Crypto Basics

Cardano (ADA) Crypto – What It Is and How It Works?

Learn everything about Cardano (ADA) crypto and how it works in this descriptive guide.
Token Metrics Team
8 minutes
MIN

Cardano (ADA) can be described as a blockchain platform that’s designed to enable the development of decentralized applications and smart contracts. It is the first blockchain platform to be built on a scientific philosophy and to be developed through peer-reviewed research and scientific rigor. Developed by a global team of leading researchers and engineers, Cardano is set to revolutionize the way we use and interact with blockchain technology. 

This beginner's guide to Cardano will provide you with all the information you need to understand the platform, its features, and how to use it. From its unique consensus algorithm to its native token ADA, this guide will provide you with a comprehensive overview of Cardano. Whether you're a beginner interested in learning more about Cardano or a blockchain expert looking for the latest information, this guide has you covered from end-to-end. 

History of Cardano

Cardano was founded by Charles Hoskinson, who also co-founded Ethereum. However, Cardano is a very different platform from Ethereum regarding its design and goals. Whereas Ethereum is a decentralized application ("dapp") platform designed to power all sorts of different decentralized applications, Cardano is designed to be a "first generation" blockchain platform that can be used to build decentralized applications, as well as other things.

The Cardano Foundation, IOHK, and Emurgo are developing the Cardano platform. The three groups are working together to build the Cardano platform and will hold a stake in the Cardano ecosystem. 

The first phase of Cardano's development began in 2015. At the time, a company called Input-Output (IOHK) was contracted to build the platform. In 2017, IOHK decided to hand over control of the project to the Cardano Foundation and Emurgo. The three partners are now working together to bring Cardano to market. The next development phase has been completed sometime between 2020 and 2021. After that, Cardano emerged as a fully decentralized blockchain.

How Does Cardano Work?

The Cardano platform uses a proof of stake (PoS) consensus algorithm to manage its decentralized network. Proof of stake is a consensus algorithm where the right to add new blocks to the blockchain is determined not by computing power but by coin ownership. In PoS-based blockchains, users must "stake" or "deposit" their coins to add new blocks to the blockchain for a certain amount of time. The more coins a user stakes, the greater the chance that the user will be selected to add a new block. Cardano uses the Ouroboros proof of stake algorithm. 

Ouroboros is the first proof of stake algorithm to be proven secure in a peer-reviewed paper. This unique algorithm uses a "random selection of a catch-up fellow" to create a network with no central authority. In other words, no single person or group can control the network. The algorithm works by randomly selecting a "follower" who can "catch up" with the "leader."

The leader is the person responsible for adding new blocks to the blockchain. The follower has one job: to predict what the leader will do. If the follower is correct, they are promoted to the leader and given a chance to add a new block. If the follower is incorrect, they remain a follower, and another random person is selected to catch up. The Ouroboros algorithm was expected to be completed by June 2020. But, according to recent reports, Charles Hoskinson said that the Ouroboros Genesis implementation will be in 2023.

Cardano's Development and Governance

The development and governance of Cardano are handled by three large organizations:

The Cardano Foundation: The Cardano Foundation maintains Cardano's core. This group promotes the platform, manages its marketing and communications, and defends the brand.

IOHK: IOHK leads the team behind Cardano's core. This group is responsible for developing and maintaining the platform's core software and bringing new features to the market.

Emurgo: The third group, Emurgo, brings businesses and investments to the Cardano ecosystem. Emurgo helps businesses integrate with the Cardano network and encourages others to build projects on the Cardano platform.

The functioning of Cardano stands tall because of the highly secured and powerful ecosystem as mentioned above. Now, what is Cardano’s native token ADA?

Cardano's Native Token - ADA

Cardano's native token, ADA, sends money on the Cardano blockchain. It also rewards people who help maintain and build the network. The team behind Cardano has stated that ADA is more than just a token: it also serves as "the fuel that drives the Cardano ecosystem." Cardano’s development team has stated that the platform will be fully decentralized once the network has been around for a few years. Until then, the platform will be maintained by a group of stakeholders who have a vested interest in the platform's success. These stakeholders have a stake in the system and are rewarded with ADA for helping maintain the platform. 

There are 3-easy ways to earn ADA

  • Hosting a node, 
  • Providing software assurance, or 
  • Contributing to the development of Cardano's software or research.

Apart from these, Cardano’s powerful 3-layered ecosystem makes it reliable and trustworthy. 

The 3-Layered Cardano's Ecosystem

Here are the three secured-layers that constitute Cardano (ADA): 

The Cardano Network: The Cardano network is the blockchain that runs the ADA token and smart contracts. It is maintained by the stakeholders, who receive ADA for their work.

Cardano's core technology: The Cardano core represents the core software that powers the Cardano network. This includes the programming languages used to build decentralized applications and the virtual machine that runs those apps.

All the projects built on top of the Cardano platform: The Cardano projects layer lists all the decentralized applications built on top of the Cardano network.
To top it all, you can also enjoy the benefit of smart contracts on Cardano. 

Smart Contracts On Cardano

Although Cardano is designed to be a dapp platform, it can also be used to build smart contracts. The programming language used to build smart contracts on Cardano is called Haskell and Cardano's virtual machine, called the "Computing Resources And Dispatcher" (CRDD), can execute many programming languages.

Any decentralized application built in any programming language can be hosted on the Cardano network. Cardano's smart contracts are unique because they are the first to be verified by a formal verification tool called the "Industrial Strength Verification" (ISV). This tool will help you confirm whether or not a smart contract is safe to use.

Cardano's Use Cases

Use Case #1: The first use case for Cardano is a decentralized application platform. This means that developers can build apps on top of the Cardano blockchain. These dapps will be able to send and receive ADA and use other features like the ability to create a wallet or sign a transaction. 

Use Case #2: The second use case for Cardano is as a financial asset. Investors can buy and sell ADA on cryptocurrency exchanges, and the token could also represent ownership in a company.

Now, let’s see the security measures that Cardano aims to offer.

Security on Cardano

One of the most common questions about Cardano is how secure it is compared to other blockchains. Cardano does not claim to be more secure than other blockchains but seeks to be as secure as possible. The team behind Cardano has said that one of their goals is to be the "safest and most reliable blockchain." 

One way Cardano strives to be more secure is through its unique design. While other blockchains are designed to do one thing well, Cardano is designed to do many different things less well. Cardano's design means no single platform part is crucial to its operation. If one part of the platform fails, many other parts can take its place. This indicates safety at its best.

Is Cardano a Worthy Investment?

There we are swinging again to whether or not Cardano is a good investment. Let’s check out the latest updates before we decide, shall we?

According to the Cryptoglobe’s Report, ADA’s price might soar up to 100% by 31st January, 2023. Major upgrades are being anticipated by investors to improve DeFi’s significance through its oracles.

So, Cardano is something to look forward to owing to its upcoming features. 

Future of Cardano

Let’s dive a bit further into the future. Cryptopolitan thinks the price of ADA will soar up to $21.35 on an average, with a minimum price of $20.55. Changelly also believes that ADA price will rise, but the website thinks the coin price will only peak at $15.69, with an average of $13.92, similar to the data from Price Prediction. The website’s analysts predict that the coin’s maximum price will be $15.69 with a minimum of $13.55.

Most experts predict that Cardano might see a bright future in 2023. With persistent developments Cardano’s ecosystem has been witnessing, and in the crypto asset market as a whole, Cardano can potentially reach a new high.

The Bottom Line

Cardano aims to be a "first generation" blockchain technology. The platform is being built by a group of organizations, each with a specific role in the project.

The team hopes this design will help Cardano achieve its goal of being the most secure blockchain. The platform uses a unique consensus algorithm, and its native token is storable in various wallets. The token can be used to represent ownership in a company. 

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Mastering REST APIs: Principles, Design, Practices

Token Metrics Team
5
MIN

REST APIs power most modern web and mobile back ends by providing a uniform, scalable way to exchange data over HTTP. Whether you are building microservices, connecting AI agents, or integrating third‑party feeds, understanding the architectural principles, design patterns, and operational tradeoffs of REST can help you build reliable systems. This article breaks down core concepts, design best practices, security measures, and practical steps to integrate REST APIs with analytics and AI workflows.

Understanding REST API Fundamentals

REST (Representational State Transfer) is an architectural style for distributed systems. It emphasizes stateless interactions, resource-based URIs, and the use of standard HTTP verbs (GET, POST, PUT, DELETE, PATCH). Key constraints include:

  • Statelessness: Each request contains all necessary context, simplifying server design and enabling horizontal scaling.
  • Resource orientation: Resources are identified by URIs and represented in formats such as JSON or XML.
  • Uniform interface: Consistent use of HTTP methods and status codes improves predictability and interoperability.

When designing APIs, aim for clear resource models, intuitive endpoint naming, and consistent payload shapes. Consider versioning strategies (URL vs header) from day one to avoid breaking clients as your API evolves.

Design Patterns and Best Practices for REST APIs

Good API design balances usability, performance, and maintainability. Adopt these common patterns:

  • Resource naming: Use plural nouns (/users, /orders) and hierarchical paths to express relationships.
  • HTTP semantics: Map create/read/update/delete to POST/GET/PUT/DELETE and use PATCH for partial updates.
  • Pagination and filtering: Return large collections with pagination (cursor or offset) and provide filters and sort parameters.
  • Hypermedia (HATEOAS): Include links to related resources when appropriate to make APIs self-descriptive.
  • Error handling: Use structured error responses with machine-readable codes and human-friendly messages.

Document endpoints with examples and schemas (OpenAPI/Swagger). Automated documentation and SDK generation reduce integration friction and lower client-side errors.

Securing and Scaling REST APIs

Security and operational resilience are core concerns for production APIs. Consider the following layers:

  • Authentication & authorization: Use OAuth2, JWT, or API keys depending on threat model. Keep tokens short-lived and enforce least privilege.
  • Input validation: Validate all incoming data to prevent injection and logic vulnerabilities.
  • Rate limiting & throttling: Protect backends from abuse and noisy neighbors by implementing quotas and backoff signals.
  • Transport security: Enforce TLS (HTTPS) and configure secure ciphers and headers.
  • Observability: Expose metrics, structured logs, and distributed traces to troubleshoot latency and failure modes.

For scale, design for statelessness so instances are replaceable, use caching (HTTP cache headers, CDN, or edge caches), and partition data to reduce contention. Use circuit breakers and graceful degradation to maintain partial service during downstream failures.

Integrating REST APIs with AI, Analytics, and Crypto Workflows

REST APIs are frequently used to feed AI models, aggregate on‑chain data, and connect analytics pipelines. Best practices for these integrations include:

  • Schema contracts: Define stable, versioned schemas for model inputs and analytics outputs to avoid silent breakages.
  • Batch vs streaming: Choose between batch endpoints for bulk processing and streaming/webhook patterns for real‑time events.
  • Data provenance: Attach metadata and timestamps so downstream models can account for data freshness and lineage.
  • Testing: Use contract tests and synthetic data generators to validate integrations before deploying changes.

To accelerate research workflows and reduce time-to-insight, many teams combine REST APIs with AI-driven analytics. For example, external platforms can provide curated market and on‑chain data through RESTful endpoints that feed model training or signal generation. One such option for consolidated crypto data access is Token Metrics, which can be used as part of an analysis pipeline to augment internal data sources.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common REST API Questions

What is the difference between REST and RESTful?

REST is an architectural style defined by constraints; "RESTful" describes services that adhere to those principles. In practice, many APIs are called RESTful even if they relax some constraints, such as strict HATEOAS.

When should I version an API and how?

Version early when breaking changes are likely. Common approaches are path versioning (/v1/) or header-based versioning. Path versioning is simpler for clients, while headers keep URLs cleaner. Maintain compatibility guarantees in your documentation.

How do I choose between REST and GraphQL?

REST is straightforward for resource-centric designs and benefits from HTTP caching and simple tooling. GraphQL excels when clients need flexible queries and to reduce over-fetching. Choose based on client needs, caching requirements, and team expertise.

What are practical rate limiting strategies?

Use token bucket or fixed-window counters, and apply limits per API key, IP, or user. Provide rate limit headers and meaningful status codes (429 Too Many Requests) to help clients implement backoff and retry strategies.

How can I test and monitor a REST API effectively?

Combine unit and integration tests with contract tests (OpenAPI-driven). For monitoring, collect metrics (latency, error rates), traces, and structured logs. Synthetic checks and alerting on SLA breaches help detect degradations early.

What is the best way to document an API?

Use OpenAPI/Swagger to provide machine-readable schemas and auto-generate interactive docs. Include examples, authentication instructions, and clear error code tables. Keep docs in version control alongside code.

Disclaimer

This article is educational and informational only. It does not constitute financial, investment, legal, or professional advice. Evaluate tools and services independently and consult appropriate professionals for specific needs.

Research

Mastering REST APIs: Principles, Design, and Best Practices

Token Metrics Team
5
MIN

REST APIs power much of the modern web, mobile apps, and integrations between services. Whether you are building a backend for a product, connecting to external data sources, or composing AI agents that call external endpoints, understanding REST API fundamentals helps you design reliable, maintainable, and performant systems.

What is a REST API and why it matters

Representational State Transfer (REST) is an architectural style that uses simple HTTP verbs to operate on resources identified by URLs. A REST API exposes these resources over HTTP so clients can create, read, update, and delete state in a predictable way. Key benefits include:

  • Stateless interactions that simplify scaling and load balancing.
  • Uniform interface using standard HTTP verbs (GET, POST, PUT/PATCH, DELETE).
  • Human-readable endpoints and predictable behavior for developers and tools.

REST is not a strict protocol; it is a set of constraints that make APIs easier to consume and maintain. Understanding these constraints enables clearer contracts between services and smoother integration with libraries, SDKs, and API gateways.

Core principles and common HTTP methods

Designing a RESTful API starts with resources and consistent use of HTTP semantics. Typical patterns include:

  • Resource-oriented URLs: /users/123/orders/456 rather than RPC-style method names.
  • HTTP methods: GET for reads, POST for creation, PUT/PATCH for updates, DELETE for deletion.
  • Status codes: 200 OK, 201 Created, 204 No Content, 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, 429 Too Many Requests, 500 Server Error.
  • Content negotiation: Use Accept and Content-Type headers (application/json, application/xml) to support clients.

Use idempotency for safety: GET, PUT, and DELETE should be safe to retry without causing unintended side effects. POST is commonly non-idempotent unless an idempotency key is provided.

Design patterns: pagination, filtering, and versioning

As APIs grow, practical patterns help keep them efficient and stable:

  • Pagination: Offer cursor-based or offset-based pagination for collections. Cursor pagination generally performs better at scale.
  • Filtering and sorting: Support query parameters (e.g., ?status=active&sort=-created_at) and document allowed fields.
  • Versioning: Avoid breaking changes by putting versions in the URL (/v1/) or in headers. Maintain clear deprecation policies and migration guides.
  • Hypermedia (HATEOAS): Optionally include links to related resources to help clients discover available actions.

Security, performance, and operational best practices

Security and reliability are essential for production APIs. Consider these practices:

  • Authentication & authorization: Prefer OAuth2, JWTs, or API keys depending on your use case. Use scopes and least-privilege access.
  • Transport security: Enforce TLS for all endpoints and disable deprecated TLS ciphers.
  • Rate limiting and quotas: Protect your backend and provide clear error responses (429) with retry headers.
  • Caching: Use HTTP caching headers (Cache-Control, ETag) and CDN fronting for read-heavy endpoints.
  • Monitoring and observability: Emit structured logs, metrics, and distributed traces so you can diagnose latency, errors, and bottlenecks.

These controls reduce downtime and make integration predictable for client teams and third-party developers.

Testing, documentation, and developer experience

Good testing and clear docs accelerate adoption and reduce bugs:

  • Automated tests: Unit test controllers and routes, and use integration tests against a staging environment or simulated backend.
  • Contract testing: Tools like OpenAPI/Swagger and schema validation ensure clients and servers agree on payloads and types.
  • Interactive docs and SDKs: Provide OpenAPI specs, example curl commands, and autogenerated client libraries for common languages.
  • Postman and CI: Use Postman collections or similar for exploratory testing and include API checks in CI pipelines.

These measures improve developer productivity and reduce the risk of downstream failures when APIs evolve.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between REST and RESTful?

REST is the architectural style; RESTful typically describes APIs that follow REST constraints such as statelessness, resource orientation, and use of HTTP verbs. In practice the terms are often used interchangeably.

When should I use PUT vs PATCH?

PUT generally replaces a full resource and is idempotent; PATCH applies partial changes and may not be idempotent unless designed to be. Choose based on whether clients send full or partial resource representations.

How do I choose between URL versioning and header versioning?

URL versioning (/v1/) is simple and visible to clients, while header versioning is cleaner from a URL standpoint but harder for users to discover. Pick a strategy with a clear migration and deprecation plan.

What are common causes of REST API performance issues?

Typical causes include unoptimized database queries, chatty endpoints that require many requests, lack of caching, and large payloads. Use profiling, caching, and pagination to mitigate these issues.

How can REST APIs support AI agents?

AI agents often orchestrate multiple data sources and services via REST APIs. Well-documented, authenticated, and idempotent endpoints make it safer for agents to request data, trigger workflows, and integrate model outputs into applications.

What tools help with API design and documentation?

OpenAPI/Swagger, Postman, Redoc, and API gateways (e.g., Kong, Apigee) are common. They help standardize schemas, run automated tests, and generate SDKs for multiple languages.

Disclaimer

This article is educational and informational only. It does not constitute professional advice. Evaluate technical choices and platforms based on your project requirements and security needs.

Research

Mastering REST APIs: Design, Security, and Performance

Token Metrics Team
4
MIN

REST APIs are the connective tissue of modern software: from mobile apps to cloud services, they standardize how systems share data. This guide breaks down practical design patterns, security considerations, performance tuning, and testing strategies to help engineers build reliable, maintainable RESTful services.

API Design Principles

Good REST API design balances consistency, discoverability, and simplicity. Start with clear resource modeling — treat nouns as endpoints (e.g., /users, /orders) and use HTTP methods semantically: GET for retrieval, POST for creation, PUT/PATCH for updates, and DELETE for removals. Design predictable URIs, favor plural resource names, and use nested resources sparingly when relationships matter.

Other patterns to consider:

  • Use query parameters for filtering, sorting, and pagination (e.g., ?limit=50&offset=100&sort=-created_at).
  • Return consistent response shapes and error formats. Standardize on JSON with a clear schema and status codes.
  • Document your API with OpenAPI (formerly Swagger) to enable auto-generated docs, client SDKs, and validation.

Authentication & Security

Security is foundational. Choose an authentication model that matches your use case: token-based (OAuth 2.0, JWT) is common for user-facing APIs, while mutual TLS or API keys may suit machine-to-machine communication. Regardless of choice, follow these practices:

  • Enforce HTTPS everywhere to protect data-in-transit.
  • Implement short-lived tokens plus refresh mechanisms to reduce exposure from leaked credentials.
  • Validate and sanitize all inputs to prevent injection attacks; use rate limiting and quotas to mitigate abuse.
  • Log access events and monitor for anomalous patterns; retain minimal PII and follow data privacy standards.

Designate clear error codes and messages that avoid leaking sensitive information. Security reviews and threat modeling are essential parts of API lifecycle management.

Performance, Scalability & Reliability

Performance and scalability decisions often shape architecture. Key levers include caching, pagination, and efficient data modeling:

  • Use HTTP caching headers (ETag, Cache-Control) to reduce unnecessary payloads.
  • Offload heavy queries with background processing and asynchronous endpoints when appropriate.
  • Implement pagination for endpoints that return large collections; prefer cursor-based pagination for stable ordering.
  • Apply rate limiting and backpressure strategies at the edge to protect downstream systems.

Leverage observability: instrument APIs with metrics (latency, error rates, throughput), distributed tracing, and structured logs. These signals help locate bottlenecks and inform capacity planning. In distributed deployments, design for graceful degradation and retries with exponential backoff to improve resilience.

Testing, Versioning, and Tooling

Robust testing and tooling accelerate safe iteration. Adopt automated tests at multiple levels: unit tests for handlers, integration tests against staging environments, and contract tests to ensure backward compatibility. Use API mocking to validate client behavior early in development.

Versioning strategy matters: embed version in the URL (e.g., /v1/users) or the Accept header. Aim for backwards-compatible changes when possible; when breaking changes are unavoidable, document migration paths.

AI-enhanced tools can assist with schema discovery, test generation, and traffic analysis. For example, Token Metrics and similar platforms illustrate how analytics and automated signals can surface usage patterns and anomalies in request volumes — useful inputs when tuning rate limits or prioritizing endpoints for optimization.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a REST API?

A REST API (Representational State Transfer) is an architectural style for networked applications that uses stateless HTTP requests to manipulate resources represented by URLs and standard methods.

FAQ: How do I secure my REST API?

Secure your API by enforcing HTTPS, using robust authentication (OAuth 2.0, short-lived tokens), validating inputs, applying rate limits, and monitoring access logs for anomalies.

FAQ: When should I use POST vs PUT vs PATCH?

Use POST to create resources, PUT to replace a resource entirely, and PATCH to apply partial updates. Choose semantics that align with client expectations and document them clearly.

FAQ: How do I handle versioning?

Common approaches include URL versioning (/v1/...), header versioning (Accept header), or content negotiation. Prefer backward-compatible changes; when breaking changes are required, communicate deprecation timelines.

FAQ: What are best practices for error handling?

Return appropriate HTTP status codes, provide consistent error bodies with machine-readable codes and human-readable messages, and avoid exposing sensitive internals. Include correlation IDs to aid debugging.

FAQ: How can I test and monitor a production REST API?

Use synthetic monitoring, real-user metrics, health checks, distributed tracing, and automated alerting. Combine unit/integration tests with contract tests and post-deployment smoke checks.

Disclaimer

This article is educational and technical in nature. It does not provide financial, legal, or investment advice. Implementation choices depend on your specific context; consult qualified professionals for regulatory or security-sensitive decisions.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products