Research

Top Crypto Indices in 2025: The Best Ways to Invest in Crypto Without Picking Tokens

Explore the top crypto indices in 2025, including AI-powered strategies, passive HODL indices, and sector-based baskets. Learn how to simplify crypto investing with smart, diversified index portfolios.
Token Metrics Team
Top Crypto Indices in 2025: The Best Ways to Invest in Crypto Without Picking Tokens
MIN

Crypto investors in 2025 face an overwhelming number of choices. With thousands of tokens, rapidly shifting narratives, and constant market volatility, building and managing a profitable portfolio isn’t easy. But one solution is gaining traction among both beginner and seasoned investors alike: crypto indices.

A crypto index is a curated basket of tokens that provides diversified exposure to a specific segment of the crypto market. Instead of researching and buying individual tokens, you invest in a single index that tracks a group of assets—similar to how the S&P 500 or NASDAQ works in traditional finance.

In this article, we’ll cover the top crypto indices in 2025, explain what makes each one stand out, and explore how AI is revolutionizing index investing in the crypto space.

What Is a Crypto Index?

A crypto index is a portfolio of cryptocurrencies selected and weighted using a specific methodology. It can be passive—holding the top 10 tokens by market cap—or active, where an algorithm or AI rebalances the index based on market conditions.

Investing in a crypto index means you’re buying into an entire theme or strategy, not just a single token. This helps reduce risk, smooth out returns, and simplify the investing process.

Why Use Crypto Indices in 2025?

Here’s why crypto indices are more relevant than ever in 2025:

  • Diversification: Spread your capital across multiple tokens, reducing the impact of any single asset's volatility.
  • Automation: Many indices rebalance automatically, saving you time and effort.
  • Trend Exposure: Sector-based indices let you ride major trends like AI, DeFi, or Real World Assets (RWA).
  • Risk Management: AI-powered indices can reduce exposure or shift to stablecoins in bearish conditions.

Top Crypto Indices in 2025

1. Token Metrics AI Indices

  • Type: Actively Managed
  • Technology: AI-driven with over 80 data points per token
  • Themes: Memecoins, RWA, AI Agents, DeFi, Layer 1s
  • Frequency: Rebalanced weekly based on bullish/bearish market signals

Why It’s a Top Pick:
Token Metrics has pioneered a new generation of crypto indices that actively trade based on AI insights. Instead of static rebalancing, the AI identifies when to enter or exit tokens based on current momentum, volatility, sentiment, and technical indicators. These indices offer a smarter, automated approach to outperforming the market—especially in fast-moving sectors like AI tokens or memecoins.

2. Bitwise 10 Crypto Index Fund (BITW)

  • Type: Passive
  • Structure: Traditional investment vehicle (available via brokerage)
  • Assets: Top 10 cryptocurrencies by market cap

Why It’s a Top Pick:
BITW is ideal for investors looking for simple, long-term exposure to the largest and most established cryptos. It tracks the performance of the top 10 digital assets, including Bitcoin (BTC), Ethereum (ETH), and Solana (SOL). It's fully regulated and targets institutions or traditional investors entering crypto.

3. Phuture DeFi Index (PDI)

  • Type: On-chain, Passive
  • Focus: Decentralized Finance (DeFi) tokens
  • Access: Non-custodial, DeFi-native

Why It’s a Top Pick:
Phuture makes index investing seamless within DeFi ecosystems. Its DeFi Index provides exposure to high-utility tokens like AAVE, UNI, and CRV. Ideal for crypto-native users, it’s completely on-chain, composable, and doesn’t require intermediaries.

4. Index Coop – GMI (Bankless DeFi Innovation Index)

  • Type: Community-Governed, Thematic
  • Focus: Experimental and innovative DeFi projects
  • Governance: Managed by Index Coop and Bankless DAO

Why It’s a Top Pick:
GMI stands for “Going Mainstream Index” and aims to capture cutting-edge projects at the bleeding edge of DeFi innovation. It’s great for those bullish on next-gen financial infrastructure and looking for exposure to governance tokens, staking protocols, and experimental finance.

5. Crypto20 (C20)

  • Type: Tokenized Index Fund
  • Composition: Top 20 cryptocurrencies
  • Access: ERC-20 token (C20) represents index share

Why It’s a Top Pick:
Crypto20 was one of the first tokenized crypto index funds. It lets you invest in the top 20 cryptocurrencies through a single token, with auto-rebalancing and transparent weighting. It’s an easy on-ramp for beginners who want broad crypto exposure.

6. Token Metrics Global Market Cap Indices (HODL Series)

  • Type: Passively Managed
  • Available Indices: Top 5, 10, 25, and 100 by market cap
  • Strategy: Buy-and-hold portfolios for long-term investors

Why It’s a Top Pick:
These indices are designed for investors who believe in the long-term growth of the crypto market but don’t want to chase narratives. The HODL series is great for passive wealth accumulation with minimal trading activity.

Thematic Crypto Indices to Watch

If you’re looking to ride specific crypto narratives in 2025, these thematic indices are worth considering:

🔹 AI Tokens Index

  • Tracks top AI-focused crypto projects like FET, AGIX, and GRT.
  • Surging interest due to the AI boom in both tech and crypto sectors.

🔹 Memecoin Index

  • Includes high-volatility meme tokens like DOGE, PEPE, BONK, and WIF.
  • Great for traders who want to play high-risk, high-reward cycles.

🔹 RWA Index (Real World Assets)

  • Exposure to tokens that represent off-chain value: MKR, ONDO, XDC, etc.
  • Benefiting from institutional crypto adoption and tokenized finance growth.

🔹 Layer 1 Index

  • Tracks the performance of top blockchain platforms: ETH, SOL, AVAX, NEAR, etc.
  • Best for investors bullish on infrastructure plays.

How to Start Investing in Crypto Indices

  1. Choose a Platform – Token Metrics, Bitwise, Index Coop, or Phuture.
  2. Select an Index – Based on your interest: AI, DeFi, Memecoins, or Market Cap.
  3. Connect Wallet or Sign Up – Depending on whether it's on-chain or centralized.
  4. Fund Your Account – Typically via USDC, ETH, or fiat.
  5. Monitor Performance – AI indices may require weekly check-ins; HODL indices can be set and forgotten.

Final Thoughts: Crypto Indices Are the Smartest Way to Invest in 2025

Whether you’re a new investor or an experienced trader, crypto indices in 2025 offer one of the most efficient, diversified, and intelligent ways to grow your crypto portfolio. Platforms like Token Metrics lead the way with cutting-edge AI-powered indices, while more traditional players like Bitwise provide reliable exposure for institutional strategies.

By investing in an index, you’re not just buying a few coins—you’re gaining access to a curated, balanced, and often smarter portfolio that evolves with the market. And as AI and automation take over more of the investing process, index strategies are becoming even more powerful.

If you’re ready to stop guessing and start investing strategically, now is the time to explore the best crypto indices available.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Practical REST API Guide for Developers

Token Metrics Team
5
MIN

REST APIs power much of the web and modern applications by providing a simple, scalable contract between clients and servers. Whether you're building microservices, mobile backends, or integrations, understanding REST principles, security trade-offs, and operational practices helps you design reliable interfaces that scale. This guide walks through core concepts, design patterns, security essentials, and practical steps to evaluate and implement REST APIs effectively.

What is a REST API and why it matters

REST (Representational State Transfer) is an architectural style for distributed systems. Rather than a strict protocol, REST prescribes patterns: stateless interactions, resource-oriented URIs, and use of standard HTTP methods (GET, POST, PUT, DELETE, PATCH). The result is a predictable API surface that is easy to cache, route, and evolve.

Key benefits include:

  • Interoperability: Clients and servers can evolve independently when contracts are clear.
  • Scalability: Statelessness facilitates horizontal scaling and load balancing.
  • Tooling: Wide ecosystem for testing, documentation, and client generation.

Design principles and best practices

Good REST design balances simplicity, clarity, and forward compatibility. Use the following framework when designing endpoints and contracts:

  1. Resource modeling: Identify nouns (resources) first, then actions. Prefer /users/123/orders over /getUserOrders?id=123.
  2. HTTP methods & status codes: Map CRUD operations to HTTP verbs and return meaningful status codes (200, 201, 204, 400, 404, 422, 500).
  3. Pagination & filtering: Standardize pagination (limit/offset or cursor) and provide filtering query parameters to avoid large payloads.
  4. Versioning strategy: Favor versioning in the path (e.g., /v1/) or via headers. Keep deprecation timelines and migration guides clear to consumers.
  5. HATEOAS (optional): Hypermedia can add discoverability, but many practical APIs use simple documented links instead.

Document expected request/response schemas and examples. Tools like OpenAPI (Swagger) make it easier to generate client libraries and validate contracts.

Security, authentication, and common patterns

Security is a non-functional requirement that must be addressed from day one. Common authentication and authorization patterns include:

  • OAuth 2.0: Widely used for delegated access and third-party integrations.
  • API keys: Simple for service-to-service or internal integrations, but should be scoped and rotated.
  • JWT (JSON Web Tokens): Stateless tokens carrying claims; be mindful of token expiration and revocation strategies.

Practical security measures:

  • Always use TLS (HTTPS) to protect data in transit.
  • Validate and sanitize inputs to prevent injection attacks and resource exhaustion.
  • Rate limit and apply quota controls to reduce abuse and manage capacity.
  • Monitor authentication failures and anomalous patterns; implement alerting and incident playbooks.

Testing, performance, and observability

APIs must be reliable in production. Build a test matrix that covers unit tests, contract tests, and end-to-end scenarios. Useful practices include:

  • Contract testing: Use OpenAPI-based validation to ensure client and server expectations remain aligned.
  • Load testing: Simulate realistic traffic to identify bottlenecks and capacity limits.
  • Caching: Use HTTP cache headers (ETag, Cache-Control) and edge caching for read-heavy endpoints.
  • Observability: Instrument APIs with structured logs, distributed traces, and metrics (latency, error rates, throughput).

Operationally, design for graceful degradation: return useful error payloads, implement retries with exponential backoff on clients, and provide clear SLAs. AI-driven research and API analytics can help prioritize which endpoints to optimize; for example, Token Metrics illustrates how product data combined with analytics surfaces high-impact areas for improvement.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Frequently Asked Questions

What exactly does "REST" mean?

REST stands for Representational State Transfer. It describes a set of constraints—stateless interactions, resource-oriented URIs, and uniform interfaces—rather than a wire protocol. Implementations typically use HTTP and JSON.

How is REST different from SOAP and GraphQL?

SOAP is a strict protocol with XML envelopes, formal contracts (WSDL), and built-in features like WS-Security. REST is more flexible and lightweight. GraphQL exposes a single endpoint that allows clients to request specific fields, reducing over-fetching but adding complexity on the server side. Choose based on client needs, tooling, and team expertise.

What are common authentication methods for REST APIs?

Common methods include OAuth 2.0 for delegated access, API keys for simple service access, and JWTs for stateless sessions. Each has trade-offs around revocation, token size, and complexity—consider lifecycle and threat models when selecting an approach.

How should I manage API versioning?

Versioning strategies include path-based (/v1/resource), header-based, or content negotiation. Path-based versioning is the most explicit and easiest for clients. Maintain backward compatibility where possible and provide clear deprecation timelines and migration guides.

Which tools help with designing and testing REST APIs?

OpenAPI (Swagger) for specification and client generation, Postman for exploratory testing, and contract-testing tools like Pact for ensuring compatibility. Load testing tools (k6, JMeter) and observability platforms complete the pipeline for production readiness.

Disclaimer

This article is educational and technical in nature. It provides general information about REST API design, security, and operations, not financial, legal, or investment advice. Assess your own requirements and consult appropriate specialists when implementing systems in production.

Research

REST API Guide: Design, Security & Best Practices

Token Metrics Team
5
MIN

REST APIs remain the backbone of modern web and mobile integrations. Whether you are building a public data service, an internal microservice, or an AI agent that consumes remote endpoints, understanding REST architecture, trade-offs, and operational considerations helps you design reliable, maintainable services. This guide outlines core principles, security patterns, performance levers, and practical steps to take a REST API from prototype to production-ready.

Overview: What REST Means and When to Use It

REST (Representational State Transfer) is an architectural style that emphasizes stateless interactions, resource-oriented URLs, and a uniform interface over HTTP. REST excels when you need:

  • Clear resource models (users, orders, assets) that map to endpoints.
  • Interoperability across heterogeneous clients (web, mobile, bots).
  • Simple caching and scalability using standard HTTP semantics.

It is less ideal for tightly-coupled RPC-style workflows or highly transactional systems where more specialized protocols (gRPC, WebSockets) may be better. Use scenario analysis: list the primary operations, expected throughput, latency requirements, and client types before committing to REST.

Design Principles: Modeling Resources, Endpoints & Versioning

Good REST design begins with resource modeling. Convert nouns into endpoints (e.g., /users, /orders/{id}) and use HTTP verbs for actions (GET, POST, PUT, PATCH, DELETE). Key practices include:

  • Consistent URI structure: predictable paths reduce client complexity and documentation friction.
  • Use of status codes: return standard HTTP codes (200, 201, 400, 401, 403, 404, 429, 500) and embed machine-readable error payloads.
  • Pagination and filtering: design scalable list endpoints with limit/offset or cursor approaches and clear sort/filter parameters.
  • API versioning: prefer versioning via headers or a version segment (e.g., /v1/) and adopt deprecation policies to manage breaking changes.

Document the contract using OpenAPI/Swagger to enable client generation and automated testing. Maintain a change log and semantic versioning conventions to help consumers plan migrations.

Security & Authentication Patterns

Security must be baked into API design. Core controls include transport security, authentication, authorization, and abuse prevention:

  • TLS everywhere: require HTTPS and disallow insecure endpoints.
  • Authentication: use OAuth2 for delegated access, API keys for service-to-service calls, or JWTs for stateless sessions. Rotate and scope keys to limit blast radius.
  • Authorization: implement least-privilege ACLs and role-based checks at the resource layer.
  • Rate limiting and throttling: protect against spikes and abuse with client-tiered rate limits and graceful 429 responses.
  • Input validation and sanitization: validate payloads, enforce size limits, and apply schema checks to avoid injection and denial-of-service vectors.

Audit logs and monitoring provide visibility into suspicious patterns. Use a layered approach: perimeter controls, application checks, and runtime protections.

Performance, Scaling & Reliability

Design for performance from the start. Profile expected workloads and adopt strategies appropriate to scale:

  • Caching: leverage HTTP caching headers (ETag, Cache-Control) and CDN caching for public resources.
  • Asynchronous workflows: move long-running tasks to background jobs and expose status endpoints rather than blocking request threads.
  • Connection and payload optimization: support gzip/brotli compression and consider payload minimization or field selection to reduce bandwidth.
  • Horizontal scaling: design services to be stateless so they can scale behind load balancers; externalize state to databases or caches.
  • Observability: collect structured logs, distributed traces, and metrics (latency, error rates, saturations) to detect regressions early.

Test performance with realistic load patterns and failure injection. A resilient API recovers gracefully from partial outages and provides useful error information to clients.

Practical Integration: Tooling, SDKs & AI Agents

Operationalizing a REST API includes client SDKs, developer portals, and automation. Use OpenAPI to generate SDKs in common languages and provide interactive documentation (Swagger UI, Redoc). For AI-driven applications, consider these steps:

  1. Expose well-documented endpoints for the data models AI agents will consume.
  2. Provide schema and example payloads so model prompts can be constructed deterministically.
  3. Rate-limit and sandbox agent access to prevent excessive usage and protect sensitive data fields.

AI-driven research and analytics tools can augment API design and monitoring by surfacing anomalies and suggesting schema changes. For example, platforms that combine on-chain and market data help teams design endpoints that better serve analytics workloads—see Token Metrics for an example of an AI-powered crypto research tool that demonstrates how combining signals and APIs supports data-driven product design.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a REST API?

A REST API is an interface that uses HTTP methods and resource-oriented URLs to enable stateless communication between clients and servers. It emphasizes a uniform interface and uses standard HTTP semantics.

FAQ: How do I version a REST API safely?

Version by URI segment (/v1/) or headers, publish changelogs, and use semantic versioning to communicate compatibility. Provide backward-compatible migrations and deprecation timelines for breaking changes.

FAQ: What authentication methods are common for REST APIs?

Common approaches include OAuth2 for delegated access, API keys for service access, and JWTs for stateless sessions. Choose based on client types and security requirements, and always use TLS.

FAQ: How can I optimize REST API performance?

Apply caching headers, use CDNs, compress payloads, paginate large lists, and move long-running tasks to asynchronous queues. Monitor metrics and load-test using representative traffic.

FAQ: When should I choose gRPC or GraphQL instead of REST?

Choose gRPC for low-latency, high-throughput RPC between services and GraphQL when clients need flexible queries over a complex graph of resources. REST is often best for simple resource-based services and broad interoperability.

Disclaimer

This article is for educational and informational purposes only. It does not constitute professional advice. Evaluate technical choices in the context of your own project requirements and constraints.

Research

Mastering Modern REST APIs: Design, Security & Tools

Token Metrics Team
5
MIN

REST APIs power much of the web: mobile apps, SPAs, microservices, and integrations all rely on predictable HTTP-based interfaces. This guide breaks down modern REST API concepts into practical frameworks, security patterns, testing workflows, and tooling recommendations so engineers can build resilient, maintainable services.

Overview: What a REST API Really Is

A REST API (Representational State Transfer) is an architectural style for networked applications that uses stateless HTTP requests to perform operations on resources. Rather than prescribing specific technologies, REST emphasizes constraints—uniform interface, statelessness, cacheability, layered system—to enable scalable, evolvable services.

Key concepts:

  • Resources: nouns exposed by the API (e.g., /users, /orders).
  • HTTP verbs: GET, POST, PUT/PATCH, DELETE map to read/create/update/delete operations.
  • Representations: payload formats such as JSON or XML; JSON is ubiquitous today.
  • Statelessness: each request contains all necessary context (authentication tokens, parameters).

Design Principles & Patterns for Scalable APIs

Good design balances clarity, consistency, and forward compatibility. Apply these patterns when designing endpoints and payloads:

  • Resource modeling: structure endpoints around logical resources and their relationships. Favor plural nouns: /invoices, /invoices/{id}/lines.
  • Versioning: use a clear strategy such as Accept header versioning or a version prefix (/v1/) when breaking changes are necessary.
  • Pagination & filtering: implement cursor-based pagination for large datasets and offer consistent filter/query parameter semantics.
  • Hypermedia (HATEOAS) where useful: include links to related resources to aid discoverability in complex domains.
  • Error handling: return standardized error objects with HTTP status codes, machine-readable error codes, and human-friendly messages.

Designing APIs with clear contracts helps teams iterate without surprises and enables client developers to integrate reliably.

Security, Rate Limiting, and Operational Concerns

Security and reliability are core to production APIs. Focus on layered defenses and operational guardrails:

  • Authentication & authorization: adopt proven standards such as OAuth 2.0 for delegated access and use JSON Web Tokens (JWT) or opaque tokens as appropriate. Validate scopes and permissions server-side.
  • Transport security: enforce HTTPS everywhere and use HSTS to prevent downgrade attacks.
  • Input validation and sanitization: validate payloads at the boundary, apply schema checks, and reject unexpected fields to reduce attack surface.
  • Rate limiting & quotas: protect resources with per-key throttling, burst policies, and graceful 429 responses to communicate limits to clients.
  • Observability: implement structured logging, distributed tracing, and metrics (latency, error rate, throughput) to detect anomalies early.

Security is not a single control but a set of practices that evolve with threats. Regular reviews and attack surface assessments are essential.

Tools, Testing, and AI-Assisted Analysis

Reliable APIs require automated testing, simulation, and monitoring. Common tools and workflows include:

  • Design-first: use OpenAPI/Swagger to define contracts, generate client/server stubs, and validate conformance.
  • Testing: employ unit tests for business logic, integration tests for end-to-end behavior, and contract tests (Pact) between services.
  • Load testing: use tools like k6 or JMeter to simulate traffic patterns and surface scaling limits.
  • Security testing: perform automated vulnerability scanning, dependency analysis, and routine penetration testing.
  • AI and analytics: modern workflows increasingly incorporate AI assistants for anomaly detection, schema drift alerts, and traffic classification. For AI-assisted API monitoring and analytics, Token Metrics offers capabilities that can augment diagnostics without replacing engineering judgment.

Combining contract-first development with continuous testing and observability reduces regressions and improves reliability.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What protocols and formats do REST APIs use?

REST APIs typically use HTTP/HTTPS as the transport protocol and JSON as the dominant payload format. XML and other formats are supported but less common. HTTP status codes convey high-level outcome (200 OK, 201 Created, 400 Bad Request, 401 Unauthorized, 429 Too Many Requests, 500 Server Error).

FAQ: How should I version a public REST API?

Versioning strategies vary. A pragmatic approach is to keep backward-compatible changes unversioned and introduce a new version (e.g., /v2/) for breaking changes. Consider header-based versioning for greater flexibility, but ensure clients can discover supported versions.

FAQ: When should I use PUT vs PATCH?

Use PUT for full resource replacement and PATCH for partial updates. PUT should accept the complete resource representation; PATCH applies a partial modification (often using JSON Patch or a custom partial payload). Document semantics clearly so clients know expectations.

FAQ: How do I design for backward compatibility?

Prefer additive changes (new fields, new endpoints) and avoid removing fields or changing response types. Feature flags, deprecation headers, and sunset timelines help coordinated migration. Provide clear changelogs and client SDK updates when breaking changes are unavoidable.

FAQ: What are common performance optimizations for REST APIs?

Common techniques include caching responses with appropriate cache-control headers, using content compression (gzip/ Brotli), database query optimization, connection pooling, and applying CDN edge caching for static or infrequently changing data. Profiling and tracing will point to the highest-return optimizations.

FAQ: How do REST and GraphQL compare for API design?

REST emphasizes resource-centric endpoints and predictable HTTP semantics, while GraphQL provides flexible query composition and single-endpoint operation. Choose based on client needs: REST often maps naturally to CRUD operations and caching; GraphQL excels when clients need tailored queries and minimized round trips.

Disclaimer: This article is educational and informational only. It does not constitute investment, legal, or professional advice. Implementations, security practices, and platform choices should be evaluated against your project requirements and in consultation with qualified professionals.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products