Research

What is a Blockchain Node and What Does It Do? A Complete Guide for 2025

Discover what a blockchain node is and its vital role in the network. Learn how it operates and why it's essential for blockchain technology. Read more!
Talha Ahmad
5 min
MIN

The blockchain revolution has fundamentally transformed the way we handle digital transactions, data storage, and decentralized systems. The primary function of blockchain nodes is to maintain the blockchain's public ledger and ensure consensus across the network, supporting the decentralized infrastructure and integrity of the system. At the core of every blockchain network lies a crucial component that many users overlook but absolutely depend on: blockchain nodes. Understanding what is a blockchain node and what does it do is essential for anyone involved in cryptocurrency trading, blockchain development, or simply interested in how blockchain nodes work to validate transactions, store data, and maintain the decentralized network.

Understanding Blockchain Nodes: The Network's Backbone

A blockchain node refers to a computer or device that participates actively in a blockchain network by maintaining a copy of the distributed ledger and assisting in validating new transactions. These nodes act as individual participants in a vast, decentralized database where no single entity governs the information, creating a decentralized network that is resilient and censorship-resistant. Relying on just one node would make the network vulnerable to failures and attacks, but having many nodes ensures greater decentralization, stability, and security.

When you send cryptocurrency from one wallet to another, the transaction data isn’t processed by a bank or a central entity. Instead, it is broadcast to thousands of blockchain nodes worldwide. These nodes, along with other nodes in the network, collaborate to verify the legitimacy of the transaction, ensuring the sender has sufficient funds and preventing issues like double-spending. This process of authenticating transactions and broadcasting them across the entire network ensures the integrity of the blockchain ledger.

Because blockchain nodes store copies of the entire blockchain history, the network gains remarkable durability. Each node runs protocol software to participate in the network and communicate with others. Unlike traditional centralized systems vulnerable to single points of failure, a blockchain network can continue functioning smoothly even if many nodes go offline. This redundancy is what makes networks such as the bitcoin network, which relies on decentralized nodes and miners, so robust and secure. Nodes play a vital role in maintaining the network's security, ensuring the integrity and reliability of the blockchain.

The Blockchain Network: How Nodes Connect and Communicate

A blockchain network is a decentralized network made up of countless blockchain nodes that work in harmony to validate, record, and secure blockchain transactions. Unlike traditional systems that rely on a central authority, a blockchain network distributes responsibility across all participating nodes, creating a robust and resilient infrastructure.

Each blockchain node maintains a copy of the entire blockchain ledger, ensuring that every participant has access to the same up-to-date information. As new transactions occur, they are broadcast across the network, and every node updates its ledger in real time. This is made possible through a peer-to-peer network architecture, where each node can both send and receive data, eliminating single points of failure and enhancing the network’s security.

Within this decentralized network, nodes store and verify blockchain data according to their specific roles. Full nodes are responsible for storing the entire blockchain ledger and independently validating every transaction and block. Light nodes (or SPV nodes) store only the essential data needed to verify transactions, making them ideal for devices with limited resources. Mining nodes play a critical role in validating transactions and adding new blocks to the blockchain by solving complex mathematical puzzles, while authority nodes are tasked with authenticating transactions and ensuring the network operates according to the established rules.

Archival nodes go a step further by storing the entire blockchain history, including all past transactions, which is essential for services that require access to comprehensive transaction history. Staking nodes participate in proof-of-stake networks, where they validate transactions and add new blocks based on the amount of cryptocurrency they hold and are willing to “stake” as collateral. Super nodes and master nodes perform specialized tasks such as implementing protocol changes, maintaining network stability, and sometimes enabling advanced features like instant transactions or privacy enhancements.

The seamless operation of a blockchain network relies on a consensus mechanism—a set of rules that all nodes follow to agree on the validity of new transactions and blocks. This process ensures that no single node can manipulate the blockchain ledger, and it helps prevent issues like network congestion by coordinating how transactions are processed and recorded. For example, the bitcoin blockchain uses a proof-of-work consensus mechanism, while other networks may use proof-of-stake or other protocols.

Innovations like lightning nodes enable off-chain processing of transactions, reducing the load on the main blockchain and allowing for faster, more scalable exchanges. As the blockchain ecosystem evolves, new types of nodes and consensus mechanisms continue to emerge, each contributing to the network’s security, efficiency, and decentralized nature.

In essence, blockchain nodes are the backbone of any blockchain network. By working together to validate and record transactions, these nodes ensure the integrity and reliability of the entire system. Understanding how different types of blockchain nodes connect and communicate provides valuable insight into the complexity and power of decentralized networks, and highlights why blockchain technology is revolutionizing the way we think about data, trust, and digital value.

Types of Blockchain Nodes: Different Roles, Different Functions

Not all blockchain nodes perform the same functions. There are several node variations of blockchain nodes, each playing a unique role in maintaining the blockchain ecosystem and ensuring smooth network operation. These include super nodes, which are the super nodes rarest type and are created on demand for specialized tasks, as well as master nodes and others.

Full nodes are the most comprehensive type of node. They download and store data for the entire blockchain ledger, including all the transactions and blocks from the beginning of the blockchain. Full nodes independently verify every transaction and block against the network’s consensus mechanism, ensuring that only valid data is added to the blockchain. These nodes form the backbone of the network’s security, as they prevent invalid or malicious transactions from being accepted.

In contrast, light nodes (or SPV nodes) operate more efficiently by only downloading the essential data, such as block headers, rather than the full blockchain. They require less processing power and are ideal for mobile devices or wallets with limited storage and bandwidth. While light nodes sacrifice some independence, they still contribute to the network’s decentralization by verifying transactions without storing the entire blockchain history.

Mining nodes (also called miner nodes) combine the functions of full nodes with the additional task of creating new blocks. These nodes compete to solve complex cryptographic puzzles, and the winning miner adds the next block to the main blockchain, earning block rewards and transaction fees. In proof-of-stake networks, a staking node or validator node performs a similar function by using their stake to secure the network instead of computational power. Staking nodes participate in the authentication process, gain authentication powers, and must meet predetermined metrics to qualify for these roles.

Another specialized type includes archival full nodes, which go beyond full nodes by storing all the transactions and the complete blockchain's transaction history. An archival full node stores or can store data for the entire blockchain, making them vital for services like blockchain explorers and analytics platforms that require access to complete transaction history. The node stores all historical data, ensuring blockchain integrity and transparency.

Other variations include pruned full nodes, which store only the most recent blockchain transactions and discard older data to manage storage limits. A pruned full node has a set memory limit and retains only recent data, deleting the oldest blocks to optimize storage while maintaining the latest transaction information.

Lightning nodes play a crucial role in congested blockchain networks by enabling instantaneous exchanges and solving issues of slow processing. They use out of network connections to execute off-chain transactions, which helps reduce network congestion, lower transaction fees, and improve transaction speed and cost-efficiency.

In proof-of-authority networks, authority nodes (also known as approved nodes) are selected through a vetting process to ensure trustworthiness and accountability. The distribution of nodes, or blockchain hosts, across many blockchain networks enhances network robustness, security, and decentralization by spreading authority and preventing infiltration. Many blockchain networks exist, each with different features, governance models, and privacy options, supporting diverse community participation and transparent or pseudonymous transactions.

How Blockchain Nodes Maintain Network Security

The security of a blockchain network emerges from the collective efforts of thousands of independent nodes operating without a central authority. When a new transaction is broadcast, blockchain nodes immediately begin verifying it by checking digital signatures, confirming sufficient balances, and ensuring the transaction adheres to the blockchain protocol. Each node validates transactions to ensure their legitimacy within the network.

This multi-layered verification process strengthens the network’s security. Cryptographic signatures confirm that only rightful owners can spend their cryptocurrency. The consensus protocol requires a majority of nodes to agree on the validity of new blocks before they are added to the blockchain. Nodes play a crucial role in maintaining secure transactions by verifying transaction authenticity and protecting them through cryptographic hashing and the immutability of the blockchain ledger. Additionally, the distributed nature of the network means that an attacker would need to compromise a majority of nodes spread across different locations — an almost impossible feat.

For investors and traders, understanding the distribution and health of blockchain nodes offers valuable insights into the long-term viability and security of a blockchain network. Platforms like Token Metrics incorporate node metrics into their analysis, helping users evaluate the fundamental strength of blockchain networks beyond just price trends.

The Economics of Running Blockchain Nodes

Running a blockchain node involves costs and incentives that help maintain network security and decentralization. Although full nodes generally do not receive direct financial rewards, they provide operators with important benefits such as complete transaction privacy, the ability to independently verify payments, and participation in network governance. The presence of many nodes also supports scalable growth, enabling the network to efficiently handle increasing transaction volumes without compromising performance.

On the other hand, mining nodes and staking nodes receive block rewards and transaction fees as compensation for their work securing the blockchain. However, operating these nodes requires significant investment in hardware, electricity, and maintenance. Profitability depends on factors like cryptocurrency prices, network difficulty, and energy costs, making mining a dynamic and competitive economic activity.

Many node operators run full nodes for ideological reasons, supporting the network’s decentralization without expecting monetary gain. This voluntary participation strengthens the blockchain ecosystem and reflects the community’s commitment to a peer to peer network free from a central entity.

Choosing and Setting Up Your Own Node

Setting up a blockchain node has become more accessible thanks to improved software and detailed guides from many blockchain projects. However, requirements vary widely. For example, running a Bitcoin full node demands several hundred gigabytes of storage to hold the entire blockchain ledger. Full nodes store the blockchain's transaction history, which is essential for verifying the integrity of the network. Maintaining the network's transaction history is crucial for transparency and trust, as it allows anyone to audit and verify all past transactions.

For beginners, a light node or lightweight wallet offers an easy way to engage with blockchain technology without the technical complexity or storage demands of full nodes. A light node stores only block headers and relies on full nodes for transaction validation, making it suitable for devices with limited resources. As users become more experienced, they may choose to run full nodes to enhance security, privacy, and autonomy.

Cloud-based node services provide an alternative for those who want full node access without investing in hardware. While convenient, these services introduce a level of trust in third parties, which partially contradicts the trustless principles of blockchain technology.

The Future of Blockchain Nodes

Blockchain node architecture is evolving rapidly to meet the demands of scalability, security, and usability. Layer-2 scaling solutions are introducing new node types that process transactions off the main blockchain, reducing congestion while retaining security guarantees. Cross-chain protocols require specialized bridge nodes to facilitate communication between different blockchain networks.

The potential for mobile and IoT devices to operate nodes could dramatically enhance decentralization, though challenges like limited storage, bandwidth, and battery life remain significant hurdles. Innovations in consensus mechanisms and data structures aim to make node operation more efficient and accessible without compromising security.

For traders and investors, staying informed about these developments is crucial. Platforms like Token Metrics offer insights into how advancements in node technology influence network fundamentals and investment opportunities within the expanding blockchain ecosystem.

Understanding what is a blockchain node and what does it do lays the foundation for anyone serious about blockchain technology and cryptocurrency. These often-invisible components form the governing infrastructure of decentralized networks, enabling secure, trustless, and censorship-resistant financial systems that are reshaping the future of digital interactions.

‍

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Announcements

How to Build On-Chain Crypto Trading Bots Using Token Metrics Crypto API and Chainlink Functions

Token Metrics Team
8 min
MIN

In the evolving world of Web3 development, the need for real-time, reliable, and institutional-grade crypto data has never been greater. Whether you’re building decentralized trading bots, DeFi apps, or smart contract platforms, accessing powerful off-chain data is key to creating intelligent and profitable on-chain systems.

That’s where the Token Metrics Crypto API comes in.

In this guide, we’ll walk you through how to integrate the Token Metrics API with Chainlink Functions, enabling you to deploy live smart contracts that interact with real-time crypto signals, token prices, and trader grades. You’ll learn how to use more than 20 API endpoints and smart contract adapters to power decentralized apps with actionable data.

If you’re searching for the best crypto API for smart contract development, or you need a free crypto API to start testing on testnets, this article is your ultimate resource.

What Is the Token Metrics Crypto API?

The Token Metrics API is an advanced data interface designed for traders, developers, and Web3 builders. It provides access to over 20 endpoints covering everything from:

  • Token prices
  • AI-powered trading signals (bullish/bearish)
  • Trader and Investor Grades (0–100 scoring system)
  • Quant metrics
  • Support and resistance levels
  • Sentiment analysis

Built by a team of quant analysts, machine learning engineers, and crypto-native researchers, the Token Metrics Crypto API brings hedge-fund-grade intelligence into the hands of everyday builders.

Why Use the Token Metrics API with Chainlink Functions?

Chainlink Functions enable smart contracts to securely retrieve off-chain data from any API. By integrating with the Token Metrics Crypto API, you can bridge institutional-grade analytics into fully decentralized apps—something not possible with basic or unreliable data sources.

Here’s why this combo is so powerful:

  • đź”— Chainlink decentralizes your execution
  • đź§  Token Metrics powers your logic with predictive analytics
  • ⚙️ Smart contracts can now act on real market intelligence

This integration enables the creation of intelligent trading bots, dynamic token allocations, and governance proposals backed by hard data—not speculation.

Step-by-Step: How to Integrate Token Metrics API with Chainlink Functions

Let’s walk through how to connect the best crypto API—Token Metrics—with Chainlink Functions to build and deploy a live smart contract.

1. Clone the GitHub Repo

Start by cloning the GitHub repository that contains the full codebase. This includes:

  • A set of ~20 pre-built smart contracts
  • API adapter logic
  • Sample scripts to interact with the contracts
  • A detailed README with setup instructions

Each smart contract is tailored to one Token Metrics API endpoint—meaning you can plug and play any dataset, from prices to sentiment scores.

2. Set Up Your Environment

The README provides a full list of recommended environment variables, including:

  • API_KEY for Token Metrics
  • LINK_TOKEN_ADDRESS
  • CHAINLINK_SUBSCRIPTION_ID
  • ORACLE_ADDRESS

Once your .env is ready, you can start compiling and deploying.

3. Build and Deploy a Sample Trading Bot Smart Contract

In this walkthrough, the developer built a Solidity smart contract that:

  • Pulls live data from Token Metrics (price, signal, grade)
  • Evaluates the signal (e.g., bullish)
  • Executes a buy trade if the signal is positive

The contract is compiled in Remix IDE, connected via MetaMask (on testnet), and deployed using testnet ETH and LINK tokens.

After deployment, you’ll receive a contract address that can be added to your Chainlink subscription.

4. Create a Chainlink Subscription

To fund your contract for data requests:

  1. Go to the Chainlink portal
  2. Create a new subscription (testnet or mainnet)
  3. Fund it with some LINK
  4. Add your deployed smart contract as a consumer

This allows your contract to make external data calls using Chainlink’s decentralized oracle network.

5. Run a Script to Invoke Real-Time Token Metrics Data

Using the provided JavaScript scripts, you can interact with the smart contract and test data flow:

  • Check the bot’s active status
  • Retrieve token price, trading signal, and grade
  • See how the smart contract responds to live market conditions

In the demo, the bot received a bullish signal, saw that the grade was high, and executed a buy trade accordingly. This logic can be expanded into full-scale trading strategies, rebalancing rules, or even on-chain governance triggers.

Why Token Metrics API Is the Best Crypto API for Smart Contracts

Here’s what makes the Token Metrics Crypto API the best crypto API for building advanced, data-driven dApps:

âś… Institutional-Grade Signals

Get access to proprietary AI trading signals, used by hedge funds and institutional desks.

âś… 20+ Endpoints for Every Use Case

Whether you need sentiment data, grades, price trends, or quant models, it’s all there.

âś… Real-Time and Back-Tested

The data is not just live—it’s tested. Token Metrics backtests every signal against market conditions.

âś… Easy to Integrate

Pre-built smart contract adapters make it easy to use the API in Chainlink, Remix, or any EVM-compatible environment.

âś… Free Crypto API Tier Available

Start testing on testnets with a free crypto API key. Upgrade later for full production access.

Real-World Use Cases for Token Metrics + Chainlink Functions

Here are some examples of what you can build using this integration:

  • On-Chain Trading Bots: React to bullish or bearish signals in real time
  • Decentralized Rebalancing Strategies: Adjust token allocations based on trader grades
  • Token Governance: Trigger proposal alerts when sentiment crosses a threshold
  • Risk Management Contracts: Move funds to stablecoins when volatility spikes
  • NFT Floor Price Triggers: Use sentiment and price data for automated mint/pass logic

Final Thoughts: The Future of Crypto Intelligence Is On-Chain

As Web3 matures, the ability to combine decentralized execution with centralized intelligence will define the next generation of dApps. The integration of Token Metrics Crypto API with Chainlink Functions is a major step in that direction.

Developers can now build on-chain applications that make smarter, faster, and more profitable decisions—powered by data that was once out of reach.

Whether you're a DeFi developer, a DAO engineer, or just exploring your first smart contract, this setup gives you a free crypto API to experiment with and the power of the best crypto API when you're ready to scale.

🚀 Ready to Get Started?

  • âś… Get your free Token Metrics API key
  • âś… Clone the GitHub repo and install the smart contracts
  • âś… Join the Token Metrics Dev Telegram community
  • âś… Start building intelligent, AI-powered crypto applications today

Your next-generation crypto trading bot starts here.

Crypto Basics

How Risky Are Moonshot Investments?

Token Metrics Team
8 min
MIN

 Introduction: The High Stakes of Moonshot Crypto

Moonshot investing in crypto is a double-edged sword. On one side, you have tokens that can 10x, 50x, or even 100x your portfolio. On the other side? Complete capital loss. While these asymmetric bets can lead to explosive profits, they also carry extreme risk—especially for uninformed or impulsive investors.

This guide will break down the risk landscape of moonshots: what makes them so volatile, common pitfalls to avoid, risk management strategies, and how tools like Token Metrics help reduce blind spots when betting on the next big thing.

What Makes Moonshot Investments So Risky?

Moonshots live in the outer rim of the crypto market. They are typically:

  • Low market cap (<$20M)
  • Light on liquidity
  • Not listed on major exchanges
  • Lacking product-market fit
  • Speculative or narrative-driven

These factors create an environment where price moves fast—but fundamentals are often thin. You're betting more on potential than proof.

Common Risks in Moonshot Investing

‍

‍

You must assume every moonshot has some of these risk factors — and plan accordingly.

Risk Profile: Moonshots vs. Blue Chips

‍

‍

Moonshots = high variance. Don’t treat them like stable assets.

🛡️ How to Manage Moonshot Risk (and Stay Sane)

  1. Use Proper Position Sizing
    Never allocate more than 1–3% of your total portfolio to a single moonshot.

  2. Diversify Your Moonshots
    Build a “moonshot basket” of 5–10 different bets across categories (AI, DePIN, L1s, Meme, etc).

  3. Set Clear Entry and Exit Plans
    Know your take-profit and stop-loss targets before entering.

  4. Track Vesting & Unlock Schedules
    Use tools like Token Unlocks to avoid buying before big token dumps.

  5. Don’t Fall in Love With Your Bags
    Stay objective. Exit when the narrative fades or fundamentals change.

đź§Ş Risk Evaluation Checklist

If you answer “no” to 2 or more of these, tread cautiously.

How Token Metrics Minimizes Risk Exposure

Token Metrics helps de-risk moonshots by analyzing over 80+ data points using AI and quant models:

  • Risk-adjusted momentum scores
  • Tokenomics evaluations
  • On-chain behavior analysis
  • Contract audit status
  • Community health signals
  • Bullish/Bearish alerts based on AI

You get a comprehensive view of upside and downside before making a decision.

Mental Models for Risky Investing

  • “Play with house money” – Take profits early and only risk profits.
  • “Barbell strategy” – Majority in stable assets, small % in high-risk/high-reward.
  • “Expected Value (EV)” – Even if 8/10 fail, 1 big win covers losses.
  • “Don’t chase losses” – Accept failures quickly and move on.

Moonshot investing is mental warfare. Stick to frameworks, not FOMO.

Final Thoughts: Risk is Inevitable — Manage It, Don’t Fear It

The path to 100x gains in crypto will always be riddled with landmines. But risk isn’t inherently bad — it’s the price of asymmetric upside. The real danger is unmanaged risk, impulsive decisions, and poor research.

With the right approach, the right tools, and a clear head, moonshot investing can be one of the most rewarding strategies in crypto.

Just remember: You only need to be right once.

Crypto Basics

Are Moonshots Only Meme Coins?

Token Metrics Team
8 min
MIN

Introduction: The Meme Coin Myth

When most people think “moonshot” in crypto, they think of meme coins like Dogecoin, Shiba Inu, or Pepe — volatile, viral, and often with no utility. While it’s true that meme coins have historically delivered explosive returns, they’re just one type of moonshot. In reality, some of the best moonshots are deeply technical projects with innovative real-world use cases.

In this blog, we’ll explore why moonshots go far beyond memes, the other types of high-potential assets you should be watching, and how to distinguish hype from substance in your moonshot hunt.

Why Meme Coins Became the Face of Moonshots

Meme coins dominate headlines and retail attention for good reason:

  • Low entry barriers – Often priced at fractions of a cent
  • Viral marketing – Driven by memes, humor, and community hype
  • Explosive gains – SHIB, DOGE, and PEPE all had 1,000x+ runs
  • Community-driven – Holders often act as evangelists

Because of these qualities, meme coins are often perceived as the only moonshots. But perception doesn’t equal reality.

The Reality: Many Moonshots Are Utility-Driven

Some of the most successful moonshot investments didn’t begin as memes — they were innovative, under-the-radar projects that grew into billion-dollar ecosystems:

None of these were memes — they were tech-focused moonshots.

Categories of Non-Meme Moonshots

Here are several non-meme sectors producing moonshot-level gains:

  1. AI Coins – e.g., Fetch.ai, Render, Akash
  2. DePIN (Decentralized Physical Infrastructure) – e.g., Helium, IoTeX
  3. RWAs (Real-World Assets) – e.g., Centrifuge, Goldfinch
  4. L2 & Interoperability – e.g., Starknet, Hyperlane, Axelar
  5. Privacy Coins – e.g., Namada, Secret Network
  6. Early-stage L1s – e.g., SEI, Monad

These projects combine visionary ideas with real-world applicability — and many began as stealth moonshots before going mainstream.

How to Spot Utility-Based Moonshots Early

Look for:

  • Unique narrative fit – Aligns with hot macro themes (AI, DeFi 2.0, Web3 infra)
  • Underexposed – Not yet listed on major CEXs or hyped by influencers
  • Backed by smart money – VC involvement or known crypto angels
  • Product roadmap – Testnet/Mainnet imminent or newly launched
  • Active GitHub or whitepaper – Real builders, not marketers

Meme coins may be powered by emotion — but utility moonshots are powered by execution.

Token Metrics Helps Spot Both Meme & Utility Moonshots

Token Metrics doesn’t just chase hype — it grades thousands of tokens using 80+ data points including:

  • Momentum and price trends
  • Community sentiment and buzz
  • GitHub commits and developer activity
  • Market cap ranking
  • AI-generated bull/bear signals
  • Smart contract risk analysis

This means you can discover both emerging meme coins and tech-driven moonshots based on real metrics — not just Twitter noise.

Can Meme Coins Still Be Valid Moonshots?

Yes — but they should be treated like short-term plays with proper risk management. When timed right (early launch, CEX rumor, meme trend), meme coins can 10x fast. But unlike utility tokens, meme coins often lack long-term sustainability unless they evolve (like DogeX or SHIB ecosystem).

Use tools like Token Metrics AI Signals to time entries and exits.

⚠️ Avoiding the Meme Coin Traps

‍

Don’t confuse “meme” with “momentum.” Use data.

Conclusion: The Smart Moonshot Portfolio is Diversified

If your moonshot portfolio is 100% meme coins, you're gambling. If it’s 100% early L1s with no traction, you may be stuck waiting years. Smart investors build a balanced basket that includes:

  • Memes with momentum
  • Mid-cap undervalued alts
  • Undiscovered AI, RWA, and DePIN gems
  • Fundamental plays with strong tokenomics

Meme coins are just one path to the moon — don’t miss the others.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products