Research

How Does Tokenizing AI Services Work? The Complete Guide to AI Tokenization in 2025

Discover how tokenizing AI services works and its benefits for businesses. Simplify your understanding and explore the future of AI. Read more!
Talha Ahmad
5 min
MIN

The convergence of artificial intelligence and blockchain technology has sparked a significant evolution in the digital economy: the tokenization of AI services. As we progress through 2025, this innovative approach is reshaping how AI capabilities are accessed, distributed, and monetized worldwide. By converting AI services into blockchain-based digital tokens, tokenization is democratizing artificial intelligence and creating entirely new economic models that empower users and developers alike.

Tokenizing AI services marks a fundamental shift away from centralized AI platforms toward decentralized, community-owned ecosystems. In these ecosystems, AI capabilities become tradeable assets, enabling broader participation and fostering innovation. This transformation is more than theoretical—it is driving billions of dollars in market activity and redefining the relationship between businesses, individuals, and artificial intelligence.

Understanding AI Service Tokenization

To grasp how does tokenizing AI services work, it’s essential to understand the core concept of AI tokenization. Tokenizing AI services involves converting artificial intelligence capabilities, including AI models and computational resources, into digital tokens that exist on blockchain networks. These tokens represent ownership, access rights, or usage credits for specific AI functionalities, effectively bridging traditional AI services with decentralized finance ecosystems.

Tokenization in AI is the foundational process of converting data, such as text or computational resources, into smaller, manageable tokens that AI models can analyze and utilize.

At its foundation, tokenization is the process of issuing a unique, digital, and anonymous representation of a real-world asset or service. In Web3 applications, tokens operate on blockchains—often private or permissioned—allowing them to be utilized within specific protocols. When applied to AI services, this process creates programmable assets that can be traded, staked, or used to access computational resources securely and transparently. Understanding AI tokenization is crucial for effectively managing and securing data, especially as AI systems handle increasingly large and sensitive datasets.

Tokenization fundamentally transforms AI service operation by introducing several key characteristics:

  • Fractional Ownership: Instead of requiring large upfront investments for AI access, tokenization enables fractional ownership of AI models and services, making advanced AI capabilities accessible to smaller investors and businesses.
  • Programmability: Tokens can embed smart contract functionality, enabling automated execution of AI services based on predefined parameters and conditions.
  • Composability: Tokenized AI services can interact seamlessly with other blockchain-based assets and applications, fostering synergies and unlocking new use cases across decentralized ecosystems.
  • Transparency: All transactions and interactions involving tokenized AI services are immutably recorded on the blockchain, providing accountability and auditability.
  • Building Blocks: Tokens serve as the fundamental building blocks of AI service tokenization, enabling modular and flexible integration of AI capabilities within decentralized systems.

In summary, tokenizing AI services leverages the process of tokenization in AI to create secure, programmable, and accessible digital assets—tokens matter because they directly impact the performance, security, and efficiency of AI service deployment and utilization.

The Tokenization Process: From AI to Asset

Transforming traditional AI services into tokenized assets involves a multi-step tokenization process that ensures both technical functionality and economic viability. Model processes in AI tokenization break down data into tokens, allowing AI models to analyze and process information efficiently within their context window.

Managing tokens effectively is crucial for optimizing model performance, enhancing security, and reducing operational costs in tokenized AI services. Strategic token management helps prevent semantic fragmentation, mitigates security vulnerabilities, and improves computational efficiency.

Asset Identification and Preparation

The initial phase requires identifying which AI services or capabilities are suitable for tokenization. These may include:

  • AI Models: Machine learning models, neural networks, and specialized algorithms that deliver specific functionalities.
  • Computing Resources: GPU power, processing capacity, and storage resources dedicated to AI operations.
  • Data Assets: Curated datasets, training data, and specialized knowledge bases that underpin AI systems.
  • AI Agents: Autonomous software entities capable of performing tasks and making decisions independently.

Smart Contract Development

Smart contracts form the backbone of tokenized AI services. These self-executing agreements define the terms, conditions, and functionalities of tokenized assets. Written as code on a blockchain, smart contracts enable AI algorithms to autonomously execute predefined strategies, eliminating intermediaries and reducing operational costs. In this model, artificial intelligence makes decisions, and the blockchain ensures their execution—creating powerful automation capabilities previously unattainable in traditional AI systems.

Token Creation and Distribution

Following smart contract development, tokens are created according to established blockchain standards. These standards dictate the rules for token creation and management, ensuring interoperability across platforms. Each token is assigned as a unique token or included in a set of unique tokens to represent specific assets or rights. Common standards include:

  • ERC-20: Fungible tokens ideal for utility tokens and currency-like applications.
  • ERC-721: Non-fungible tokens (NFTs) suited for unique AI models or specialized services.
  • ERC-1155: Multi-token standards capable of handling both fungible and non-fungible assets, allowing for the creation and management of multiple tokens within a single contract.

Once created, tokens are distributed to users, investors, or stakeholders, enabling access to AI services or ownership rights. One token can represent a single access right or asset, while multiple tokens can represent broader ownership or usage rights.

Marketplace Integration

The final step involves integrating tokenized AI services into decentralized marketplaces where they can be discovered, evaluated, and utilized by end users. These marketplaces provide infrastructure for trading, governance, and community interaction around tokenized AI assets, facilitating the growth of vibrant AI ecosystems.

Types of Tokenized AI Services

AI Model Tokenization

AI models trained on extensive training data can be tokenized to represent their value and ownership rights.

Large language models (LLMs) use tokenization to process and generate text by breaking input text into smaller units called tokens. These individual tokens can be words, subwords, or even characters, and each is assigned a unique ID by the large language model to represent text as sequences of token IDs. GPT models utilize byte pair encoding (BPE) for efficient subword tokenization, which merges frequent character pairs to handle vocabulary limitations and unknown words. Word tokenization splits text into words, while subword and character-level tokenization break text into even smaller units, each with different trade-offs for handling special characters and out-of-vocabulary terms. Tokenization enables AI models to analyze semantic relationships and patterns in the input sequence, supporting tasks like parsing, translation, and content generation. Breaking text into tokens is essential for processing input text and generating output tokens, as it allows models to understand and generate human language. Input tokens and output tokens are counted for pricing and rate limiting, with the number of tokens and token limits directly affecting model usage and costs. The context window defines the maximum number of tokens a model can process at once, setting a token limit for both input and output. During text generation, models predict the next token to generate human like text and generate responses. Detokenization converts numerical representations of tokens back into textual information for human interpretation. Tokenization methods also handle unknown words using special tokens like <|unk|> and manage special characters during preprocessing. Other tokens can represent data types beyond text, such as when models process images in multimodal AI applications. Tokenization bridges human language and machine processing, and token based methods are fundamental in AI applications for tasks like chatbots, translation, and predictive analytics. Understanding the token limit and token limits is crucial for optimizing AI applications and managing costs.

Tokenized AI models foster innovation and collaboration by allowing researchers, developers, and businesses to monetize their intellectual property. For example, a natural language processing model could be tokenized, enabling multiple organizations to purchase access rights while original developers retain ownership and receive royalties based on token usage.

Computational Resource Tokenization

Computing resources such as GPU power and storage are essential for training AI models and running inference tasks. These resources can be tokenized to represent their availability and utilization in decentralized AI marketplaces. Tokenizing computational resources optimizes resource allocation, reduces operational costs, and increases efficiency. Some platforms leveraging this model report cost reductions of up to 70% compared to traditional cloud computing services.

Data Asset Tokenization

High-quality training data is the foundation of effective AI systems. Tokenizing data assets enables secure sharing and monetization of datasets while protecting sensitive information. Techniques like federated learning and secure multi-party computation allow data owners to monetize tokenized data without compromising privacy or regulatory compliance, thus addressing concerns related to sensitive data and potential data breaches.

AI Agent Tokenization

AI agents—autonomous software entities capable of decision-making—are increasingly tokenized to represent ownership stakes. These tokens facilitate community governance and provide economic incentives for agent development and improvement. Token issuance creates digital tokens on blockchain platforms that encapsulate ownership rights, access privileges, or revenue-sharing potential for AI agents.

Token Metrics: The Premier Example of AI Service Tokenization

Token Metrics exemplifies the successful tokenization of AI services in the cryptocurrency analytics space, demonstrating how sophisticated AI capabilities can be effectively tokenized to create value for both providers and users.

The TMAI Token Ecosystem

Token Metrics AI (TMAI) is a groundbreaking token that empowers the crypto community with advanced AI tools and insights. The TMAI token acts as the gateway to the platform’s comprehensive suite of AI-powered services, including:

  • AI-Powered Trading Bots: Token holders gain access to AI-driven trading bots compatible with various exchanges. These bots leverage machine learning models trained on cryptocurrency market dynamics to automate trading strategies.
  • Comprehensive Analytics Platform: The TMAI Agent provides AI-driven market analysis across platforms such as Twitter (X), Telegram, and Discord, ensuring users receive real-time insights wherever they trade.
  • Tokenized Governance: TMAI holders participate in governance through the Token Metrics DAO, influencing platform development and strategic direction.

Advanced Tokenomics Model

TMAI employs a sophisticated vote-escrowed (veTMAI) system that exemplifies best practices in AI service tokenization:

  • Staking Mechanisms: Holders lock TMAI tokens for durations up to 12 months, earning a Staking Score that determines access to platform benefits. Longer commitments yield higher multipliers, incentivizing long-term engagement.
  • Revenue Sharing: Stakers earn a proportional share of platform revenue, distributed by the Token Metrics DAO, with options for direct payouts or reinvestment.
  • Early Access Benefits: Stakers receive early access to investment deals through Token Metrics Ventures Fund, with larger allocations for higher Staking Scores.

Developer-Friendly Infrastructure

Token Metrics offers a modular, scalable crypto API for real-time ratings, sentiment analysis, indices, and AI signals. The official SDK allows developers to build AI-powered trading agents without extensive AI expertise, democratizing access to advanced AI tools.

Market Performance and Adoption

With over 50% of TMAI’s supply airdropped to the community, Token Metrics emphasizes collective ownership and governance. The platform has raised $8.5 million from over 3,000 investors, reflecting strong market traction and user engagement.

Technical Implementation and Architecture

Blockchain Integration

Tokenizing AI services demands robust blockchain infrastructure capable of handling complex computations securely and at scale. While Ethereum remains dominant due to its mature smart contract ecosystem, emerging layer-2 solutions and AI-focused blockchains are gaining traction for their improved performance and scalability.

Oracle Integration

Oracles connect blockchains to external data sources, providing real-time information essential for AI service execution. Reliable oracle integration ensures smart contracts receive accurate data feeds, enabling AI algorithms to analyze market trends, optimize token pricing, and automate decision-making.

Interoperability Standards

Interoperability is crucial for tokenized AI services to function across diverse platforms. Multi-chain protocols enable AI tokens to operate on different blockchains, maximizing utility and market reach. Standardizing token ids and formats ensures seamless communication between AI systems and blockchain applications.

Market Growth and Economic Impact

Market Size and Projections

The tokenization market is projected to reach $4 trillion by 2025, highlighting the transformative potential of AI tokens. Fueled by advances in machine learning, natural language processing, and blockchain interoperability, tokenized AI services are becoming foundational components of decentralized AI infrastructure.

Investment and Funding Trends

Significant investments from both traditional and crypto-native sources are fueling projects that tokenize AI services. Many have achieved unicorn valuations by pioneering innovative approaches to AI democratization and tokenized data sharing.

Real-World Economic Benefits

Tokenized AI services deliver tangible advantages:

  • Cost Reduction: By eliminating intermediaries and enabling peer-to-peer transactions, tokenization reduces operational costs by 30-70%.
  • Increased Accessibility: Fractional ownership models allow smaller businesses and developers to access enterprise-grade AI capabilities.
  • Revenue Diversification: Developers monetize AI tools and data assets, while users share in economic gains.

Challenges and Solutions

Technical Challenges

  • Scalability: Blockchain networks face scalability limits that can hinder AI-powered smart contracts. Layer-2 solutions and AI-optimized blockchains offer promising remedies.
  • Energy Consumption: Both AI and blockchain are energy-intensive. Innovations in consensus mechanisms and efficient AI algorithms aim to reduce environmental impact.
  • Oracle Reliability: Ensuring accurate data feeds requires multiple oracle providers and AI-driven validation to prevent errors or exploits.

Regulatory Considerations

Legal frameworks around tokenized assets remain uncertain. Regulatory scrutiny, especially concerning securities laws and PCI DSS compliance, poses risks. However, institutions like the Federal Reserve are exploring how tokenization and AI can enhance payment systems, suggesting clearer regulations will emerge.

Security Concerns

Blockchain systems are vulnerable to hacks. Robust security protocols, regular audits, and AI-driven vulnerability detection tools are essential to safeguard tokenized AI services and protect sensitive information.

Future Trends and Developments

Enhanced AI Capabilities

The future will see more advanced AI services tokenized, including:

  • Autonomous AI Agents: Self-improving systems that adapt based on user feedback and market conditions.
  • Specialized Industry Solutions: Tailored AI services for healthcare, finance, manufacturing, and more.
  • Multi-Modal AI: Systems processing text, images, audio, and video through unified tokenized interfaces.

Improved User Experience

User-friendly platforms will emerge, featuring:

  • No-Code Interfaces: Enabling non-technical users to deploy AI services effortlessly.
  • Mobile-First Designs: Accessing tokenized AI tools on smartphones and tablets.
  • Integration with Existing Tools: APIs and plugins connecting tokenized AI services with popular business software.

Cross-Chain Compatibility

Seamless operation across multiple blockchains will become standard, allowing users to leverage AI capabilities regardless of their preferred blockchain ecosystem.

Conclusion: The Future of AI is Tokenized

Understanding how does tokenizing AI services work is essential for anyone engaged in the evolving AI landscape. By converting AI capabilities into blockchain-based assets, tokenization is creating democratic, transparent, and efficient systems that serve a global community rather than a few centralized entities.

Token Metrics exemplifies this transformative potential, showcasing how AI analytics can be tokenized to create value for millions worldwide. Through its TMAI token ecosystem, it provides a blueprint for community-owned, governance-driven AI platforms.

The benefits of AI service tokenization are clear: democratized access, economic efficiency, community governance, revenue sharing, and accelerated innovation. As tokenization becomes the dominant model for AI distribution and monetization, businesses, developers, and investors must engage early to remain competitive.

The future of artificial intelligence is no longer centralized within tech giants. It is tokenized, distributed, and owned by the communities that build and use it. This shift represents one of the most significant technological transformations since the internet’s inception, with profound implications across industries and economies worldwide.

‍

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Andrena and the Rise of DePIN: Decentralized Internet in 2025

Token Metrics Team
8 min
MIN

Introduction:
Decentralized Physical Infrastructure Networks (DePINs) are rapidly emerging as one of the most transformative sectors in the blockchain space. In 2025, projects like Andrena are pushing the boundaries of what’s possible by bridging real-world hardware with decentralized protocols. This blog takes a closer look at the DePIN thesis, Andrena’s approach, and why this project is on the radar of top investors and analysts.

What Is DePIN?

DePIN stands for Decentralized Physical Infrastructure Networks. It refers to blockchain-powered networks that coordinate real-world infrastructure using token-based incentives. Use cases include:

  • Wireless internet (e.g., Helium)
  • Sensor networks (e.g., WeatherXM)
  • Storage and compute (e.g., Filecoin, Akash, Arweave)
  • Energy grids (e.g., PowerPod)

In short, DePINs decentralize infrastructure deployment and management using blockchain-based coordination tools.

Why DePIN Matters in 2025

  1. Infrastructure Gaps: Billions remain unconnected to the internet or lack access to basic digital services. DePINs offer a way to close these gaps without reliance on centralized telecoms.
  2. Token Incentives for Network Participation: Hardware operators are rewarded for contributing bandwidth, compute, or coverage—creating a new economic model.
  3. Real-World Utility: Unlike speculative tokens, DePIN projects often provide visible, tangible value from day one.

Introducing Andrena: The Helium of the Internet?

Andrena is a DePIN project building a decentralized internet backbone through a combination of physical devices and blockchain protocols. The project is developing a hardware device called Black Box, expected to launch in July.

Key features:

  • Distributed, peer-to-peer wireless coverage
  • Web3 native incentives for node operators
  • No reliance on centralized ISPs
  • Tentative deployments in New York City, Mexico City, and Accra
  • Deep integration with Helium Network and its infrastructure

Andrena aims to give individuals and communities the power to run their own internet access points and be compensated in a decentralized system.

Why It’s Generating Buzz

Token Metrics researchers flagged Andrena as a top pick for long-term infrastructure exposure. Here's why:

  • Backed by Top VCs: In its upcoming Series B, Andrena is reportedly raising funds from major firms including Polychain Capital, Archetype, Wintermute, and Coinbase Ventures.
  • Mass Market Vision: The goal is not just to serve crypto-native users, but also everyday consumers who simply want affordable, decentralized internet access.
  • Multi-layered Integration: Andrena will offer both physical routers and a browser extension, enabling different levels of participation.

Strategic Partnerships and Rollout

The project is currently in soft-launch mode with localized pilots and is pursuing exchange listings later this year. While details remain limited, the focus is on building a global decentralized ISP layer—a radical shift from the existing internet access model.

Why Andrena Could Succeed Where Others Struggled

Previous attempts at decentralized internet often failed due to:

  • Poor hardware UX
  • Limited adoption outside of crypto users
  • Unclear monetization models

Andrena appears to be addressing these pain points with:

  • Consumer-grade devices
  • Partner integrations (e.g., Helium)
  • Clear token utility tied to network usage and coverage
  • A well-capitalized, experienced founding team

Risks and Unknowns

As with all early-stage infrastructure projects, there are risks:

  • Uncertain regulatory frameworks around ISPs
  • Capital intensity of hardware production and distribution
  • Network growth dependent on physical deployment
  • Limited token utility details at this stage

Investors and builders should stay informed as more information becomes public.

How Token Metrics Is Tracking DePIN Growth

The Token Metrics platform is actively monitoring the DePIN space through metrics such as:

  • TVL (Total Value Locked) in related ecosystems
  • Developer activity and GitHub velocity
  • On-chain signal strength and token accumulation
  • Fundamental and technical ratings

Projects like Andrena and its ecosystem partners are closely watched for early indicators of momentum.

Final Thoughts

DePIN is one of the most compelling frontiers in crypto. It offers real-world, real-time applications that go far beyond speculation. Andrena is at the center of this movement, blending telecom hardware, Web3 incentives, and global deployment.

While it's still early, the signs are promising. From reputable backers to ambitious global plans, Andrena is a project worth watching in 2025 and beyond.

Research

Meme Coins in 2025: Why They’re Still Outperforming the Crypto Market

Token Metrics Team
8 min
MIN

Introduction:
Even in a sluggish crypto market, meme coins continue to outperform many other asset classes. In 2025, these highly speculative assets are not only surviving—some are thriving. This blog examines the current state of the meme coin market, what’s driving the activity, and how on-chain data and crypto analytics can help decode the chaos.

Meme Coins: Still Relevant in 2025?

Despite a broadly bearish macro environment, meme coins remain among the few bright spots in the crypto market. In the latest Token Metrics research webinar, several meme tokens showed outsized returns, including:

  • Gorbagana – up over 50% in a day
  • Useless Coin – jumped 40% in 24 hours
  • Startup Coin – nearly 9x returns over the past month

These tokens operate at low market caps and often launch with little or no formal whitepaper or utility. However, the power of narrative, social engagement, and rapid speculation continues to drive short-term gains.

Why Meme Coins Are Performing in a Bear Market

1. Low Liquidity, High Volatility:
Small-cap meme tokens can easily generate parabolic moves with modest capital inflows.

2. Community-Led Narratives:
Tokens like Useless Coin and Startup thrive on viral momentum from crypto-native communities, particularly on X (Twitter) and Telegram.

3. Whale Activity as a Signal:
Token Metrics analysts observed that whales have been accumulating select meme coins. This isn’t an endorsement—but it’s a data point. Monitoring on-chain whale behavior offers clues about where smart money is moving.

The Gobagana Case Study

Gobagana was cited as a high-risk Solana fork with minimal public information, yet it rapidly gained traction. On-chain analysis revealed:

  • Whale wallets accumulating in the early phase
  • Early VC insiders (e.g., those connected to Big Brain VC) engaging with the token
  • Rapid social engagement despite a small follower base

The takeaway? Even opaque meme coins can trigger major rallies—particularly if accumulation patterns align with social volume.

Risk Management and Red Flags

The meme coin market is not without risk. The Token Metrics team emphasized several cautions:

  • Illiquidity: Many meme tokens have low volume and limited exchange listings.
  • Exit scams or soft rugs: Teams can abandon the project after price pumps.
  • Price discovery volatility: Tokens may have no clear valuation baseline and can retrace sharply.

As such, these assets are often best approached with a high-risk tolerance and clear entry/exit rules.

How to Track Meme Coins Like a Quant

Using crypto analytics platforms like Token Metrics can help make sense of meme coin volatility. Tools that help include:

  • Real-time sentiment analysis
  • Whale wallet tracking
  • Price-to-volume anomaly detection
  • Bullish/bearish signal tracking

In 2025, data is more important than hype. While memes may dominate the narrative, only data reveals when the momentum shifts.

Meme Coins vs. Infrastructure Projects

Interestingly, while meme coins have been surging, many infrastructure or protocol tokens remain flat. This divergence suggests that retail attention is still focused on short-term speculation.

That said, once Bitcoin breaks key resistance levels, we could see capital rotate into AI, DeFi, and infrastructure themes. Meme coins may be the “canary in the coal mine” indicating renewed retail appetite.

Final Thoughts

Meme coins remain the wild west of crypto—but they aren’t going away. In fact, they’re becoming more sophisticated, with deeper liquidity pools, faster launches, and increased integration with social media bots and automated token creators.

As always, meme coin trading demands discipline, skepticism, and a robust toolkit. Watch the whales, follow the data, and never trade what you don’t understand.

Research

How to Find Hidden Crypto Gems with 100x Potential (Step-by-Step Guide) | Token Metrics Moonshots

Token Metrics Team
8 min
MIN

In the fast-paced world of cryptocurrency, discovering hidden gems—often called moonshots—can lead to life-changing returns. But the real challenge lies in separating hype from actual potential. In this guide, we’ll break down what crypto moonshots are, how they work, and how you can use Token Metrics to reliably find tokens with 100x upside.

What Are Moonshot Tokens?

The term moonshot comes from the idea of a crypto token “going to the moon,” or rapidly increasing in price. These are usually low-cap tokens with a compelling narrative, innovative technology, or early-stage market presence that give them high upside potential.

Key Characteristics of Moonshot Tokens:

  • Market Cap Below $50M – Smaller market caps have more room to grow.
  • High Risk / High Reward – Volatility is expected, but the upside can be enormous.
  • Early Entry – Timing matters. Getting in early before mainstream awareness is key.
  • Backed by Fundamentals – Even moonshots need solid technology, use cases, or backing.

How Do Crypto Moonshots Work?

Moonshots rely on the combination of innovation, market timing, and community adoption. They often start unnoticed, then experience exponential growth once crypto traders and influencers catch on.

The Lifecycle of a Typical Moonshot:

  1. Discovery Phase – A few savvy investors or analysts spot the token.
  2. Accumulation Phase – Early adopters buy in quietly, keeping prices low.
  3. Breakout Phase – News spreads, and trading volume spikes.
  4. Parabolic Run – FOMO (Fear of Missing Out) kicks in, driving price up rapidly.
  5. Profit-Taking or Collapse – Smart traders exit with gains; latecomers may be left holding the bag.

To avoid the trap of hype-driven tokens, it's essential to use data and analytics, not emotions. That’s where Token Metrics becomes your secret weapon.

How to Use Token Metrics to Find Monshots?

Token Metrics is an AI-powered crypto analytics platform that helps you discover high-potential tokens with real-time data, grades, and backtested indicators. Here’s a step-by-step guide to using Token Metrics to uncover 100x opportunities:

Step 1: Go to the Ratings Page

Start from the main dashboard of the Token Metrics app.

  • Navigate to the “Ratings” tab.
  • This page ranks thousands of tokens using AI-based Trader Grade and Investor Grade, factoring in technical indicators, on-chain metrics, sentiment, and more.

Pro Tip: Look for tokens with rising Trader Grades and strong historical performance.

Step 2: Click on the “Moonshots” Tab

Once you’re in the Ratings section:

  • Click the “Moonshots” tab at the top of the page.
  • This will filter the list down to tokens the AI model flags as having moonshot potential—i.e., tokens likely to perform exceptionally well in the short term.

These are automatically generated by Token Metrics AI models using over 80+ data points, including:

  • Price momentum
  • On-chain activity
  • Sentiment analysis
  • Volume spikes
  • Market structure

Step 3: Review Key Moonshot Metrics

Each Moonshot token is presented with a rich dataset to help you make informed decisions:

  • Trader Grade (with % change in past 24h or 7d)
  • 24H Trading Volume – Gauge market interest
  • Market Cap – Lower caps typically offer more upside
  • Date of Entry – See when the token was first flagged
  • Live ROI Since Moonshot – Know exactly how past picks performed

Bonus Feature: Toggle to “Past Moonshots” to review previous winners and assess the track record of the platform.

Step 4: Choose a Token to Explore

Click on any token in the Moonshots list to open its Token Details Page.

Here, you can:

  • Analyze real-time charts
  • Review fundamentals, like project utility, tokenomics, roadmap, and team
  • See top holders and whale activity
  • Examine price volatility and volume patterns

This is where research and intuition meet. Use the available data to decide if this token fits your risk tolerance and investment thesis.

Step 5: Buy in Seconds

Token Metrics makes the process seamless:

  • Just click the “Buy” button on the Moonshots page.
  • This opens a swap widget powered by integrated DEX aggregators.
  • Choose your wallet, approve the transaction, and you're done—no need to leave the platform.

This integration eliminates the hassle of going to third-party platforms to execute trades, saving time and reducing risk.

Why Use Token Metrics for Finding Moonshots?

Token Metrics isn’t just about flashy picks—it’s about using data science and AI to gain an edge.

Key Benefits:

  • AI-Driven Insights – No emotional bias; just pure data analysis.
  • Transparency – View past moonshot performance, live ROI, and update dates.
  • Speed to Trade – Instant buy options right from the dashboard.
  • Performance Tracking – Evaluate your results based on entry/exit signals.

Real Examples: Token Metrics in Action

  • Euler Finance was flagged as a Moonshot before its 30% rally—validated by a bullish AI signal.
  • Morpho gained traction after appearing in the Moonshots list, later becoming a top TVL gainer.
  • Hyperliquid made the list before capturing major perp trading market share.

By combining early AI alerts with your own due diligence, you can position yourself ahead of the crowd.

Final Thoughts

Finding the next 100x crypto gem doesn’t have to be a guessing game. While the crypto space remains volatile, tools like Token Metrics help stack the odds in your favor. From real-time ratings to instant buy options and performance metrics, you have everything you need to make smart, data-driven bets on the future of crypto.

So if you're serious about turning small investments into big wins, start using Token Metrics to uncover moonshots before they go mainstream.

Try Token Metrics today and unlock the power of AI-driven crypto investing.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products