on-chain metrics, sentiment, and more.

Pro Tip: Look for tokens with rising Trader Grades and strong historical performance.

Step 2: Click on the “Moonshots” Tab

Once you’re in the Ratings section:

  • Click the “Moonshots” tab at the top of the page.
  • This will filter the list down to tokens the AI model flags as having moonshot potential—i.e., tokens likely to perform exceptionally well in the short term.

These are automatically generated by Token Metrics AI models using over 80+ data points, including:

  • Price momentum
  • On-chain activity
  • Sentiment analysis
  • Volume spikes
  • Market structure

Step 3: Review Key Moonshot Metrics

Each Moonshot token is presented with a rich dataset to help you make informed decisions:

  • Trader Grade (with % change in past 24h or 7d)
  • 24H Trading Volume – Gauge market interest
  • Market Cap – Lower caps typically offer more upside
  • Date of Entry – See when the token was first flagged
  • Live ROI Since Moonshot – Know exactly how past picks performed

Bonus Feature: Toggle to “Past Moonshots” to review previous winners and assess the track record of the platform.

Step 4: Choose a Token to Explore

Click on any token in the Moonshots list to open its Token Details Page.

Here, you can:

  • Analyze real-time charts
  • Review fundamentals, like project utility, tokenomics, roadmap, and team
  • See top holders and whale activity
  • Examine price volatility and volume patterns

This is where research and intuition meet. Use the available data to decide if this token fits your risk tolerance and investment thesis.

Step 5: Buy in Seconds

Token Metrics makes the process seamless:

  • Just click the “Buy” button on the Moonshots page.
  • This opens a swap widget powered by integrated DEX aggregators.
  • Choose your wallet, approve the transaction, and you're done—no need to leave the platform.

This integration eliminates the hassle of going to third-party platforms to execute trades, saving time and reducing risk.

Why Use Token Metrics for Finding Moonshots?

Token Metrics isn’t just about flashy picks—it’s about using data science and AI to gain an edge.

Key Benefits:

  • AI-Driven Insights – No emotional bias; just pure data analysis.
  • Transparency – View past moonshot performance, live ROI, and update dates.
  • Speed to Trade – Instant buy options right from the dashboard.
  • Performance Tracking – Evaluate your results based on entry/exit signals.

Real Examples: Token Metrics in Action

  • Euler Finance was flagged as a Moonshot before its 30% rally—validated by a bullish AI signal.
  • Morpho gained traction after appearing in the Moonshots list, later becoming a top TVL gainer.
  • Hyperliquid made the list before capturing major perp trading market share.

By combining early AI alerts with your own due diligence, you can position yourself ahead of the crowd.

Final Thoughts

Finding the next 100x crypto gem doesn’t have to be a guessing game. While the crypto space remains volatile, tools like Token Metrics help stack the odds in your favor. From real-time ratings to instant buy options and performance metrics, you have everything you need to make smart, data-driven bets on the future of crypto.

So if you're serious about turning small investments into big wins, start using Token Metrics to uncover moonshots before they go mainstream.

Try Token Metrics today and unlock the power of AI-driven crypto investing.

Research

DeFi 3.0 and the Rise of Permissionless Lending – What's Changing in 2025?

Token Metrics Team
8 min
MIN

Introduction:
The DeFi landscape is evolving rapidly, and 2025 is shaping up to be a pivotal year. With innovations like permissionless lending, the ecosystem is transitioning into what many are calling DeFi 3.0. This blog explores what’s driving the shift, the platforms leading the charge, and what investors and developers need to know about this new wave.

What Is DeFi 3.0?

Decentralized finance (DeFi) has experienced two major innovation cycles:

  • DeFi 1.0 was defined by protocols like Uniswap, which revolutionized decentralized trading through automated market makers (AMMs).
  • DeFi 2.0 introduced concepts like protocol-owned liquidity, led by projects like OlympusDAO.

Now in DeFi 3.0, the focus has shifted to permissionless lending, advanced tokenomics, and integrated liquidity solutions.

The Core Drivers of DeFi 3.0

  1. Decentralization of Lending Access:
    Traditional DeFi lending platforms like AAVE require users to hold governance tokens or pass internal gatekeeping to create new markets. DeFi 3.0 protocols remove those barriers, allowing anyone to participate more freely.

  2. Integrated Liquidity and Lending:
    New platforms are enabling liquidity provision and borrowing from the same pool—merging the utility of DEXs with money markets.

  3. Improved Capital Efficiency:
    DeFi 3.0 focuses on optimizing the use of locked capital. Through smart contract automation, platforms allow users to earn on idle funds, reduce slippage, and optimize collateral.

Leading Platforms in the DeFi 3.0 Movement

1. Euler Finance
Euler has grown to over $1B in total value locked (TVL) and is rolling out a key innovation: EulerSwap. This module lets protocols provide liquidity for both swaps and borrowing in a single pool.
Key features:

  • Dual-purpose liquidity (swap + lending)
  • “Just-in-time” borrowing mechanisms
  • Smart contract automation for optimized usage

2. Morpho
Morpho is another high-growth player. With support from Coinbase and over $4B in TVL, it's becoming a serious challenger to AAVE. Its permissionless lending architecture and novel liquidity provisioning model stand out.

3. Hyperliquid
While not a lender per se, Hyperliquid’s approach to perpetuals (perps) trading is noteworthy. It has captured 11% of Binance’s perp market share, signaling DeFi’s growing ability to challenge centralized platforms.

Why Permissionless Lending Matters

The benefits of removing centralized control over lending markets include:

  • Faster innovation and product launches
  • Greater financial inclusion for emerging projects
  • Risk-based pricing by the market, not centralized governance
  • Enhanced decentralization and resilience

However, challenges remain. The risk of undercollateralized positions and protocol exploits still exist. That’s why security—such as smart contract audits and on-chain firewalls—is critical.

The Role of Token Metrics in Tracking DeFi 3.0

During the webinar, the Token Metrics team highlighted how their platform tracks the performance of DeFi 3.0 projects using metrics like:

  • TVL growth rate
  • Trader grade and investor grade
  • Bullish or bearish signals based on 80+ data points

For example, Euler’s bullish signal flipped just before a 30% price rise, demonstrating the value of data-driven insight in volatile markets.

What's Next for DeFi?

As the cycle evolves, we expect:

  • A proliferation of permissionless lending protocols across L1s and L2s
  • Better capital efficiency tools
  • Greater interoperability across EVM chains and Solana
  • On-chain integrations with tokenized real-world assets

Final Thoughts

DeFi 3.0 is not just hype—it represents a fundamental shift in how decentralized finance operates. Permissionless lending, composable liquidity, and institutional-grade risk controls are turning DeFi into a more mature, scalable ecosystem.

As always, perform your own due diligence and keep an eye on platform fundamentals, smart contract risk, and ecosystem adoption.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products