Crypto Basics

Cardano (ADA) Crypto – What It Is and How It Works?

Learn everything about Cardano (ADA) crypto and how it works in this descriptive guide.
Token Metrics Team
8 minutes
MIN

Cardano (ADA) can be described as a blockchain platform that’s designed to enable the development of decentralized applications and smart contracts. It is the first blockchain platform to be built on a scientific philosophy and to be developed through peer-reviewed research and scientific rigor. Developed by a global team of leading researchers and engineers, Cardano is set to revolutionize the way we use and interact with blockchain technology. 

This beginner's guide to Cardano will provide you with all the information you need to understand the platform, its features, and how to use it. From its unique consensus algorithm to its native token ADA, this guide will provide you with a comprehensive overview of Cardano. Whether you're a beginner interested in learning more about Cardano or a blockchain expert looking for the latest information, this guide has you covered from end-to-end. 

History of Cardano

Cardano was founded by Charles Hoskinson, who also co-founded Ethereum. However, Cardano is a very different platform from Ethereum regarding its design and goals. Whereas Ethereum is a decentralized application ("dapp") platform designed to power all sorts of different decentralized applications, Cardano is designed to be a "first generation" blockchain platform that can be used to build decentralized applications, as well as other things.

The Cardano Foundation, IOHK, and Emurgo are developing the Cardano platform. The three groups are working together to build the Cardano platform and will hold a stake in the Cardano ecosystem. 

The first phase of Cardano's development began in 2015. At the time, a company called Input-Output (IOHK) was contracted to build the platform. In 2017, IOHK decided to hand over control of the project to the Cardano Foundation and Emurgo. The three partners are now working together to bring Cardano to market. The next development phase has been completed sometime between 2020 and 2021. After that, Cardano emerged as a fully decentralized blockchain.

How Does Cardano Work?

The Cardano platform uses a proof of stake (PoS) consensus algorithm to manage its decentralized network. Proof of stake is a consensus algorithm where the right to add new blocks to the blockchain is determined not by computing power but by coin ownership. In PoS-based blockchains, users must "stake" or "deposit" their coins to add new blocks to the blockchain for a certain amount of time. The more coins a user stakes, the greater the chance that the user will be selected to add a new block. Cardano uses the Ouroboros proof of stake algorithm. 

Ouroboros is the first proof of stake algorithm to be proven secure in a peer-reviewed paper. This unique algorithm uses a "random selection of a catch-up fellow" to create a network with no central authority. In other words, no single person or group can control the network. The algorithm works by randomly selecting a "follower" who can "catch up" with the "leader."

The leader is the person responsible for adding new blocks to the blockchain. The follower has one job: to predict what the leader will do. If the follower is correct, they are promoted to the leader and given a chance to add a new block. If the follower is incorrect, they remain a follower, and another random person is selected to catch up. The Ouroboros algorithm was expected to be completed by June 2020. But, according to recent reports, Charles Hoskinson said that the Ouroboros Genesis implementation will be in 2023.

Cardano's Development and Governance

The development and governance of Cardano are handled by three large organizations:

The Cardano Foundation: The Cardano Foundation maintains Cardano's core. This group promotes the platform, manages its marketing and communications, and defends the brand.

IOHK: IOHK leads the team behind Cardano's core. This group is responsible for developing and maintaining the platform's core software and bringing new features to the market.

Emurgo: The third group, Emurgo, brings businesses and investments to the Cardano ecosystem. Emurgo helps businesses integrate with the Cardano network and encourages others to build projects on the Cardano platform.

The functioning of Cardano stands tall because of the highly secured and powerful ecosystem as mentioned above. Now, what is Cardano’s native token ADA?

Cardano's Native Token - ADA

Cardano's native token, ADA, sends money on the Cardano blockchain. It also rewards people who help maintain and build the network. The team behind Cardano has stated that ADA is more than just a token: it also serves as "the fuel that drives the Cardano ecosystem." Cardano’s development team has stated that the platform will be fully decentralized once the network has been around for a few years. Until then, the platform will be maintained by a group of stakeholders who have a vested interest in the platform's success. These stakeholders have a stake in the system and are rewarded with ADA for helping maintain the platform. 

There are 3-easy ways to earn ADA

  • Hosting a node, 
  • Providing software assurance, or 
  • Contributing to the development of Cardano's software or research.

Apart from these, Cardano’s powerful 3-layered ecosystem makes it reliable and trustworthy. 

The 3-Layered Cardano's Ecosystem

Here are the three secured-layers that constitute Cardano (ADA): 

The Cardano Network: The Cardano network is the blockchain that runs the ADA token and smart contracts. It is maintained by the stakeholders, who receive ADA for their work.

Cardano's core technology: The Cardano core represents the core software that powers the Cardano network. This includes the programming languages used to build decentralized applications and the virtual machine that runs those apps.

All the projects built on top of the Cardano platform: The Cardano projects layer lists all the decentralized applications built on top of the Cardano network.
To top it all, you can also enjoy the benefit of smart contracts on Cardano. 

Smart Contracts On Cardano

Although Cardano is designed to be a dapp platform, it can also be used to build smart contracts. The programming language used to build smart contracts on Cardano is called Haskell and Cardano's virtual machine, called the "Computing Resources And Dispatcher" (CRDD), can execute many programming languages.

Any decentralized application built in any programming language can be hosted on the Cardano network. Cardano's smart contracts are unique because they are the first to be verified by a formal verification tool called the "Industrial Strength Verification" (ISV). This tool will help you confirm whether or not a smart contract is safe to use.

Cardano's Use Cases

Use Case #1: The first use case for Cardano is a decentralized application platform. This means that developers can build apps on top of the Cardano blockchain. These dapps will be able to send and receive ADA and use other features like the ability to create a wallet or sign a transaction. 

Use Case #2: The second use case for Cardano is as a financial asset. Investors can buy and sell ADA on cryptocurrency exchanges, and the token could also represent ownership in a company.

Now, let’s see the security measures that Cardano aims to offer.

Security on Cardano

One of the most common questions about Cardano is how secure it is compared to other blockchains. Cardano does not claim to be more secure than other blockchains but seeks to be as secure as possible. The team behind Cardano has said that one of their goals is to be the "safest and most reliable blockchain." 

One way Cardano strives to be more secure is through its unique design. While other blockchains are designed to do one thing well, Cardano is designed to do many different things less well. Cardano's design means no single platform part is crucial to its operation. If one part of the platform fails, many other parts can take its place. This indicates safety at its best.

Is Cardano a Worthy Investment?

There we are swinging again to whether or not Cardano is a good investment. Let’s check out the latest updates before we decide, shall we?

According to the Cryptoglobe’s Report, ADA’s price might soar up to 100% by 31st January, 2023. Major upgrades are being anticipated by investors to improve DeFi’s significance through its oracles.

So, Cardano is something to look forward to owing to its upcoming features. 

Future of Cardano

Let’s dive a bit further into the future. Cryptopolitan thinks the price of ADA will soar up to $21.35 on an average, with a minimum price of $20.55. Changelly also believes that ADA price will rise, but the website thinks the coin price will only peak at $15.69, with an average of $13.92, similar to the data from Price Prediction. The website’s analysts predict that the coin’s maximum price will be $15.69 with a minimum of $13.55.

Most experts predict that Cardano might see a bright future in 2023. With persistent developments Cardano’s ecosystem has been witnessing, and in the crypto asset market as a whole, Cardano can potentially reach a new high.

The Bottom Line

Cardano aims to be a "first generation" blockchain technology. The platform is being built by a group of organizations, each with a specific role in the project.

The team hopes this design will help Cardano achieve its goal of being the most secure blockchain. The platform uses a unique consensus algorithm, and its native token is storable in various wallets. The token can be used to represent ownership in a company. 

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How They Power Apps and AI

Token Metrics Team
6
MIN

APIs are the invisible connectors that let software talk to software. Whether you book a flight, check a crypto price, or ask an AI agent to summarize a document, APIs are likely working behind the scenes. This guide breaks down what an API is, how it works, common types and use cases, and practical steps for research and integration.

What is an API?

An API, or application programming interface, is a defined set of rules and data structures that lets one software component request services or data from another. Think of an API as a contract: the provider exposes endpoints and data formats, and the consumer uses those endpoints to perform actions or retrieve information. This abstraction hides implementation details, enabling interoperability and composability across systems.

At its core, an API specifies:

  • Available operations (endpoints) and accepted parameters
  • Request and response formats (JSON, XML, etc.)
  • Authentication and rate limits
  • Error handling and status codes

APIs accelerate development by allowing teams to reuse services instead of rebuilding functionality. They also enable ecosystems: marketplaces, integrations, and data sharing across organizations.

How APIs Work: Components & Protocols

APIs are implemented over protocols and architectural styles. The most common is REST (Representational State Transfer), which uses HTTP verbs (GET, POST, PUT, DELETE) and URIs to model resources. Alternatives like GraphQL let clients request specific data shapes, which can reduce over- and under-fetching in complex applications.

Key components to understand:

  • Endpoint: A URL representing a resource or action (e.g., /api/v1/prices).
  • Method: The HTTP action to perform (GET to read, POST to create).
  • Payload: The body of a request for create/update operations, usually JSON.
  • Authentication: API keys, OAuth tokens, or other schemes control access.
  • Rate limits: Providers throttle requests to protect services.

Beyond REST and GraphQL, there are webhooks (server-to-server push notifications), gRPC for high-performance RPC-style communication, and socket-based APIs for real-time streams. The choice of protocol affects latency, throughput, and developer ergonomics.

Types of APIs and Real-World Use Cases

APIs come in several flavors depending on visibility and purpose:

  • Public APIs: Exposed to external developers for integrations and apps.
  • Private APIs: Internal to an organization, used to modularize services.
  • Partner APIs: Shared with selected partners under specific agreements.

Common use cases illustrate how APIs deliver value:

  • Payment processing APIs enable e-commerce sites to accept credit cards without storing sensitive data.
  • Mapping and location APIs power ride-hailing, logistics, and geofencing features.
  • Data APIs supply market prices, on-chain metrics, or social feeds for dashboards and trading bots.
  • AI and ML model APIs let applications delegate tasks like transcription, summarization, or image analysis to cloud services.

For example, crypto applications rely heavily on exchange and on-chain data APIs to aggregate prices, monitor wallets, and execute analytics at scale. Evaluating latency, historical coverage, and data quality is critical when selecting a provider for time-series or transactional data.

How Developers and AI Use APIs

Developers use APIs to compose microservices, integrate third-party functionality, and automate workflows. For AI systems, APIs are essential both to access model inference and to fetch context data that models use as inputs.

Practical patterns include:

  1. Chaining: Calling multiple APIs in sequence to enrich a response (e.g., fetch user profile, then fetch personalized recommendations).
  2. Caching: Store frequent responses to reduce latency and cost.
  3. Bulk vs. Stream: Use batch endpoints for historical backfills and streaming/webhooks for real-time events.

When integrating APIs for analytics or AI, consider data consistency, schema evolution, and error semantics. Tools and platforms can monitor usage, surface anomalies, and provide fallbacks for degraded endpoints.

For researchers and teams assessing providers, structured evaluations help: compare SLA terms, data freshness, query flexibility, cost per request, and developer experience. Platforms that combine market data with AI-driven signals can accelerate exploratory analysis; for example, Token Metrics provides AI-backed research and ratings that teams often use to prioritize datasets and hypothesis testing.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is an API?

Q1: What is the difference between an API and a library?

An API defines a set of rules and endpoints for interaction between systems, often over a network. A library is a local collection of functions and classes that an application links to at runtime. Libraries run in-process; APIs often run across processes or machines.

FAQ — How secure are APIs?

Q2: How should APIs be secured?

Common security measures include authentication (API keys, OAuth), encryption (TLS), input validation, rate limiting, and monitoring for anomalous patterns. Security practices should match the sensitivity of data and regulatory requirements.

FAQ — REST vs. GraphQL

Q3: When to choose REST over GraphQL?

REST is simple and well-suited to resource-based designs and caching. GraphQL is useful when clients need precise control over returned fields and want to minimize round trips. The right choice depends on client needs, caching strategy, and team expertise.

FAQ — What drives API costs?

Q4: What factors affect API pricing?

Pricing typically depends on request volume, data granularity, retention of historical data, and premium features such as websockets, SLAs, or enriched analytics. Evaluate costs under realistic usage patterns and spikes.

FAQ — How to get started with an API?

Q5: How do I evaluate and integrate a new API?

Start by reading docs, testing sandbox endpoints, and estimating request volumes. Validate data formats, authentication flows, and edge cases (rate limits, errors). Prototype with small workloads before committing to production usage.

FAQ — Are APIs regulated?

Q6: Do APIs involve legal or compliance considerations?

APIs that handle personal data, financial transactions, or regulated assets may be subject to privacy laws, financial regulations, or contractual obligations. Assess compliance requirements, data residency, and logging needs early in the design process.

Disclaimer

This article is for educational purposes only and does not constitute investment, legal, or professional advice. Information contained here is neutral and analytical; always perform independent research and consult qualified professionals for decisions involving legal or financial risk.

Research

Understanding APIs: What They Are and How They Work

Token Metrics Team
5
MIN

APIs (Application Programming Interfaces) are the invisible wiring that lets modern software communicate. From mobile apps fetching data to AI agents orchestrating workflows, APIs enable systems to request services, exchange structured data, and extend functionality without exposing internal implementation. This article unpacks what an API is, how different API styles operate, where they’re used (including crypto and AI contexts), and practical approaches to evaluate, integrate, and secure them.

What an API Is: core concepts and terminology

An API is a set of rules and conventions that allows one software component to interact with another. At its simplest, an API defines:

  • Endpoints: Named access points that accept requests (for example, /users or /price).
  • Methods: Actions supported at an endpoint (common HTTP verbs: GET, POST, PUT, DELETE).
  • Request/Response formats: Structured payloads, typically JSON or XML, that describe inputs and outputs.
  • Authentication and authorization: How clients prove identity and gain access to resources (API keys, OAuth, JWT).
  • Rate limits and quotas: Constraints that protect services from abuse and manage capacity.

Think of an API as a contract: the provider promises certain behaviors and data shapes, and the consumer agrees to use the API according to those rules. That contract enables modular design, reusability, and language-agnostic integration.

How APIs work: protocols, formats, and architectural styles

APIs use protocols and conventions to carry requests and responses. The most common patterns include:

  • REST (Representational State Transfer): Uses standard HTTP methods and resource-oriented URLs. REST favors stateless interactions and JSON payloads.
  • GraphQL: Lets clients request exactly the fields they need in a single query, reducing over- and under-fetching.
  • gRPC: A high-performance RPC framework that uses protocol buffers for compact binary messages—often used for internal microservices.
  • Webhooks: A push model where the API provider sends events to a client URL when something changes.

Choosing an architecture depends on latency needs, payload sizes, versioning strategy, and developer ergonomics. For instance, GraphQL can simplify complex frontend queries, while REST remains straightforward for simple resource CRUD operations.

Common API types and real-world use cases (including crypto and AI)

APIs power an enormous variety of use cases across industries. Representative examples include:

  • Data APIs: Provide access to datasets or market data (weather, financial prices, on-chain metrics).
  • Service APIs: Offer functionality like payments, authentication, or messaging.
  • Platform APIs: Enable third-party apps to extend a core product—social platforms, cloud providers, and exchanges expose platform APIs.
  • AI and ML APIs: Expose model inference endpoints for tasks such as text generation, image recognition, or embeddings.

In the crypto ecosystem, APIs are fundamental: explorers, node providers, exchanges, and analytics platforms expose endpoints for price feeds, order books, trade history, wallet balances, and on-chain events. AI-driven research tools use APIs to combine market data, on-chain signals, and model outputs into research workflows and agents.

How to evaluate and integrate an API: practical steps

Adopting an API requires both technical and operational considerations. A pragmatic evaluation process includes:

  1. Define needs: Identify required data, latency tolerance, throughput, and allowable costs.
  2. Review documentation: Clear docs, example requests, schema definitions, and SDKs accelerate integration.
  3. Test endpoints: Use sandbox keys or Postman to validate payloads, error handling, and edge cases.
  4. Assess SLAs and rate limits: Understand uptime guarantees and throttling behavior; build retry/backoff strategies.
  5. Security and compliance: Check authentication methods, encryption, and data retention policies.
  6. Monitoring and observability: Plan logging, latency monitoring, and alerting to detect regressions post-integration.

When integrating multiple APIs—such as combining market data with model inference—consider a middleware layer that normalizes data shapes, caches frequent responses, and orchestrates calls to minimize latency and cost.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API — common questions

What is the difference between an API and a web service?

An API is a broader concept that defines interfaces for software interaction. A web service is a type of API that operates over network protocols such as HTTP. In practice, REST and GraphQL are web service styles used to implement APIs.

Are public APIs safe to use?

Public APIs can be safe if they follow security best practices: HTTPS everywhere, proper authentication, input validation, and rate limiting. Consumers should validate responses, handle errors, and avoid exposing credentials in client-side code.

How do API keys differ from OAuth?

API keys are simple tokens that identify a client application and are often used for server-to-server interactions. OAuth is a delegated authorization framework that allows users to grant limited access to their accounts without sharing credentials—common for user-facing integrations.

What is API rate limiting and why does it matter?

Rate limiting constrains how many requests a client can make in a time window. It prevents abuse, protects backend resources, and ensures fair usage. Clients should implement retries with exponential backoff and caching to stay within limits.

When should I use GraphQL instead of REST?

Choose GraphQL when clients need flexible, precise queries that fetch nested or disparate fields in a single request. REST can be simpler for straightforward resource CRUD and when predictable caching semantics are required.

Can APIs be used for real-time data?

Yes. Real-time patterns include WebSockets, Server-Sent Events (SSE), and streaming APIs. Some platforms also provide push notifications or webhooks to deliver near-instant updates to subscribers.

How do I handle versioning in APIs?

Common strategies include using version numbers in the URL (e.g., /v1/) or via headers. Maintain backward compatibility, communicate deprecation timelines, and provide migration guides to minimize friction for integrators.

What monitoring should I implement after integrating an API?

Track uptime, latency percentiles, error rates, and throughput. Instrument retries, logging of failed requests, and alerts for sustained degradation. Observability helps diagnose issues and communicate with API providers when needed.

Disclaimer: This article is for educational and informational purposes only. It explains technical concepts related to APIs and integration practices and does not provide financial, investment, or regulatory advice. Always evaluate tools and services according to your own requirements and compliance needs.

Research

APIs Explained: How They Connect Software and Data

Token Metrics Team
5
MIN

APIs — application programming interfaces — are the invisible glue that lets software talk to software. Whether you're building a dashboard, feeding data into an AI model, or fetching market prices for analytics, understanding what an API is and how it works is essential to designing reliable systems. This guide explains APIs in plain language, shows how they’re used in crypto and AI, and outlines practical steps for safe, scalable integration.

What is an API? Core definition and common types

An API (application programming interface) is a defined set of rules and endpoints that lets one software program request and exchange data or functionality with another. Think of it as a contract: the provider defines what inputs it accepts and what output it returns, and the consumer follows that contract to integrate services reliably.

Common API types:

  • REST APIs: Use HTTP verbs (GET, POST, PUT, DELETE) and structured URLs. They are stateless and often return JSON.
  • GraphQL: Allows clients to request exactly the data they need via a single endpoint, improving efficiency for complex queries.
  • WebSocket / Streaming APIs: Provide persistent connections for real-time data flows, useful for live feeds like price updates or chat.
  • RPC & gRPC: Remote procedure calls optimized for low-latency, typed interactions, often used in microservices.

How APIs work: requests, endpoints, and authentication

At a technical level, using an API involves sending a request to an endpoint and interpreting the response. Key components include:

  • Endpoint: A URL representing a resource or action (e.g., /v1/prices/bitcoin).
  • Method: The HTTP verb that signals the intent (GET to read, POST to create, etc.).
  • Headers & Body: Metadata (like authentication tokens) and payloads for requests that change state.
  • Response codes: Numeric codes (200 OK, 404 Not Found, 429 Too Many Requests) that indicate success or error types.
  • Authentication: API keys, OAuth tokens, JWTs, or mutual TLS are common ways to authenticate and authorize consumers.

Understanding these elements helps teams design error handling, retry logic, and monitoring so integrations behave predictably in production.

APIs in crypto and AI: practical use cases

APIs enable many building blocks in crypto and AI ecosystems. Examples include:

  • Market data & price feeds: REST or websocket APIs provide real-time and historical prices, order book snapshots, and trade events.
  • On-chain data: Indexing services expose transactions, balances, and contract events via APIs for analytics and compliance workflows.
  • Model serving: AI inference APIs let applications call trained models to generate predictions, embeddings, or natural language outputs.
  • Wallet & transaction APIs: Abstract common wallet operations like address generation, signing, and broadcasting transactions.

When integrating APIs for data-driven systems, consider latency, data provenance, and consistency. For research and model inputs, services that combine price data with on-chain metrics and signals can reduce the time it takes to assemble reliable datasets. For teams exploring such aggregations, Token Metrics provides an example of an AI-driven analytics platform that synthesizes multiple data sources for research workflows.

Best practices and security considerations for API integration

Secure, maintainable APIs follow established practices that protect data and reduce operational risk:

  1. Authentication & least privilege: Use scoped API keys or OAuth to limit access, rotate credentials regularly, and avoid embedding secrets in client code.
  2. Rate limiting and retries: Respect provider rate limits, implement exponential backoff, and design idempotent operations to avoid duplication.
  3. Input validation and sanitization: Validate incoming data and sanitize outputs to prevent injection and misuse.
  4. Versioning: Use semantic versioning in endpoint paths (e.g., /v1/) and deprecate old versions with clear timelines.
  5. Monitoring and observability: Log requests, latency, errors, and usage patterns. Set alerts for anomalies and integrate telemetry into incident response playbooks.
  6. Data integrity and provenance: When using third-party feeds, capture timestamps, unique identifiers, and proof-of-origin where available so downstream analysis can trace sources.

Following these practices helps teams scale API usage without sacrificing reliability or security.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is an API and why is it useful?

An API is a set of rules that enables software components to interact. It’s useful because it abstracts complexity, standardizes data exchange, and enables modular development across systems and teams.

Which API type should I choose: REST, GraphQL, or streaming?

Choose based on access patterns: REST is simple and widely supported; GraphQL excels when clients need flexible queries and fewer round trips; streaming (WebSocket) is best for low-latency, continuous updates. Consider caching, complexity, and tooling support.

How do I secure API keys and credentials?

Store secrets in secure vaults or environment variables, avoid hardcoding them in source code, rotate keys periodically, and apply principle of least privilege to limit access scopes.

What are rate limits and how should I handle them?

Rate limits restrict how many requests a client can make in a time window. Handle them by respecting limits, implementing exponential backoff for retries, caching responses, and batching requests where possible.

How do I evaluate an API provider?

Assess documentation quality, uptime SLAs, authentication methods, data freshness, cost model, and community or support channels. Test with realistic workloads and review security practices and versioning policies.

Can APIs be used to power AI agents?

Yes. AI agents often call APIs for data ingestion, model inference, or action execution. Reliable APIs for feature data, model serving, and orchestration are key to building robust AI workflows.

Disclaimer

This article is for educational and informational purposes only. It does not constitute financial, investment, legal, or professional advice. Evaluate APIs and data sources independently and consider security and compliance requirements specific to your use case.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products