Announcements

Transforming Crypto AI Trading: Token Metrics Crypto API Now Integrates Seamlessly with Cursor AI

AI is transforming the future of AI crypto trading—and with the integration of Token Metrics Crypto API and Cursor AI, we’re taking another giant leap forward.
Token Metrics Team
8 min
MIN

AI is transforming the future of AI crypto trading—and with the integration of Token Metrics Crypto API and Cursor AI, we’re taking another giant leap forward.

This integration unlocks the ability for developers, quants, and crypto-native builders to create powerful trading agents using natural language, real-time crypto market data, and automation—all through a single interface.

Whether you're building an AI agent that monitors market trends, provides trading signals, or develops actionable investment plans, the combination of Token Metrics' cryptocurrency API and Cursor AI’s intelligent prompt interface is the future of how crypto strategies are built and executed.

In this blog, we’ll walk you through the integration, show you what’s possible, and explain why this is the most developer-friendly and data-rich crypto API available today.

What Is the Token Metrics Crypto API?

The Token Metrics API is a developer-grade crypto API that delivers over 80 advanced signals and data points per token. It covers:

  • AI Trader Grades & Investor Grades
  • Buy/Sell Signals based on bull/bear market trends
  • Support & Resistance levels
  • Sentiment Analysis
  • Quantitative Metrics & ROI Data
  • Project Reports & Risk Ratings

With deep market insight and predictive analytics, it’s built for developers looking to power anything from crypto dashboards to automated trading agents, telegram bots, or custom portfolio apps.

Now, with the Cursor AI integration, all of this power is just one conversation away.

What Is Cursor AI?

Cursor AI is an advanced AI development environment where agents can write code, test ideas, and build applications based on natural language prompts. With support for live API integrations and tool chaining, it’s the perfect platform to build and deploy intelligent agents—without switching tabs or writing boilerplate code.

Now, developers can query live cryptocurrency API data from Token Metrics using natural language—and let the agent create insights, strategies, and trading logic on the fly.

What You Can Build: Real Example

Let’s walk through what building with Token Metrics on Cursor AI looks like.

Step 1: Prompt the Agent

It starts with a simple prompt:
“What are the tools you have for Token Metrics MCP?”

In seconds, the agent replies with the full toolkit available via Token Metrics Multi-Client Protocol (MCP), including:

  • Access to trader and investor grades
  • Market analysis and real-time predictions
  • Quantitative metrics and token reports
  • AI-driven sentiment and momentum scores

Step 2: Ask for a Use Case

Next, you say:
“Give me a trading agent idea using those tools.”

The agent responds by combining crypto API tools into an actionable concept—for instance, a trading assistant that monitors bull flips on high-ROI tokens, cross-checks sentiment, and then alerts you when investor and trader grades align.

Step 3: Build a Plan Using Live Data

Then you prompt again:
“Can you explore the tools and create a comprehensive plan for me?”

Here’s the magic: the agent pulls real-time data directly from the Token Metrics API, analyzes signals, ranks tokens, identifies top performers, and builds a structured trading plan with entry/exit logic.

No manual research. No spreadsheet wrangling.
Just clean, fast, and intelligent crypto trading strategy—generated by AI using the best crypto API on the market.

Why This Changes Everything

🔗 Unified AI & Data Stack

With Token Metrics + Cursor AI, developers can interact with crypto data using plain English. There’s no more need to juggle raw JSON files or multiple APIs. One schema, one key, full access.

⚡ Real-Time, Actionable Insights

Cursor agents can now fetch live signals and respond instantly, allowing you to create agents that trade, monitor, alert, and adapt based on changing market conditions.

🤖 Build AI Trading Agents in Minutes

From backtesting tools to investment advisors to portfolio rebalancers, the combined power of a smart agent and a smart API turns hours of coding into a few well-written prompts.

Why Token Metrics API Is the Best Crypto API for AI Agents

  • Built for Speed – Fast response times and optimized endpoints for seamless agent-to-agent communication.
  • AI-Ready Structure – The API was designed with machine learning and automated trading in mind.
  • Massive Coverage – Thousands of tokens, over 80+ data points per asset.
  • MCP Gateway – Unified interface for all AI tools to access one consistent schema.
  • Free Tier – Get started with 5,000 free API calls at Token Metrics.

Whether you're building your first crypto trading bot or an enterprise-grade RAG assistant, this integration unlocks full creative and technical freedom.

Final Thoughts

This is just the beginning.

By connecting the Token Metrics API with Cursor AI, we’re moving toward a future where crypto tools are built by conversation, not code. It's not just about faster development—it’s about smarter, more adaptive trading tools that are accessible to everyone.

So go ahead.
Open up Cursor AI.
Type your first prompt.
And start building with the most intelligent crypto API in the game.

👉 Explore the Token Metrics API

👉 Start Building with Cursor AI

Watch Demo here!

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Moonshots API: Discover Breakout Tokens Before the Crowd

Token Metrics Team
5
MIN

The biggest gains in crypto rarely come from the majors. They come from Moonshots—fast-moving tokens with breakout potential. The Moonshots API surfaces these candidates programmatically so you can rank, alert, and act inside your product. In this guide, you’ll call /v2/moonshots, display a high-signal list with TM Grade and Bullish tags, and wire it into bots, dashboards, or screeners in minutes. Start by grabbing your key at Get API Key, then Run Hello-TM and Clone a Template to ship fast.

What You’ll Build in 2 Minutes

  • A minimal script that fetches Moonshots via /v2/moonshots (optionally filter by grade/signal/limit).
  • A UI pattern to render symbol, TM Grade, signal, reason/tags, and timestamp—plus a link to token details.
  • Optional one-liner curl to smoke-test your key.
  • Endpoints to add next: /v2/tm-grade (one-score ranking), /v2/trading-signals, /v2/hourly-trading-signals (timing), /v2/resistance-support (stops/targets), /v2/quantmetrics (risk sizing), /v2/price-prediction (scenario ranges).

Why This Matters

Discovery that converts. Users want more than price tickers—they want a curated, explainable list of high-potential tokens. The Moonshots API encapsulates multiple signals into a short list designed for exploration, alerts, and watchlists you can monetize.

Built for builders. The endpoint returns a consistent schema with grade, signal, and context so you can immediately sort, badge, and trigger workflows. With predictable latency and clear filters, you can scale to dashboards, mobile apps, and headless bots without reinventing the discovery pipeline.

Where to Find The Moonshots API

The cURL request for the Moonshots endpoint is displayed in the top right of the API Reference. Grab it and start tapping into the potential!

  1. Get API Key — generate a key and start free.
  2. Run Hello-TM — verify your first successful call.
  3. Clone a Template — deploy a screener or alerts bot today.
  4. Compare plans: Scale confidently with API plans.

How It Works (Under the Hood)

The Moonshots endpoint aggregates a set of evidence—often combining TM Grade, signal state, and momentum/volume context—into a shortlist of breakout candidates. Each row includes a symbol, grade, signal, and timestamp, plus optional reason tags for transparency.

For UX, a common pattern is: headline list → token detail where you render TM Grade (quality), Trading Signals (timing), Support/Resistance (risk placement), Quantmetrics (risk-adjusted performance), and Price Prediction scenarios. This enables users to understand why a token was flagged and how to act with risk controls.

Polling vs webhooks. Dashboards typically poll with short-TTL caching. Alerting flows use scheduled jobs or webhooks to smooth traffic and avoid duplicates. Always make notifications idempotent.

Production Checklist

  • Respect plan caps; batch and throttle in clients/workers.
  • Use exponential backoff with jitter on 429/5xx; capture request IDs.
  • De-duplicate alerts and downstream actions.
  • Use memory/Redis with short TTLs; pre-warm during peak hours.
  • Fetch in pages if supported; parallelize within limits.
  • Sort primarily by tm_grade or composite; surface reason tags to build trust.
  • Track p95/p99, error rates, and alert delivery success; log variants.
  • Store keys securely; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Filter for tokens appearing in Moonshots with tm_grade ≥ X. Confirm entry with /v2/trading-signals; place stops/targets with /v2/resistance-support; size via Quantmetrics.
  • Dashboard Builder (Product): Moonshots tab with badges (Bullish, Grade 80+, Momentum). Token detail page with TM Grade, Signals, S/R, and Predictions for a complete decision loop.
  • Screener Maker (Lightweight Tools): Top-N list with Follow/alert toggles; export CSV. Include “New this week” and “Graduated” sections for churn/entry dynamics.
  • Community/Content: Weekly digest highlighting new entrants, upgrades, and notable exits—link back to your product pages.

Next Steps

  1. Get API Key — generate a key and start free.
  2. Run Hello-TM — verify your first successful call.
  3. Clone a Template — deploy a screener or alerts bot today.
  4. Compare plans: Scale confidently with API plans.

FAQs

1) What does the Moonshots API return?

A list of breakout candidates with fields such as symbol, tm_grade, signal (often Bullish/Bearish), optional reason tags, and updated_at. Use it to drive discover tabs, alerts, and watchlists.

2) How fresh is the list? What about latency/SLOs?

The endpoint targets predictable latency and timely updates for dashboards and alerts. Use short-TTL caching and queued jobs/webhooks to avoid bursty polling.

3) How do I use Moonshots in a trading workflow?

Common stack: Moonshots for discovery, Trading Signals for timing, Support/Resistance for SL/TP, Quantmetrics for sizing, and Price Prediction for scenario context. Always backtest and paper-trade first.

4) I saw results like “+241%” and a “7.5% average return.” Are these guaranteed?

No. Any historical results are illustrative and not guarantees of future performance. Markets are risky; use risk management and testing.

5) Can I filter the Moonshots list?

Yes—pass parameters like min_grade, signal, and limit (as supported) to tailor to your audience and keep pages fast.

6) Do you provide SDKs or examples?

REST works with JavaScript and Python snippets above. Docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale up. See API plans for rate limits and enterprise options.

Research

Support and Resistance API: Auto-Calculate Smart Levels for Better Trades

Token Metrics Team
4
MIN

Most traders still draw lines by hand in TradingView. The support and resistance API from Token Metrics auto-calculates clean support and resistance levels from one request, so your dashboard, bot, or alerts can react instantly. In minutes, you’ll call /v2/resistance-support, render actionable levels for any token, and wire them into stops, targets, or notifications. Start by grabbing your key on Get API Key, then Run Hello-TM and Clone a Template to ship a production-ready feature fast.

What You’ll Build in 2 Minutes

A minimal script that fetches Support/Resistance via /v2/resistance-support for a symbol (e.g., BTC, SOL).

  • A one-liner curl to smoke-test your key.
  • A UI pattern to display nearest support, nearest resistance, level strength, and last updated time.

Next Endpoints to add

  • /v2/trading-signals (entries/exits)
  • /v2/hourly-trading-signals (intraday updates)
  • /v2/tm-grade (single-score context)
  • /v2/quantmetrics (risk/return framing)

Why This Matters

Precision beats guesswork. Hand-drawn lines are subjective and slow. The support and resistance API standardizes levels across assets and timeframes, enabling deterministic stops and take-profits your users (and bots) can trust.

Production-ready by design. A simple REST shape, predictable latency, and clear semantics let you add levels to token pages, automate SL/TP alerts, and build rule-based execution with minimal glue code.

Where to Find

Need the Support and Resistance data? The cURL request for it is in the top right of the API Reference for quick access.

👉 Keep momentum: Get API KeyRun Hello-TMClone a Template

How It Works (Under the Hood)

The Support/Resistance endpoint analyzes recent price structure to produce discrete levels above and below current price, along with strength indicators you can use for priority and styling. Query /v2/resistance-support?symbol=<ASSET>&timeframe=<HORIZON> to receive arrays of level objects and timestamps.

Polling vs webhooks. For dashboards, short-TTL caching and batched fetches keep pages snappy. For bots and alerts, use queued jobs or webhooks (where applicable) to avoid noisy, bursty polling—especially around market opens and major events.

Production Checklist

  • Rate limits: Respect plan caps; add client-side throttling.
  • Retries/backoff: Exponential backoff with jitter for 429/5xx; log failures.
  • Idempotency: Make alerting and order logic idempotent to prevent duplicates.
  • Caching: Memory/Redis/KV with short TTLs; pre-warm top symbols.
  • Batching: Fetch multiple assets per cycle; parallelize within rate limits.
  • Threshold logic: Add %-of-price buffers (e.g., alert at 0.3–0.5% from level).
  • Error catalog: Map common 4xx/5xx to actionable user guidance; keep request IDs.
  • Observability: Track p95/p99; measure alert precision (touch vs approach).
  • Security: Store API keys in a secrets manager; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Use nearest support for stop placement and nearest resistance for profit targets. Combine with /v2/trading-signals for entries/exits and size via Quantmetrics (volatility, drawdown).
  • Dashboard Builder (Product): Add a Levels widget to token pages; badge strength (e.g., High/Med/Low) and show last touch time. Color the price region (below support, between levels, above resistance) for instant context.
  • Screener Maker (Lightweight Tools): “Close to level” sort: highlight tokens within X% of a strong level. Toggle alerts for approach vs breakout events.
  • Risk Management: Create policy rules like “no new long if price is within 0.2% of strong resistance.” Export daily level snapshots for audit/compliance.

Next Steps

  • Get API Key — generate a key and start free.
  • Run Hello-TM — verify your first successful call.
  • Clone a Template — deploy a levels panel or alerts bot today.
  • Watch the demo: Compare plans: Scale confidently with API plans.

FAQs

1) What does the Support & Resistance API return?

A JSON payload with arrays of support and resistance levels for a symbol (and optional timeframe), each with a price and strength indicator, plus an update timestamp.

2) How timely are the levels? What are the latency/SLOs?

The endpoint targets predictable latency suitable for dashboards and alerts. Use short-TTL caching for UIs, and queued jobs or webhooks for alerting to smooth traffic.

3) How do I trigger alerts or trades from levels?

Common patterns: alert when price is within X% of a level, touches a level, or breaks beyond with confirmation. Always make downstream actions idempotent and respect rate limits.

4) Can I combine levels with other endpoints?

Yes—pair with /v2/trading-signals for timing, /v2/tm-grade for quality context, and /v2/quantmetrics for risk sizing. This yields a complete decide-plan-execute loop.

5) Which timeframe should I use?

Intraday bots prefer shorter horizons; swing/position dashboards use daily or higher-timeframe levels. Offer a timeframe toggle and cache results per setting.

6) Do you provide SDKs or examples?

Use the REST snippets above (JS/Python). The docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale as you grow. See API plans for rate limits and enterprise SLA options.

Disclaimer

This content is for educational purposes only and does not constitute financial advice. Always conduct your own research before making any trading decisions.

Research

Quantmetrics API: Measure Risk & Reward in One Call

Token Metrics Team
5
MIN

Most traders see price—quants see probabilities. The Quantmetrics API turns raw performance into risk-adjusted stats like Sharpe, Sortino, volatility, drawdown, and CAGR so you can compare tokens objectively and build smarter bots and dashboards. In minutes, you’ll query /v2/quantmetrics, render a clear performance snapshot, and ship a feature that customers trust. Start by grabbing your key at Get API Key, Run Hello-TM to verify your first call, then Clone a Template to go live fast.

What You’ll Build in 2 Minutes

  • A minimal script that fetches Quantmetrics for a token via /v2/quantmetrics (e.g., BTC, ETH, SOL).
  • A smoke-test curl you can paste into your terminal.
  • A UI pattern that displays Sharpe, Sortino, volatility, max drawdown, CAGR, and lookback window.

Next Endpoints to Add

  • /v2/tm-grade (one-score signal)
  • /v2/trading-signals
  • /v2/hourly-trading-signals (timing)
  • /v2/resistance-support (risk placement)
  • /v2/price-prediction (scenario planning)

Why This Matters

Risk-adjusted truth beats hype. Price alone hides tail risk and whipsaws. Quantmetrics compresses edge, risk, and consistency into metrics that travel across assets and timeframes—so you can rank universes, size positions, and communicate performance like a professional.

Built for dev speed

A clean REST schema, predictable latency, and easy auth mean you can plug Sharpe/Sortino into bots, dashboards, and screeners without maintaining your own analytics pipeline. Pair with caching and batching to serve fast pages at scale.

Where to Find

The Quant Metrics cURL request is located in the top right of the API Reference, allowing you to easily integrate it with your application.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

How It Works (Under the Hood)

Quantmetrics computes risk-adjusted performance over a chosen lookback (e.g., 30d, 90d, 1y). You’ll receive a JSON snapshot with core statistics:

  • Sharpe ratio: excess return per unit of total volatility.
  • Sortino ratio: penalizes downside volatility more than upside.
  • Volatility: standard deviation of returns over the window.
  • Max drawdown: worst peak-to-trough decline.
  • CAGR / performance snapshot: geometric growth rate and best/worst periods.

Call /v2/quantmetrics?symbol=<ASSET>&window=<LOOKBACK> to fetch the current snapshot. For dashboards spanning many tokens, batch symbols and apply short-TTL caching. If you generate alerts (e.g., “Sharpe crossed 1.5”), run a scheduled job and queue notifications to avoid bursty polling.

Production Checklist

  • Rate limits: Understand your tier caps; add client-side throttling and queues.
  • Retries & backoff: Exponential backoff with jitter; treat 429/5xx as transient.
  • Idempotency: Prevent duplicate downstream actions on retried jobs.
  • Caching: Memory/Redis/KV with short TTLs; pre-warm popular symbols and windows.
  • Batching: Fetch multiple symbols per cycle; parallelize carefully within limits.
  • Error catalog: Map 4xx/5xx to clear remediation; log request IDs for tracing.
  • Observability: Track p95/p99 latency and error rates; alert on drift.
  • Security: Store API keys in secrets managers; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Gate entries by Sharpe ≥ threshold and drawdown ≤ limit, then trigger with /v2/trading-signals; size by inverse volatility.
  • Dashboard Builder (Product): Add a Quantmetrics panel to token pages; allow switching lookbacks (30d/90d/1y) and export CSV.
  • Screener Maker (Lightweight Tools): Top-N by Sortino with filters for volatility and sector; add alert toggles when thresholds cross.
  • Allocator/PM Tools: Blend CAGR, Sharpe, drawdown into a composite score to rank reallocations; show methodology for trust.
  • Research/Reporting: Weekly digest of tokens with Sharpe ↑, drawdown ↓, and volatility ↓.

Next Steps

  • Get API Key — start free and generate a key in seconds.
  • Run Hello-TM — verify your first successful call.
  • Clone a Template — deploy a screener or dashboard today.
  • Watch the demo: VIDEO_URL_HERE
  • Compare plans: Scale with API plans.

FAQs

1) What does the Quantmetrics API return?

A JSON snapshot of risk-adjusted metrics (e.g., Sharpe, Sortino, volatility, max drawdown, CAGR) for a symbol and lookback window—ideal for ranking, sizing, and dashboards.

2) How fresh are the stats? What about latency/SLOs?

Responses are engineered for predictable latency. For heavy UI usage, add short-TTL caching and batch requests; for alerts, use scheduled jobs or webhooks where available.

3) Can I use Quantmetrics to size positions in a live bot?

Yes—many quants size inversely to volatility or require Sharpe ≥ X to trade. Always backtest and paper-trade before going live; past results are illustrative, not guarantees.

4) Which lookback window should I choose?

Short windows (30–90d) adapt faster but are noisier; longer windows (6–12m) are steadier but slower to react. Offer users a toggle and cache each window.

5) Do you provide SDKs or examples?

REST is straightforward (JS/Python above). Docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

6) Polling vs webhooks for quant alerts?

Dashboards usually use cached polling. For threshold alerts (e.g., Sharpe crosses 1.0), run scheduled jobs and queue notifications to keep usage smooth and idempotent.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale up. See API plans for rate limits and enterprise SLA options.

Disclaimer

All information provided in this blog is for educational purposes only. It is not intended as financial advice. Users should perform their own research and consult with licensed professionals before making any investment or trading decisions.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products