Research

Non-Fungible Token (NFT): What It Means and How It Works?

Learn more about an NFT, or non-fungible token, and how it works.
Token Metrics Team
12 minutes
MIN

The most expensive NFT sale to date was Beeple's Everydays: The First 5000 Days, which sold for $69.3 million. This highlights the growing interest in NFTs and the potential for them to be used as a vehicle for sharing virtually any form of media using the blockchain.

But what is an NFT? Let's find out.

What is an NFT?

NFTs, or non-fungible tokens, are unique digital assets with blockchain-managed ownership. They are stored on a blockchain and cannot be replicated or destroyed, making them resistant to tampering. NFTs can represent a wide range of items, including game items, digital art, collectibles, event tickets, and even ownership records for physical assets.

Unlike traditional cryptocurrencies, which are interchangeable and can be easily replicated, NFTs are non-fungible, meaning they have unique qualities that make them one-of-a-kind. This is why NFTs have gained popularity in the art world, where they can be used to verify the authenticity of a digital artwork and ensure that it cannot be copied or stolen.

How Can We Ensure Unique Authenticity?

When someone purchases an NFT, they not only receive the artwork itself, but also a digital receipt that proves that the piece is original, unique, and authentic. This receipt is stored on the blockchain and can be easily accessed and verified by anyone who wants to confirm the ownership and authenticity of the NFT.

While it is technically possible for someone to take a screenshot of an NFT and claim that they own it, this does not give them legal ownership of the artwork. Just like taking a picture of the Mona Lisa at the Louvre does not mean that you own the painting, taking a screenshot of an NFT does not give you ownership of the artwork.

To legally own an NFT, you must purchase it using cryptocurrency and store it in a virtual showcase. This allows you to own and display your artwork in a way that is secure and verifiable, and it ensures that you are the legal owner of the NFT.

NFT Basics You Need To Know

Non-fungible tokens (NFTs) are unique digital files that are stored on a blockchain. A blockchain is a decentralized, public digital ledger that records every transaction that takes place on the decentralized web. This means that the entire history of an NFT, including its creator, properties, transactions, and smart contracts, is backed by a powerful blockchain.

NFTs are different from fungible tokens, such as Bitcoin or Ethereum, which are interchangeable and store value. In contrast, NFTs store data on the blockchain, making them unique and non-replicable.

Important Traits Of NFTs

Some key characteristics of NFTs include:

  • Digital ownership: NFTs are owned and controlled by the individuals who hold them in their digital wallets.
  • Permanent: The data associated with an NFT is permanently stored within the token itself. This can include images, messages, signatures, or any other data.
  • Permission-less: NFTs can be built on a permission-less blockchain, such as Ethereum, meaning that anyone can create and use them.
  • Programmable: Because an NFT is just a piece of code on a blockchain, it can be programmed to have various attributes. For example, an NFT artwork might be programmed to pay the artist royalties on every secondary sale of that artwork.
  • Unique: The uniqueness of an NFT can be verified on the blockchain, ensuring that it is one-of-a-kind and cannot be replicated.

How to Own One? 

To create an NFT, there are several steps that you can follow:

  1. Get your media ready: NFTs support a variety of file types, such as MP3 audio, JPG and PNG images, and 3D files like GLB.
  2. Set up a non-custodial wallet: This will allow you to securely store the cryptocurrency that you will use to buy, sell, and create NFTs. Wallets are also necessary for signing in and creating accounts on NFT marketplaces.
  3. Buy Ethereum or other fungible tokens: You will need to purchase cryptocurrency to cover the cost of minting your NFT.
  4. Connect your wallet to an NFT marketplace: Popular options include Rarible and OpenSea. Connect your wallet by tapping the "Connect" button in the top right corner of the screen. This will create your account and allow you to start creating, minting, and selling your NFTs.
  5. Upload your file and describe your asset: Once you have connected your wallet, you can upload your file to the marketplace and provide a description of your asset. Decide if you want to create a standalone piece or multiple copies of the same NFT.
  6. Mint your NFT: The minting process requires Ethereum for transaction approvals. Once complete, your digital artwork will be ready to be traded and purchased on the marketplace.

Once you have created your NFT, there are several things that you can do with it:

  • Buy and sell it on a marketplace
  • Trade or gift it to others
  • Use it in apps or games
  • Showcase your public NFT inventory on a platform or social media.

The Secondary Markets for NFTs

NFT minting platforms enable creators to create non-fungible tokens (NFTs) to retain more control over their creative output. These NFTs can be sold on the following secondary marketplaces:

  • OpenSea: The first and largest marketplace for NFTs, OpenSea is committed to using open protocols like Ethereum and interoperable standards like ERC-721 and ERC-1155 to enable new digital economies. The platform allows consumers to trade items freely, creators to launch new digital works, and developers to build marketplaces for their digital items. It recently launched the beta version of its Solana-based NFT marketplace.
  • Coinbase NFT: Coinbase recently opened its NFT marketplace to the public in beta. The marketplace acts as a social media platform where users can buy, sell, and interact with NFTs. It aims to make minting, purchasing, showcasing, and discovering NFTs easier.
  • Solanart: Solanart is the first and largest fully-fledged NFT marketplace on Solana. Users can easily access digital collectibles and explore, buy, and sell NFTs that run on the Solana blockchain.
  • Rarible: Rarible is a do-it-yourself NFT marketplace where creators can mint NFTs with ease. The platform's native governance token, "RARI," is used to incentivize users and give the community a voice. However, unrestricted access means that Rarible has become a place for people to mint counterfeit versions of existing NFTs.
  • Nifty Gateway: Owned by the Gemini crypto exchange, Nifty Gateway is a popular NFT marketplace that focuses on user-friendly and viral drops by celebrated artists.
  • SuperRare: SuperRare (SR) is one of Ethereum's first crypto-art NFT marketplaces. Only accepted artists can participate in the platform, where users can discover, buy, and sell tokenized digital art and showcase their collections.

The demand for secondary NFT sales is growing rapidly, leading to increased competition among these marketplaces. Like the early days of Web 1 and 2.0, the emergence of Web 3.0 has created an open market where these platforms must find ways to attract and retain customers.

Some Notable NFT Projects

The thriving NFT market has led to the launch of several high-value projects, including the following companies:

  • Yuga Labs: a blockchain technology company that develops Ethereum-based NFTs and digital collectibles. Yuga's first project, Bored Ape Yacht Club, is one of the most valuable NFT collectibles in the space. The company has also rewarded its holders with free NFTs and other perks. Yuga Labs recently acquired Larva Labs, which brings high-value projects like Cryptopunks and Meebits under the Yuga brand. The company is backed by investors like Coinbase, Samsung, and Mark Cuban.
  • Doodles: a collection of 10,000 Ethereum-based NFTs featuring unique visual traits designed by BurntToast. The Doodles collection includes rare heads, costumes, and colorways, and the universe is ever-expanding. Owners of Doodles have exclusive access to new products, merchandise, and events.
  • Okay Bears: a collection of 10,000 Solana-based NFTs. Ownership of an Okay Bear grants access to a virtuous community that will extend beyond the internet into the real world.

‍The Future of NFTs

Blockchain technology is known for its ability to represent assets and prove ownership. NFTs take this a step further by enabling people to potentially purchase non-fungible assets like land and gold. The global market cap for gold and real estate is over $300 trillion, so even a small percentage of that being tokenized would greatly increase the total crypto market cap. Tokenized real estate offers ordinary people the opportunity to invest in real estate, which has traditionally been difficult for the average person to participate in.

NFTs also have applications in other industries. For example, Nike recently filed a patent for NFT-enabled sneakers called "CryptoKicks." In 2019, Louis Vuitton announced plans to use NFTs to track the ownership of luxury fashion items. NFTs can also be used to tokenize certifications, degrees, and licenses, as well as sensitive data like medical records. The potential for NFTs to show ownership of any non-fungible commodity, whether real or virtual, is vast.

In conclusion, the use of non-fungible tokens (NFTs) has expanded beyond digital art and collectibles to include a wide range of real and virtual assets. The ability of NFTs to represent and prove ownership offers exciting possibilities for industries such as real estate, fashion, and even healthcare. As the technology and market continue to evolve, the potential applications for NFTs are endless.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Practical API Testing: Strategies, Tools, and Best Practices

Token Metrics Team
5
MIN

APIs are the connective tissue of modern software. Testing them thoroughly prevents regressions, ensures predictable behavior, and protects downstream systems. This guide breaks API testing into practical steps, frameworks, and tool recommendations so engineers can build resilient interfaces and integrate them into automated delivery pipelines.

What is API testing?

API testing verifies that application programming interfaces behave according to specification: returning correct data, enforcing authentication and authorization, handling errors, and performing within expected limits. Unlike UI testing, API tests focus on business logic, data contracts, and integration between systems rather than presentation. Well-designed API tests are fast, deterministic, and suitable for automation, enabling rapid feedback in development workflows.

Types of API tests

  • Unit/Component tests: Validate single functions or routes in isolation, often by mocking external dependencies to exercise specific logic.
  • Integration tests: Exercise interactions between services, databases, and third-party APIs to verify end-to-end flows and data consistency.
  • Contract tests: Assert that a provider and consumer agree on request/response shapes and semantics, reducing breaking changes in distributed systems.
  • Performance tests: Measure latency, throughput, and resource usage under expected and peak loads to find bottlenecks.
  • Security tests: Check authentication, authorization, input validation, and common vulnerabilities (for example injection, broken access control, or insufficient rate limiting).
  • End-to-end API tests: Chain multiple API calls to validate workflows that represent real user scenarios across systems.

Designing an API testing strategy

Effective strategies balance scope, speed, and confidence. A common model is the testing pyramid: many fast unit tests, a moderate number of integration and contract tests, and fewer end-to-end or performance tests. Core elements of a robust strategy include:

  • Define clear acceptance criteria: Use API specifications (OpenAPI/Swagger) to derive expected responses, status codes, and error formats so tests reflect agreed behavior.
  • Prioritize test cases: Focus on critical endpoints, authentication flows, data integrity, and boundary conditions that pose the greatest risk.
  • Use contract testing: Make provider/consumer compatibility explicit with frameworks that can generate or verify contracts automatically.
  • Maintain test data: Seed environments with deterministic datasets, use fixtures and factories, and isolate test suites from production data.
  • Measure coverage pragmatically: Track which endpoints and input spaces are exercised, but avoid chasing 100% coverage if it creates brittle tests.

Tools, automation, and CI/CD

Tooling choices depend on protocols (REST, GraphQL, gRPC) and language ecosystems. Common tools and patterns include:

  • Postman & Newman: Rapid exploratory testing, collection sharing, and collection-based automation suited to cross-team collaboration.
  • REST-assured / Supertest / pytest + requests: Language-native libraries for integration and unit testing in JVM, Node.js, and Python ecosystems.
  • Contract testing tools: Pact, Schemathesis, or other consumer-driven contract frameworks to prevent breaking changes in services.
  • Load and performance: JMeter, k6, Gatling for simulating traffic and measuring resource limits and latency under stress.
  • Security scanners: OWASP ZAP or dedicated fuzzers for input validation, authentication, and common attack surfaces.

Automation should be baked into CI/CD pipelines: run unit and contract tests on pull requests, integration tests on feature branches or merged branches, and schedule performance/security suites on staging environments. Observability during test runs—collecting metrics, logs, and traces—helps diagnose flakiness and resource contention faster.

AI-driven analysis can accelerate test coverage and anomaly detection by suggesting high-value test cases and highlighting unusual response patterns. For teams that integrate external data feeds into their systems, services that expose robust, real-time APIs and analytics can be incorporated into test scenarios to validate third-party integrations under realistic conditions. For example, Token Metrics offers datasets and signals that can be used to simulate realistic inputs or verify integrations with external data providers.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between unit and integration API tests?

Unit tests isolate individual functions or routes using mocks and focus on internal logic. Integration tests exercise multiple components together (for example service + database) to validate interaction, data flow, and external dependencies.

How often should I run performance tests?

Run lightweight load tests during releases and schedule comprehensive performance runs on staging before major releases or after architecture changes. Frequency depends on traffic patterns and how often critical paths change.

Can AI help with API testing?

AI can suggest test inputs, prioritize test cases by risk, detect anomalies in responses, and assist with test maintenance through pattern recognition. Treat AI as a productivity augmenter that surfaces hypotheses requiring engineering validation.

What is contract testing and why use it?

Contract testing ensures providers and consumers agree on the API contract (schemas, status codes, semantics). It reduces integration regressions by failing early when expectations diverge, enabling safer deployments in distributed systems.

What are best practices for test data management?

Use deterministic fixtures, isolate test databases, anonymize production data when necessary, seed environments consistently, and prefer schema or contract assertions to validate payload correctness rather than brittle value expectations.

How do I handle flaky API tests?

Investigate root causes such as timing, external dependencies, or resource contention. Reduce flakiness by mocking unstable third parties, improving environment stability, adding idempotent retries where appropriate, and capturing diagnostic traces during failures.

Disclaimer

This article is educational and technical in nature and does not constitute investment, legal, or regulatory advice. Evaluate tools and data sources independently and test in controlled environments before production use.

Research

Understanding APIs: A Clear Definition

Token Metrics Team
5
MIN

APIs power modern software by letting systems communicate without exposing internal details. Whether you're building an AI agent, integrating price feeds for analytics, or connecting wallets, understanding the core concept of an "API" — and the practical rules around using one — is essential. This article defines what an API is, explains common types, highlights evaluation criteria, and outlines best practices for secure, maintainable integrations.

What an API Means: A Practical Definition

API stands for Application Programming Interface. At its simplest, an API is a contract: a set of rules that lets one software component request data or services from another. The contract specifies available endpoints (or methods), required inputs, expected outputs, authentication requirements, and error semantics. APIs abstract implementation details so consumers can depend on a stable surface rather than internal code.

Think of an API as a menu in a restaurant: the menu lists dishes (endpoints), describes ingredients (parameters), and sets expectations for what arrives at the table (responses). Consumers don’t need to know how the kitchen prepares the dishes — only how to place an order.

Common API Styles and When They Fit

APIs come in several architectural styles. The three most common today are:

  • REST (Representational State Transfer): Resources are exposed via HTTP verbs (GET, POST, PUT, DELETE). REST APIs are simple, cacheable, and easy to test with standard web tooling.
  • GraphQL: A query language that lets clients request exactly the fields they need. GraphQL reduces over- and under-fetching but introduces complexity on server-side resolvers and query depth control.
  • RPC / WebSocket / gRPC: Remote Procedure Calls or streaming protocols suit high-performance or real-time needs. gRPC uses binary protocols for efficiency; WebSockets enable persistent bidirectional streams, useful for live updates.

Choosing a style depends on use case: REST for simple, cacheable resources; GraphQL for complex client-driven queries; gRPC/WebSocket for low-latency or streaming scenarios.

How to Read and Evaluate API Documentation

Documentation quality often determines integration time and reliability. When evaluating an API, check for:

  • Clear endpoint descriptions: Inputs, outputs, HTTP methods, and expected status codes.
  • Auth & rate-limit details: Supported authentication methods (API keys, OAuth), token lifecycle, and precise rate-limit rules.
  • Example requests & responses: Copy‑paste examples in multiple languages make testing faster.
  • SDKs and client libraries: Maintained SDKs reduce boilerplate and potential bugs.
  • Changelog & versioning policy: How breaking changes are communicated and how long old versions are supported.

For crypto and market data APIs, also verify the latency SLAs, the freshness of on‑chain reads, and whether historical data is available in a form suitable for research or model training.

Security, Rate Limits, and Versioning Best Practices

APIs expose surface area; securing that surface is critical. Key practices include:

  • Least-privilege keys: Issue scoped API keys or tokens that only grant necessary permissions.
  • Use TLS: Always request and enforce encrypted transport (HTTPS) to protect credentials and payloads.
  • Rate limit handling: Respect limit headers and implement retry/backoff logic to avoid throttling or IP bans.
  • Versioning: Prefer URL or header-based versioning and design migrations so clients can opt-in to changes.
  • Monitoring: Track error rates, latency, and unusual patterns that could indicate abuse or regressions.

Security and resilience are especially important in finance and crypto environments where integrity and availability directly affect analytics and automated systems.

APIs in AI and Crypto Workflows: Practical Steps

APIs are central to AI-driven research and crypto tooling. When integrating APIs into data pipelines or agent workflows, consider these steps:

  1. Map required data: determine fields, frequency, and freshness needs.
  2. Prototype with free or sandbox keys to validate endpoints and error handling.
  3. Instrument observability: log request IDs, latencies, and response codes to analyze performance.
  4. Design caching layers for non-sensitive data to reduce costs and improve latency.
  5. Establish rotation and revocation processes for keys to maintain security hygiene.

AI models and agents can benefit from structured, versioned APIs that provide deterministic responses; integrating dataset provenance and schema validation improves repeatability in experiments.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Frequently Asked Questions

What is the simplest way to describe an API?

An API is an interface that defines how two software systems communicate. It lists available operations, required inputs, and expected outputs so developers can use services without understanding internal implementations.

How do REST and GraphQL differ?

REST exposes fixed resource endpoints and relies on HTTP semantics. GraphQL exposes a flexible query language letting clients fetch precise fields in one request. REST favors caching and simplicity; GraphQL favors efficiency for complex client queries.

What should I check before using a crypto data API?

Confirm data freshness, historical coverage, authentication methods, rate limits, and the provider’s documentation. Also verify uptime, SLA terms if relevant, and whether the API provides proof or verifiable on‑chain reads for critical use cases.

How do rate limits typically work?

Rate limits set a maximum number of requests per time window, often per API key or IP. Providers may return headers indicating remaining quota and reset time; implement exponential backoff and caching to stay within limits.

Can AI tools help evaluate APIs?

AI-driven research tools can summarize documentation, detect breaking changes, and suggest integration patterns. For provider-specific signals and token research, platforms like Token Metrics combine multiple data sources and models to support analysis workflows.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or investment advice. Readers should perform independent research and consult qualified professionals before making decisions related to finances, trading, or technical integrations.

Research

API Gateway: Architecture, Patterns & Best Practices

Token Metrics Team
5
MIN

Modern distributed systems rely on effective traffic control, security, and observability at the edge. An API gateway centralizes those responsibilities, simplifying client access to microservices and serverless functions. This guide explains what an API gateway does, common architectural patterns, deployment and performance trade-offs, and design best practices for secure, scalable APIs.

What is an API Gateway?

An API gateway is a server-side component that sits between clients and backend services. It performs request routing, protocol translation, aggregation, authentication, rate limiting, and metrics collection. Instead of exposing each service directly, teams present a single, consolidated API surface to clients through the gateway. This centralization reduces client complexity, standardizes cross-cutting concerns, and can improve operational control.

Think of an API gateway as a policy and plumbing layer: it enforces API contracts, secures endpoints, and implements traffic shaping while forwarding requests to appropriate services.

Core Features and Architectural Patterns

API gateways vary in capability but commonly include:

  • Routing and reverse proxy: Direct requests to the correct backend based on path, headers, or other criteria.
  • Authentication and authorization: Validate tokens (JWT, OAuth2), integrate with identity providers, and enforce access policies.
  • Rate limiting and quotas: Protect backend services from overload and manage multi-tenant usage.
  • Request/response transformation: Convert between protocols (HTTP/gRPC), reshape payloads, or aggregate multiple service calls.
  • Observability: Emit metrics, traces, and structured logs for monitoring and debugging.

Common patterns include:

  1. Edge gateway: A public-facing gateway handling authentication, CDN integration, and basic traffic management.
  2. Internal gateway: Placed inside the trust boundary to manage east-west traffic within a cluster or VPC.
  3. Aggregating gateway: Combines multiple backend responses into a single client payload, useful for mobile or low-latency clients.
  4. Per-tenant gateway: For multi-tenant platforms, separate gateways per customer enforce isolation and custom policies.

Deployment Models and Performance Considerations

Choosing where and how to deploy an API gateway affects performance, resilience, and operational cost. Key models include:

  • Managed cloud gateways: Providers offer scalable gateways with minimal operational overhead. They simplify TLS, identity integration, and autoscaling but can introduce vendor lock-in and per-request costs.
  • Self-managed gateways: Run on Kubernetes or VMs for full control over configuration and plugins. This model increases operational burden but enables custom routing logic and deep integration with internal systems.
  • Sidecar or service mesh complement: In service mesh architectures, a gateway can front the mesh, delegating fine-grained service-to-service policies to sidecar proxies.

Performance trade-offs to monitor:

  • Latency: Each hop through the gateway adds processing time. Use lightweight filters, compiled rules, and avoid heavy transformations on hot paths.
  • Concurrency: Ensure the gateway and backend services scale independently. Backpressure, circuit breakers, and backoff strategies help prevent cascading failures.
  • Caching: Edge caching can drastically reduce load and latency for idempotent GET requests. Consider cache invalidation and cache-control headers carefully.

Design Best Practices and Security Controls

Adopt practical rules to keep gateways maintainable and secure:

  • Limit business logic: Keep the gateway responsible for orchestration and policy enforcement, not core business rules.
  • Token-based auth and scopes: Use scoped tokens and short lifetimes for session tokens. Validate signatures and token claims at the gateway level.
  • Observability-first: Emit structured logs, metrics, and distributed traces. Correlate gateway logs with backend traces for faster root cause analysis.
  • Throttling and quotas: Set conservative defaults and make limits configurable per client or plan. Implement graceful degradation for overloaded backends.
  • Policy-driven config: Use declarative policies (e.g., YAML or CRDs) to version and review gateway rules rather than ad-hoc runtime changes.

AI and analytics tools can accelerate gateway design and operating decisions by surfacing traffic patterns, anomaly detection, and vulnerability signals. For example, products that combine real-time telemetry with model-driven insights help prioritize which endpoints need hardened policies.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is an API gateway vs service mesh?

These technologies complement rather than replace each other. The API gateway handles north-south traffic (client to cluster), enforcing authentication and exposing public endpoints. A service mesh focuses on east-west traffic (service-to-service), offering fine-grained routing, mTLS, and telemetry between microservices. Many architectures use a gateway at the edge and a mesh internally for granular control.

FAQ: Common Questions About API Gateways

How does an API gateway impact latency?

A gateway introduces processing overhead for each request, which can increase end-to-end latency. Mitigations include optimizing filters, enabling HTTP/2 multiplexing, using local caches, and scaling gateway instances horizontally.

Do I need an API gateway for every architecture?

Not always. Small monoliths or single-service deployments may not require a gateway. For microservices, public APIs, or multi-tenant platforms, a gateway adds value by centralizing cross-cutting concerns and simplifying client integrations.

What security measures should the gateway enforce?

At minimum, the gateway should enforce TLS, validate authentication tokens, apply rate limits, and perform input validation. Additional controls include IP allowlists, web application firewall (WAF) rules, and integration with identity providers for RBAC.

Can API gateways aggregate responses from multiple services?

Yes. Aggregation reduces client round trips by composing responses from multiple backends. Use caching and careful error handling to avoid coupling performance of one service to another.

How do I test and version gateway policies?

Use a staging environment to run synthetic loads and functional tests against gateway policies. Store configurations in version control, run CI checks for syntax and policy conflicts, and roll out changes via canary deployments.

Is it better to use a managed gateway or self-host?

Managed gateways reduce operational overhead and provide scalability out of the box, while self-hosted gateways offer deeper customization and potentially lower long-term costs. Choose based on team expertise, compliance needs, and expected traffic patterns.

Disclaimer

This article is for educational and technical information only. It does not constitute investment, legal, or professional advice. Readers should perform their own due diligence when selecting and configuring infrastructure components.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products