Crypto Basics

What are NFTs? NFT Art Explained | Future of NFTs

Learn more about NFTs and their future.
Token Metrics Team
6 minutes
MIN

You may have heard of CryptoPunks, Bored Ape Yacht Club, and VeeFriends, but you may not understand what they are. These names may sound like random combinations of words, but they actually represent some of the most valuable non-fungible token (NFT) projects that have emerged in the past few years.

The world of crypto art and NFTs may appear complex and mysterious, with a mix of celebrities, influencers, and internet experts. But it's not as confusing as it seems. Let's start from the beginning.

What Is An NFT?

Nearly all crypto art that has been introduced to the market has been done so through the minting of non-fungible tokens (NFTs). NFTs are digital assets that have verified proof of ownership. While "fungible tokens" like the US dollar can be easily traded (like exchanging 4 quarters for a dollar), each NFT is unique and cannot be easily traded. For example, imagine a sketch of "Starry Night" by Vincent Van Gogh that has been authenticated by a fine art appraiser as an original. This sketch would be non-fungible because you could not easily exchange it for, say, an original sketch by Leonardo da Vinci. This concept is easy to understand with tangible items like art pieces or collectible cards, but when digital assets can range from a celebrity tweet to an iconic meme to a picture of a pimped out animated ape, it may be confusing.

How Can We Ensure Unique Authenticity?

This is where NFTs enter the scene. Say you are a graphic design artist who just finished your newest 1-of-1 piece of work and you want to sell it as an NFT. Whoever purchases this piece would not only receive the artwork but they would also receive a “digital receipt” that proves that this exact piece is original, unique and authentic.

“But What If I Just Screenshot This Digital Artwork? Wouldn’t I Technically Own the Piece as Well?”

This is the first question that many have mockingly asked on social media and internet forums. The easy answer: yes, you can screenshot practically all digital artwork, but no, that does not mean you own it.

For example, millions of people swarm into the Louvre every year, waiting patiently amidst a giddy crowd, just to capture a picture of the priceless Mona Lisa. Obviously, a picture of the Mona Lisa saved on your iPhone camera roll does not mean that you own that painting.

NFTs work the same way.

Just as the Louvre paid millions of dollars to own, maintain, and display the Mona Lisa in their museum, NFT buyers do the same. However, the main difference is that instead of paying dollars to house the art in a fancy museum, they are paying with cryptocurrency and housing their art in a virtual showcase, so to speak.

This is the basis for how NFTs, cryptocurrency, and blockchain technology are establishing a new and lucrative market for digital art and artists.

The Art of Being Digital

In a 2021 interview, Gary Vaynerchuk (founder of Vayner Media and creator of VeeFriends) made the following statement regarding NFTs. The interviewer remarks on the tangibility of NFTs stating, "the digital aspect, like, you can't see it" — Gary jumps in:

"Well, you can't see a blue check on Instagram? I don't walk around the world with a blue check tattooed on my forehead, but everybody sees it. You can't see my 9 million followers on Instagram, or can you? I would argue the reverse. I would argue that people can't see most of the fancy things you have in your house; that people can see more digital than real life."

And he's onto something, and I'd like to call that something "The Art of Being Digital". In our highly digitized world, our online outreach and interconnectivity is wildly amplified. Gary Vee currently has 9.9 million followers on Instagram — but without access to the internet — he has no way of interacting with that community and tapping into the true power of those 9.9 million people.

Why Do NFTs Have Value?

The value of an NFT is determined by the collective intentionality of those who are willing to buy and sell them. In other words, the value of an NFT is based on what people are willing to pay for it. This is similar to the way that the value of traditional art is determined by the market, with the value being based on factors such as the artist's fame and the rarity of the work.

The Tom Brady example illustrates this idea. On the surface, it might seem strange that someone would pay $430k for a digital picture of a cartoon ape. However, if we consider the fact that the buyer was Tom Brady and the seller was the well-known digital artist Trevor Jones, it becomes clearer that the value of the NFT was determined by the collective intentionality of those involved in the transaction.

Furthermore, the digital art of NFTs offers more than just a digital file and a high price tag. NFTs provide the ability for digital artists to monetize their work and for collectors to own and trade unique digital items. This opens up new opportunities for artists and collectors alike, and has led to the growth of a vibrant and exciting market for NFTs.

Join The Club

Celebrities such as Tom Brady, Post Malone, Steph Curry, and Jimmy Fallon have been buying Bored Ape NFTs. Bored Ape NFTs were introduced by the Bored Ape Yacht Club (BAYC) in April 2021 at a price of 0.08 Ethereum (ETH) each, or about $190 at the time. Since then, the price of Bored Apes has increased significantly, yielding substantial returns for early investors.

In addition to the potential for financial gain, buying a Bored Ape NFT also grants the buyer access to the BAYC community. This includes access to the BAYC Discord, where buyers can connect with other members of the club, including celebrities, and collaborate on NFT-related projects. BAYC also gives members priority access to future NFT drops, allowing them to expand their collections.

Minting and selling NFTs can also be highly lucrative for those who create their own NFT projects. This is another reason why celebrities and others may be interested in the NFT market. Creating and selling NFTs allows artists and other creators to monetize their digital work and gives collectors the opportunity to own unique digital items. The growth of the NFT market has created new opportunities for both artists and collectors, leading to a vibrant and exciting market for NFTs.

Blockchain, Smart Contracts, and Secondary Sales

Blockchain technology is used to record the conversion of traditional currency into cryptocurrency, such as Ethereum (ETH), in the NFT market. This transaction is recorded on the blockchain as public information that is easily accessible to anyone who wants to view it. This ensures transparency and helps to prevent fraud in the NFT market.

Smart contracts are programs stored on the blockchain that allow NFT creators to stipulate the conditions of resale. For example, a creator could draft a smart contract that allows them to earn a 10% commission on any subsequent resales of their NFT. This allows creators to continue to benefit from the success of their work, even after the initial sale.

Smart contracts also facilitate secondary sales in the NFT market. When the value of an NFT increases, the smart contract associated with that NFT can automatically distribute any profits from the sale to the relevant parties, such as the creator or the NFT platform. For example, if the value of Tom Brady's Bored Ape NFT increased from $430k to $530k, the smart contract could automatically distribute the $100k profit to the Bored Ape Yacht Club, if that was stipulated in the contract.

This use of smart contracts helps to ensure that all parties are fairly compensated for their contributions to the NFT market, and it allows for efficient and transparent transactions without the need for intermediaries.

The Future Of Crypto-Art

Grammy-winning artist Tyler, the Creator recently questioned the value of NFTs, stating that most of the examples he has seen are not "beautiful art." While art is subjective and many NFTs are AI-generated, there are still many ways in which NFTs can offer value in the real world.

First, NFTs can be used to represent tangible experiences and achievements. Instead of framing a concert ticket or a season pass, these items could be represented as NFTs, allowing individuals to proudly display their experiences and achievements in the digital world. This could be especially beneficial for VIP experiences and exclusive memberships.

Second, NFTs can provide a level of authenticity and scarcity that cannot be achieved with physical items. This is especially useful for limited edition items and collectibles, which can be authenticated and traded easily on the blockchain.

Third, the use of smart contracts can ensure that all parties are fairly compensated for their contributions to the NFT market. This allows for transparent and efficient transactions without the need for intermediaries.

Overall, while some may dismiss NFTs as "silly little digital artworks," they have the potential to reshape not just the art world, but the world itself.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Building High-Performance APIs with FastAPI

Token Metrics Team
5
MIN

FastAPI has rapidly become a go-to framework for Python developers who need fast, async-ready web APIs. In this post we break down why FastAPI delivers strong developer ergonomics and runtime performance, how to design scalable endpoints, and practical patterns for production deployment. Whether you are prototyping an AI-backed service or integrating real-time crypto feeds, understanding FastAPI's architecture helps you build resilient APIs that scale.

Overview: What Makes FastAPI Fast?

FastAPI combines modern Python type hints, asynchronous request handling, and an automatic interactive API docs system to accelerate development and runtime efficiency. It is built on top of Starlette for the web parts and Pydantic for data validation. Key advantages include:

  • Asynchronous concurrency: Native support for async/await lets FastAPI handle I/O-bound workloads with high concurrency when served by ASGI servers like Uvicorn or Hypercorn.
  • Type-driven validation: Request and response schemas are derived from Python types, reducing boilerplate and surface area for bugs.
  • Auto docs: OpenAPI and Swagger UI are generated automatically, improving discoverability and client integration.

These traits make FastAPI suitable for microservices, ML model endpoints, and real-time data APIs where latency and developer velocity matter.

Performance & Scalability Patterns

Performance is a combination of framework design, server selection, and deployment topology. Consider these patterns:

  • ASGI server tuning: Use Uvicorn with Gunicorn workers for multi-core deployments (example: Gunicorn to manage multiple Uvicorn worker processes).
  • Concurrency model: Prefer async operations for external I/O (databases, HTTP calls). Use thread pools for CPU-bound tasks or offload to background workers like Celery or RQ.
  • Connection pooling: Maintain connection pools to databases and upstream services to avoid per-request handshake overhead.
  • Horizontal scaling: Deploy multiple replicas behind a load balancer and utilize health checks and graceful shutdown to ensure reliability.

Measure latency and throughput under realistic traffic using tools like Locust or k6, and tune worker counts and max requests to balance memory and CPU usage.

Best Practices for Building APIs with FastAPI

Adopt these practical steps to keep APIs maintainable and secure:

  1. Schema-first design: Define request and response models early with Pydantic, and use OpenAPI to validate client expectations.
  2. Versioning: Include API versioning in your URL paths or headers to enable iterative changes without breaking clients.
  3. Input validation & error handling: Rely on Pydantic for validation and implement consistent error responses with clear status codes.
  4. Authentication & rate limiting: Protect endpoints with OAuth2/JWT or API keys and apply rate limits via middleware or API gateways.
  5. CI/CD & testing: Automate unit and integration tests, and include performance tests in CI to detect regressions early.

Document deployment runbooks that cover database migrations, secrets rotation, and safe schema migrations to reduce operational risk.

Integrating AI and Real-Time Data

FastAPI is commonly used to expose AI model inference endpoints and aggregate real-time data streams. Key considerations include:

  • Model serving: For CPU/GPU-bound inference, consider dedicated model servers (e.g., TensorFlow Serving, TorchServe) or containerized inference processes, with FastAPI handling orchestration and routing.
  • Batching & async inference: Implement request batching if latency and throughput profiles allow it. Use async I/O for data fetches and preprocessing.
  • Data pipelines: Separate ingestion, processing, and serving layers. Use message queues (Kafka, RabbitMQ) for event-driven flows and background workers for heavy transforms.

AI-driven research and analytics tools can augment API development and monitoring. For example, Token Metrics provides structured crypto insights and on-chain metrics that can be integrated into API endpoints for analytics or enrichment workflows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is FastAPI and when should I use it?

FastAPI is a modern Python web framework optimized for building APIs quickly using async support and type annotations. Use it when you need high-concurrency I/O performance, automatic API docs, and strong input validation for services like microservices, ML endpoints, or data APIs.

Should I write async or sync endpoints?

If your endpoint performs network or I/O-bound operations (database queries, HTTP calls), async endpoints with awaitable libraries improve concurrency. For CPU-heavy tasks, prefer offloading to background workers or separate services to avoid blocking the event loop.

What are common deployment options for FastAPI?

Common patterns include Uvicorn managed by Gunicorn for process management, containerized deployments on Kubernetes, serverless deployments via providers that support ASGI, and platform-as-a-service options that accept Docker images. Choose based on operational needs and scaling model.

How do I secure FastAPI endpoints?

Implement authentication (OAuth2, JWT, API keys), enforce HTTPS, validate inputs with Pydantic models, and apply rate limiting. Use security headers and monitor logs for suspicious activity. Consider using API gateways for centralized auth and throttling.

How should I monitor and debug FastAPI in production?

Instrument endpoints with structured logging, distributed tracing, and metrics (request latency, error rates). Use APM tools compatible with ASGI frameworks. Configure health checks, and capture exception traces to diagnose errors without exposing sensitive data.

How do I test FastAPI applications?

Use the TestClient from FastAPI (built on Starlette) for endpoint tests, and pytest for unit tests. Include schema validation tests, contract tests for public APIs, and performance tests with k6 or Locust for load characterization.

Disclaimer: This article is educational and technical in nature. It explains development patterns, architecture choices, and tooling options for API design and deployment. It is not financial, trading, or investment advice. Always conduct independent research and follow your organizations compliance policies when integrating external data or services.

Research

Building High-Performance APIs with FastAPI

Token Metrics Team
5
MIN

FastAPI has emerged as a go-to framework for building fast, scalable, and developer-friendly APIs in Python. Whether you are prototyping a machine learning inference endpoint, building internal microservices, or exposing realtime data to clients, understanding FastAPI’s design principles and best practices can save development time and operational costs. This guide walks through the technology fundamentals, pragmatic design patterns, deployment considerations, and how to integrate modern AI tools safely and efficiently.

Overview: What Makes FastAPI Fast?

FastAPI is built on Starlette for the web parts and Pydantic for data validation. It leverages Python’s async/await syntax and ASGI (Asynchronous Server Gateway Interface) to handle high concurrency with non-blocking I/O. Key features that contribute to its performance profile include:

  • Async-first architecture: Native support for asynchronous endpoints enables efficient multiplexing of I/O-bound tasks.
  • Automatic validation and docs: Pydantic-based validation reduces runtime errors and generates OpenAPI schemas and interactive docs out of the box.
  • Small, focused stack: Minimal middleware and lean core reduce overhead compared to some full-stack frameworks.

In practice, correctly using async patterns and avoiding blocking calls (e.g., heavy CPU-bound tasks or synchronous DB drivers) is critical to achieve the theoretical throughput FastAPI promises.

Design Patterns & Best Practices

Adopt these patterns to keep your FastAPI codebase maintainable and performant:

  1. Separate concerns: Keep routing, business logic, and data access in separate modules. Use dependency injection for database sessions, authentication, and configuration.
  2. Prefer async I/O: Use async database drivers (e.g., asyncpg for PostgreSQL), async HTTP clients (httpx), and async message brokers when possible. If you must call blocking code, run it in a thread pool via asyncio.to_thread or FastAPI’s background tasks.
  3. Schema-driven DTOs: Define request and response models with Pydantic to validate inputs and serialize outputs consistently. This reduces defensive coding and improves API contract clarity.
  4. Version your APIs: Use path or header-based versioning to avoid breaking consumers when iterating rapidly.
  5. Pagination and rate limiting: For endpoints that return large collections, implement pagination and consider rate-limiting to protect downstream systems.

Applying these patterns leads to clearer contracts, fewer runtime errors, and easier scaling.

Performance Tuning and Monitoring

Beyond using async endpoints, real-world performance tuning focuses on observability and identifying bottlenecks:

  • Profiling: Profile endpoints under representative load to find hotspots. Tools like py-spy or Scalene can reveal CPU vs. I/O contention.
  • Tracing and metrics: Integrate OpenTelemetry or Prometheus to gather latency, error rates, and resource metrics. Correlate traces across services to diagnose distributed latency.
  • Connection pooling: Ensure database and HTTP clients use connection pools tuned for your concurrency levels.
  • Caching: Use HTTP caching headers, in-memory caches (Redis, Memcached), or application-level caches for expensive or frequently requested data.
  • Async worker offloading: Offload CPU-heavy or long-running tasks to background workers (e.g., Celery, Dramatiq, or RQ) to keep request latency low.

Measure before and after changes. Small configuration tweaks (worker counts, keepalive settings) often deliver outsized latency improvements compared to code rewrites.

Deployment, Security, and Scaling

Productionizing FastAPI requires attention to hosting, process management, and security hardening:

  • ASGI server: Use a robust ASGI server such as Uvicorn or Hypercorn behind a process manager (systemd) or a supervisor like Gunicorn with Uvicorn workers.
  • Containerization: Containerize with multi-stage Dockerfiles to keep images small. Use environment variables and secrets management for configuration.
  • Load balancing: Place a reverse proxy (NGINX, Traefik) or cloud load balancer in front of your ASGI processes to manage TLS, routing, and retries.
  • Security: Validate and sanitize inputs, enforce strict CORS policies, and implement authentication and authorization (OAuth2, JWT) consistently. Keep dependencies updated and monitor for CVEs.
  • Autoscaling: In cloud environments, autoscale based on request latency and queue depth. For stateful workloads or in-memory caches, ensure sticky session or state replication strategies.

Combine operational best practices with continuous monitoring to keep services resilient as traffic grows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: How fast is FastAPI compared to Flask or Django?

FastAPI often outperforms traditional WSGI frameworks like Flask or Django for I/O-bound workloads because it leverages ASGI and async endpoints. Benchmarks depend heavily on endpoint logic, database drivers, and deployment configuration. For CPU-bound tasks, raw Python performance is similar; offload heavy computation to workers.

FAQ: Should I rewrite existing Flask endpoints to FastAPI?

Rewrite only if you need asynchronous I/O, better schema validation, or automatic OpenAPI docs. For many projects, incremental migration or adding new async services is a lower-risk approach than a full rewrite.

FAQ: How do I handle background tasks and long-running jobs?

Use background workers or task queues (Celery, Dramatiq) for long-running jobs. FastAPI provides BackgroundTasks for simple fire-and-forget operations, but distributed task systems are better for retries, scheduling, and scaling.

FAQ: What are common pitfalls when using async in FastAPI?

Common pitfalls include calling blocking I/O inside async endpoints (e.g., synchronous DB drivers), not using connection pools properly, and overusing threads. Always verify that third-party libraries are async-compatible or run them in a thread pool.

FAQ: How can FastAPI integrate with AI models and inference pipelines?

FastAPI is a good fit for serving model inference because it can handle concurrent requests and easily serialize inputs and outputs. For heavy inference workloads, serve models with dedicated inference servers (TorchServe, TensorFlow Serving) or containerized model endpoints and use FastAPI as a thin orchestration layer. Implement batching, request timeouts, and model versioning to manage performance and reliability.

Disclaimer

This article is educational and technical in nature. It does not provide investment, legal, or professional advice. Evaluate tools and design decisions according to your project requirements and compliance obligations.

Research

Fast, Reliable APIs with FastAPI

Token Metrics Team
5
MIN

Fast API design is no longer just about response time — it’s about developer ergonomics, safety, observability, and the ability to integrate modern AI services. FastAPI (commonly referenced by the search phrase "fast api") has become a favored framework in Python for building high-performance, async-ready APIs with built-in validation. This article explains the core concepts, best practices, and deployment patterns to help engineering teams build reliable, maintainable APIs that scale.

Overview: What makes FastAPI distinct?

FastAPI is a Python web framework built on top of ASGI standards (like Starlette and Uvicorn) that emphasizes developer speed and runtime performance. Key differentiators include automatic request validation via Pydantic, type-driven documentation (OpenAPI/Swagger UI generated automatically), and first-class async support. Practically, that means less boilerplate, clearer contracts between clients and servers, and competitive throughput for I/O-bound workloads.

Async model and performance considerations

At the heart of FastAPI’s performance is asynchronous concurrency. By leveraging async/await, FastAPI handles many simultaneous connections efficiently, especially when endpoints perform non-blocking I/O such as database queries, HTTP calls to third-party services, or interactions with AI models. Important performance factors to evaluate:

  • ASGI server choice: Uvicorn and Hypercorn are common; tuning workers and loop settings affects latency and throughput.
  • Blocking calls: Avoid CPU-bound work inside async endpoints; offload heavy computation to worker processes or task queues.
  • Connection pooling: Use async database drivers and HTTP clients (e.g., asyncpg, httpx) with pooled connections to reduce latency.
  • Metrics and profiling: Collect request duration, error rates, and concurrency metrics to identify hotspots.

Design patterns: validation, schemas, and dependency injection

FastAPI’s integration with Pydantic makes data validation explicit and type-driven. Use Pydantic models for request and response schemas to ensure inputs are sanitized and outputs are predictable. Recommended patterns:

  • Separate DTOs and domain models: Keep Pydantic models for I/O distinct from internal database or business models to avoid tight coupling.
  • Dependencies: FastAPI’s dependency injection simplifies authentication, database sessions, and configuration handling while keeping endpoints concise.
  • Versioning and contracts: Expose clear OpenAPI contracts and consider semantic versioning for breaking changes.

Integration with AI services and external APIs

Many modern APIs act as orchestrators for AI models or third-party data services. FastAPI’s async-first design pairs well with calling model inference endpoints or streaming responses. Practical tips when integrating AI services:

  • Use async clients to call external inference or data APIs to prevent blocking the event loop.
  • Implement robust timeouts, retries with backoff, and circuit breakers to handle intermittent failures gracefully.
  • Cache deterministic responses where appropriate, and use paginated or streaming responses for large outputs to reduce memory pressure.

Deployment, scaling, and observability

Deploying FastAPI to production typically involves containerized ASGI servers, an API gateway, and autoscaling infrastructure. Core operational considerations include:

  • Process model: Run multiple Uvicorn workers per host for CPU-bound workloads or use worker pools for synchronous tasks.
  • Autoscaling: Configure horizontal scaling based on request latency and queue length rather than CPU alone for I/O-bound services.
  • Logging and tracing: Integrate structured logs, distributed tracing (OpenTelemetry), and request/response sampling to diagnose issues.
  • Security: Enforce input validation, rate limiting, authentication layers, and secure secrets management.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between FastAPI and Flask?

FastAPI is built for the async ASGI ecosystem and emphasizes type-driven validation and automatic OpenAPI documentation. Flask is a synchronous WSGI framework that is lightweight and flexible but requires more manual setup for async support, validation, and schema generation. Choose based on concurrency needs, existing ecosystem, and developer preference.

When should I use async endpoints in FastAPI?

Use async endpoints when your handler performs non-blocking I/O such as database queries with async drivers, external HTTP requests, or calls to async message brokers. For CPU-heavy tasks, prefer background workers or separate services to avoid blocking the event loop.

How do Pydantic models help with API reliability?

Pydantic enforces input types and constraints at the boundary of your application, reducing runtime errors and making APIs self-documenting. It also provides clear error messages, supports complex nested structures, and integrates tightly with FastAPI’s automatic documentation.

What are common deployment pitfalls for FastAPI?

Common issues include running blocking code in async endpoints, inadequate connection pooling, missing rate limiting, and insufficient observability. Ensure proper worker/process models, async drivers, and graceful shutdown handling when deploying to production.

How can I test FastAPI applications effectively?

Use FastAPI’s TestClient (based on Starlette’s testing utilities) for endpoint tests and pytest for unit and integration tests. Mock external services and use testing databases or fixtures for repeatable test runs. Also include load testing to validate performance under expected concurrency.

Is FastAPI suitable for production-grade microservices?

Yes. When combined with proper patterns—type-driven design, async-safe libraries, containerization, observability, and scalable deployment—FastAPI is well-suited for production microservices focused on I/O-bound workloads and integrations with AI or external APIs.

Disclaimer

This article is for educational and informational purposes only. It does not constitute professional, legal, or investment advice. Evaluate tools and architectures according to your organization’s requirements and consult qualified professionals when needed.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products