Research

Non-Fungible Token (NFT): What It Means and How It Works?

Learn more about an NFT, or non-fungible token, and how it works.
Token Metrics Team
12 minutes
MIN

The most expensive NFT sale to date was Beeple's Everydays: The First 5000 Days, which sold for $69.3 million. This highlights the growing interest in NFTs and the potential for them to be used as a vehicle for sharing virtually any form of media using the blockchain.

But what is an NFT? Let's find out.

What is an NFT?

NFTs, or non-fungible tokens, are unique digital assets with blockchain-managed ownership. They are stored on a blockchain and cannot be replicated or destroyed, making them resistant to tampering. NFTs can represent a wide range of items, including game items, digital art, collectibles, event tickets, and even ownership records for physical assets.

Unlike traditional cryptocurrencies, which are interchangeable and can be easily replicated, NFTs are non-fungible, meaning they have unique qualities that make them one-of-a-kind. This is why NFTs have gained popularity in the art world, where they can be used to verify the authenticity of a digital artwork and ensure that it cannot be copied or stolen.

How Can We Ensure Unique Authenticity?

When someone purchases an NFT, they not only receive the artwork itself, but also a digital receipt that proves that the piece is original, unique, and authentic. This receipt is stored on the blockchain and can be easily accessed and verified by anyone who wants to confirm the ownership and authenticity of the NFT.

While it is technically possible for someone to take a screenshot of an NFT and claim that they own it, this does not give them legal ownership of the artwork. Just like taking a picture of the Mona Lisa at the Louvre does not mean that you own the painting, taking a screenshot of an NFT does not give you ownership of the artwork.

To legally own an NFT, you must purchase it using cryptocurrency and store it in a virtual showcase. This allows you to own and display your artwork in a way that is secure and verifiable, and it ensures that you are the legal owner of the NFT.

NFT Basics You Need To Know

Non-fungible tokens (NFTs) are unique digital files that are stored on a blockchain. A blockchain is a decentralized, public digital ledger that records every transaction that takes place on the decentralized web. This means that the entire history of an NFT, including its creator, properties, transactions, and smart contracts, is backed by a powerful blockchain.

NFTs are different from fungible tokens, such as Bitcoin or Ethereum, which are interchangeable and store value. In contrast, NFTs store data on the blockchain, making them unique and non-replicable.

Important Traits Of NFTs

Some key characteristics of NFTs include:

  • Digital ownership: NFTs are owned and controlled by the individuals who hold them in their digital wallets.
  • Permanent: The data associated with an NFT is permanently stored within the token itself. This can include images, messages, signatures, or any other data.
  • Permission-less: NFTs can be built on a permission-less blockchain, such as Ethereum, meaning that anyone can create and use them.
  • Programmable: Because an NFT is just a piece of code on a blockchain, it can be programmed to have various attributes. For example, an NFT artwork might be programmed to pay the artist royalties on every secondary sale of that artwork.
  • Unique: The uniqueness of an NFT can be verified on the blockchain, ensuring that it is one-of-a-kind and cannot be replicated.

How to Own One? 

To create an NFT, there are several steps that you can follow:

  1. Get your media ready: NFTs support a variety of file types, such as MP3 audio, JPG and PNG images, and 3D files like GLB.
  2. Set up a non-custodial wallet: This will allow you to securely store the cryptocurrency that you will use to buy, sell, and create NFTs. Wallets are also necessary for signing in and creating accounts on NFT marketplaces.
  3. Buy Ethereum or other fungible tokens: You will need to purchase cryptocurrency to cover the cost of minting your NFT.
  4. Connect your wallet to an NFT marketplace: Popular options include Rarible and OpenSea. Connect your wallet by tapping the "Connect" button in the top right corner of the screen. This will create your account and allow you to start creating, minting, and selling your NFTs.
  5. Upload your file and describe your asset: Once you have connected your wallet, you can upload your file to the marketplace and provide a description of your asset. Decide if you want to create a standalone piece or multiple copies of the same NFT.
  6. Mint your NFT: The minting process requires Ethereum for transaction approvals. Once complete, your digital artwork will be ready to be traded and purchased on the marketplace.

Once you have created your NFT, there are several things that you can do with it:

  • Buy and sell it on a marketplace
  • Trade or gift it to others
  • Use it in apps or games
  • Showcase your public NFT inventory on a platform or social media.

The Secondary Markets for NFTs

NFT minting platforms enable creators to create non-fungible tokens (NFTs) to retain more control over their creative output. These NFTs can be sold on the following secondary marketplaces:

  • OpenSea: The first and largest marketplace for NFTs, OpenSea is committed to using open protocols like Ethereum and interoperable standards like ERC-721 and ERC-1155 to enable new digital economies. The platform allows consumers to trade items freely, creators to launch new digital works, and developers to build marketplaces for their digital items. It recently launched the beta version of its Solana-based NFT marketplace.
  • Coinbase NFT: Coinbase recently opened its NFT marketplace to the public in beta. The marketplace acts as a social media platform where users can buy, sell, and interact with NFTs. It aims to make minting, purchasing, showcasing, and discovering NFTs easier.
  • Solanart: Solanart is the first and largest fully-fledged NFT marketplace on Solana. Users can easily access digital collectibles and explore, buy, and sell NFTs that run on the Solana blockchain.
  • Rarible: Rarible is a do-it-yourself NFT marketplace where creators can mint NFTs with ease. The platform's native governance token, "RARI," is used to incentivize users and give the community a voice. However, unrestricted access means that Rarible has become a place for people to mint counterfeit versions of existing NFTs.
  • Nifty Gateway: Owned by the Gemini crypto exchange, Nifty Gateway is a popular NFT marketplace that focuses on user-friendly and viral drops by celebrated artists.
  • SuperRare: SuperRare (SR) is one of Ethereum's first crypto-art NFT marketplaces. Only accepted artists can participate in the platform, where users can discover, buy, and sell tokenized digital art and showcase their collections.

The demand for secondary NFT sales is growing rapidly, leading to increased competition among these marketplaces. Like the early days of Web 1 and 2.0, the emergence of Web 3.0 has created an open market where these platforms must find ways to attract and retain customers.

Some Notable NFT Projects

The thriving NFT market has led to the launch of several high-value projects, including the following companies:

  • Yuga Labs: a blockchain technology company that develops Ethereum-based NFTs and digital collectibles. Yuga's first project, Bored Ape Yacht Club, is one of the most valuable NFT collectibles in the space. The company has also rewarded its holders with free NFTs and other perks. Yuga Labs recently acquired Larva Labs, which brings high-value projects like Cryptopunks and Meebits under the Yuga brand. The company is backed by investors like Coinbase, Samsung, and Mark Cuban.
  • Doodles: a collection of 10,000 Ethereum-based NFTs featuring unique visual traits designed by BurntToast. The Doodles collection includes rare heads, costumes, and colorways, and the universe is ever-expanding. Owners of Doodles have exclusive access to new products, merchandise, and events.
  • Okay Bears: a collection of 10,000 Solana-based NFTs. Ownership of an Okay Bear grants access to a virtuous community that will extend beyond the internet into the real world.

‍The Future of NFTs

Blockchain technology is known for its ability to represent assets and prove ownership. NFTs take this a step further by enabling people to potentially purchase non-fungible assets like land and gold. The global market cap for gold and real estate is over $300 trillion, so even a small percentage of that being tokenized would greatly increase the total crypto market cap. Tokenized real estate offers ordinary people the opportunity to invest in real estate, which has traditionally been difficult for the average person to participate in.

NFTs also have applications in other industries. For example, Nike recently filed a patent for NFT-enabled sneakers called "CryptoKicks." In 2019, Louis Vuitton announced plans to use NFTs to track the ownership of luxury fashion items. NFTs can also be used to tokenize certifications, degrees, and licenses, as well as sensitive data like medical records. The potential for NFTs to show ownership of any non-fungible commodity, whether real or virtual, is vast.

In conclusion, the use of non-fungible tokens (NFTs) has expanded beyond digital art and collectibles to include a wide range of real and virtual assets. The ability of NFTs to represent and prove ownership offers exciting possibilities for industries such as real estate, fashion, and even healthcare. As the technology and market continue to evolve, the potential applications for NFTs are endless.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How Applications Talk to Each Other

Token Metrics Team
5
MIN

APIs power modern software by enabling different programs, services, and devices to exchange data and trigger actions. Whether you use a weather app, log in with a social account, or connect a trading bot to a price feed, an API is usually working behind the scenes. This guide breaks down what an API is, how it functions technically, common types and use cases, and practical steps to evaluate and use APIs safely and efficiently.

What Is an API? A Clear Definition

An API — short for Application Programming Interface — is a formal set of rules and endpoints that lets one software component request data or services from another. Rather than a single piece of software, think of an API as a contract: it defines the methods, parameters, and expected responses so developers can integrate components without sharing internal implementation details.

Key elements in that contract include:

  • Endpoints: Named access points (URLs or URIs) where requests are sent.
  • Methods: Actions such as GET, POST, PUT, DELETE that indicate intent.
  • Payloads: Structured data sent with requests or responses, often JSON or XML.
  • Authentication & Authorization: Mechanisms that control who can call the API and what actions are allowed.

How APIs Work: A Technical Overview

At a technical level, APIs follow client-server interactions. A client application composes a request and sends it to an API endpoint over a transport layer like HTTP(S). The API server validates the request, performs the requested operation (e.g., fetch data, initiate a transaction), and returns a response. Responses include status codes and structured data that the client can parse and handle.

Important architectural patterns and protocols include:

  • REST: Resource-oriented architecture using standard HTTP verbs and stateless requests.
  • GraphQL: Query language that lets clients request precisely the fields they need.
  • WebSockets / gRPC: For real-time or high-performance RPC-style communication.

Security and reliability are intrinsic: rate limits, API keys, OAuth flows, TLS encryption, and schema validation help maintain integrity and availability. Observability — logs, metrics, and tracing — allows teams to debug integrations and measure performance.

API Types and Practical Use Cases

APIs power many familiar scenarios across industries. Common types and examples:

  • Public APIs: Openly available endpoints for developers (e.g., maps, weather, social feeds).
  • Private/Internal APIs: Used within an organization to modularize services and speed development.
  • Partner APIs: Shared selectively with business partners for integrations.
  • Data & Financial APIs: Provide market data, price feeds, or on-chain metrics used by analytics and trading systems.

Typical use cases include:

  1. Integrating third-party services (payments, authentication, notifications).
  2. Feeding data into dashboards, analytics, or machine learning pipelines.
  3. Automating workflows (CI/CD, orchestration) across tools and platforms.
  4. Building AI agents that chain multiple APIs for retrieval, reasoning, and action.

In domains like crypto and AI research, APIs let developers access price histories, on-chain data, and model outputs programmatically. AI-driven research tools such as Token Metrics combine signals and historical analysis through APIs to support systematic investigation of datasets.

How to Evaluate and Use an API: Practical Checklist

When choosing or integrating an API, apply a structured evaluation to reduce technical and operational risk:

  • Documentation Quality: Clear examples, error codes, and SDKs reduce implementation time.
  • Rate Limits & Pricing: Check throughput constraints and cost model to avoid unexpected bills.
  • Data Freshness & Coverage: For time-sensitive systems, confirm update frequency and historical depth.
  • Authentication & Permissions: Prefer APIs that support token-based auth and role-restricted access.
  • SLAs & Uptime: Review availability guarantees and incident history if reliability matters.
  • Security Practices: Ensure TLS, input validation, and secure key handling are in place.

Integration steps:

  1. Sandbox: Start with a sandbox environment or test key to validate behavior safely.
  2. Schema Validation: Use contract tests to detect breaking changes early.
  3. Monitoring: Instrument calls with retries, metrics, and alerting on error rates.
  4. Governance: Rotate keys regularly and enforce least-privilege on production secrets.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common Questions About APIs

What is the difference between an API and a web service?

An API is a broader concept describing an interface for software interaction. A web service is a specific kind of API that uses web protocols (usually HTTP) to exchange data. Not all APIs are web services (some use binary RPC), but most public APIs today are web-based.

How do I authenticate with an API?

Common methods include API keys, OAuth 2.0 flows, JWT tokens, and mutual TLS. The choice depends on security needs: OAuth is suitable for delegated access, while API keys are simple for server-to-server integrations.

What is rate limiting and why does it matter?

Rate limiting restricts the number of requests a client can make in a time window. It protects the API provider from abuse and ensures fair usage. Clients should implement exponential backoff and respect provided retry headers.

Can APIs change without notice?

APIs can evolve, which is why versioning matters. Good providers document deprecation schedules and maintain backward-compatible versions. Contract testing and version pinning help clients avoid disruptions.

How do I secure API keys and secrets?

Never hard-code secrets in client-side code. Store keys in secure vaults, use environment variables for servers, restrict keys by origin/IP, and rotate keys on a regular schedule.

What formats do APIs typically use for data?

JSON is the dominant format due to readability and language support. XML remains in some legacy systems. Binary formats like Protocol Buffers are used where performance and compact size are priorities.

How do APIs enable AI and automation?

APIs expose data and model capabilities that AI agents can call for retrieval, scoring, and orchestration. Combining data APIs with model APIs allows automated workflows that augment research and decision-support processes.

Disclaimer

This article is for informational and educational purposes only. It does not constitute professional, legal, or financial advice. Evaluate APIs and tools based on your own technical, legal, and operational requirements before integrating them into production systems.

Research

APIs Explained: A Practical Guide for Developers

Token Metrics Team
5
MIN

APIs power much of the digital world but the term can feel abstract to newcomers. Whether you are building a web app, integrating an AI model, or pulling market data for research, understanding what an API is and how to evaluate one speeds development and improves reliability. This guide breaks down core concepts, common patterns, and practical steps to choose and use APIs effectively—without assuming prior expertise.

How an API Works: The Basics

An API (Application Programming Interface) is a defined set of rules and protocols that lets one software program request services or data from another. At a high level, an API specifies:

  • Endpoints: named URLs or addresses where requests are sent.
  • Methods: actions you can perform (for web APIs, common HTTP methods are GET, POST, PUT, DELETE).
  • Parameters and payloads: the inputs required or optional for a request.
  • Responses and status codes: how the server returns data and signals success or error.

Think of an API as a waitstaff in a restaurant: you (the client) place an order (request) using a menu (API documentation), and the kitchen (server) returns a dish (response). The menu defines what is possible and how to order it.

Key API Architectures and Types

APIs come in different styles depending on design goals and constraints:

  • REST (Representational State Transfer): The most common web API pattern, using HTTP verbs and resource-oriented URLs. REST emphasizes stateless communication and cacheable responses.
  • GraphQL: A query language that allows clients to request exactly the data they need in a single request, reducing over- and under-fetching.
  • gRPC: A high-performance RPC framework using Protocol Buffers, suited for low-latency service-to-service calls.
  • Webhooks: Server-to-client callbacks that push data to a consumer when events happen, rather than requiring constant polling.
  • Library/SDK APIs: Language-specific interfaces bundled as packages that abstract network details for developers.

Each type has trade-offs: REST is simple and widely compatible, GraphQL is flexible for variable payloads, and gRPC is optimized for performance between services.

Real-World Uses: Crypto, AI, and Beyond

APIs are central to modern crypto and AI stacks. In crypto, APIs provide access to market prices, on-chain data, wallet balances, and transaction histories. In AI, APIs expose model inference endpoints, allowing applications to send prompts and receive processed outputs without hosting models locally.

When connecting these domains—such as feeding on-chain data into an AI research pipeline—developers use layered APIs: one service to fetch reliable market or chain data, another to run models or scoring logic. For example, research platforms and data providers expose standardized endpoints so teams can automate backtesting, signal generation, and analytics workflows.

For neutral examples of an analytics provider in the crypto space, see Token Metrics, which demonstrates how specialized APIs and models can structure insights for research use cases.

How to Evaluate and Use an API: Practical Checklist

Choosing and integrating an API is a mix of technical evaluation and operational planning. Use this checklist:

  1. Documentation quality: Clear, example-driven docs accelerate integration and reduce errors.
  2. Rate limits and pricing: Understand throughput limits, cost per request, and billing models to avoid surprises.
  3. Data consistency and latency: For real-time needs, measure update frequency and response times.
  4. Authentication and security: Prefer APIs that use robust auth (OAuth, API keys with scoped permissions) and TLS encryption.
  5. Error handling and retries: Check how errors are communicated and design idempotent requests or backoff strategies.
  6. SDKs and language support: Availability of client libraries can shorten development time, but inspect their maintenance status.
  7. Operational SLAs and reliability: For production systems, review uptime guarantees and incident history if available.

Applying this framework helps teams decide between alternatives (self-hosting vs managed, REST vs GraphQL) based on their latency, cost, and control needs.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common Questions About APIs

What is the difference between an API and an SDK?

An API is a set of rules for interacting with a service, typically over a network. An SDK (Software Development Kit) is a package that may include APIs, helper libraries, and tools to make integrating those APIs easier in a specific programming language.

How do REST and GraphQL compare for client apps?

REST maps resources to endpoints and is simple to cache and reason about. GraphQL lets clients request only needed fields and combine multiple resources in one query, which can reduce round trips but may add server-side complexity.

Are public APIs safe to use for sensitive data?

Public APIs can be secure if they implement proper authentication, encryption, and access controls. Avoid sending sensitive secrets through unencrypted channels and use scoped credentials and least-privilege principles.

How do rate limits affect application design?

Rate limits cap how many requests a client can make in a time window. Design strategies include batching requests, caching responses, exponential backoff on errors, and choosing higher-tier plans if sustained throughput is required.

Can I combine multiple APIs in a single workflow?

Yes. Orchestration patterns let you fetch data from one API, transform it, and pass it to another (for example, pulling market data into an AI inference pipeline). Maintain clear error handling and data validation between steps.

How should I test an API integration?

Use sandbox or staging environments when possible, write automated tests for expected responses and error states, monitor real-world requests, and include assertions for schema and performance thresholds.

What are the typical authentication methods?

Common methods include API keys, OAuth 2.0 tokens, and mutual TLS. Select a method that balances ease of use and security for your application's context.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or professional advice. Evaluate APIs and tools independently, review provider terms, and consider operational and security requirements before integration.

Research

APIs Explained: How They Power Modern Apps

Token Metrics Team
5
MIN

APIs (Application Programming Interfaces) are the invisible connectors that let software systems talk to each other. Whether you open a weather app, embed a payment form, or fetch crypto market data, APIs are doing the behind-the-scenes work. This guide explains what an API is, how APIs function, common types, practical use cases, and how to evaluate them securely and effectively.

What is an API?

An API is a defined set of rules and protocols that allows one software component to request services or data from another. Think of an API as a waiter in a restaurant: you (the client) request a dish, the waiter (the API) passes the order to the kitchen (the server), and then returns the prepared meal. APIs standardize interactions so developers can integrate external functionality without understanding internal implementation details.

How APIs Work: Basic Mechanics

At a technical level, most modern APIs use web protocols over HTTP/HTTPS. A client sends a request (GET, POST, PUT, DELETE) to a defined endpoint URL. The server processes the request, optionally interacts with databases or other services, and returns a response, often in JSON or XML format. Key components:

  • Endpoint: The URL where the API listens for requests.
  • Method: Defines the action (e.g., GET to read, POST to create).
  • Headers: Metadata such as authentication tokens and content type.
  • Payload: Data sent to the server (for POST/PUT).
  • Response: Data returned by the server, with status codes like 200 (OK) or 404 (Not Found).

Types of APIs You’ll Encounter

APIs come in several architectural styles and transport patterns. Understanding differences helps pick the right integration model.

  • REST APIs: Representational State Transfer is the most common style. REST uses standard HTTP methods and stateless requests, typically with JSON payloads. It’s simple and broadly supported.
  • GraphQL: A query language that lets clients request exactly the fields they need. Useful for complex data models and reducing over-fetching.
  • WebSocket APIs: Provide persistent two-way communication, enabling low-latency streaming—useful for live market feeds or chat applications.
  • gRPC: A high-performance, binary RPC framework well suited for microservices and internal communication.
  • Third-party and SDK APIs: Many platforms expose endpoints plus language-specific SDKs to simplify integration.

APIs in Crypto and AI: Practical Use Cases

In crypto and AI contexts, APIs are central to tooling and research workflows:

  • Market data: Price, volume, order book snapshots and historical candles from exchanges or aggregators via REST or WebSocket.
  • On-chain data: Blockchain explorers expose endpoints to query transactions, addresses, and contract state.
  • Trading execution: Exchanges provide authenticated endpoints to place orders and manage positions.
  • AI model inference: ML providers offer APIs to run models or pipelines without exposing underlying infrastructure.

AI-driven research platforms and analytics services can combine multiple API feeds to produce indicators, signals, or summaries. Platforms like Token Metrics illustrate how aggregated datasets and models can be exposed via APIs to power decision-support tools.

Evaluating and Using APIs: A Practical Framework

Before integrating an API, apply a simple due-diligence framework:

  1. Documentation quality: Clear, versioned docs and examples reduce integration time and prevent unexpected behavior.
  2. Latency & throughput: Measure response times and rate limits to ensure they meet your application’s needs.
  3. Data coverage & freshness: Verify supported assets, historical depth, and update frequency—especially for time-sensitive use cases.
  4. Authentication & permissions: Check available auth methods (API keys, OAuth) and least-privilege controls.
  5. Reliability & SLAs: Look for uptime guarantees, status pages, and error handling patterns.
  6. Cost model: Understand free tiers, rate-limited endpoints, and pricing for higher throughput.

Security Best Practices for API Integrations

APIs introduce attack surfaces. Adopt defensive measures:

  • Use HTTPS and verify certificates to prevent man-in-the-middle attacks.
  • Store API keys securely (environment variables, secrets managers) and rotate them periodically.
  • Implement rate limit handling and exponential backoff to avoid cascading failures.
  • Limit permissions—use API keys scoped to necessary endpoints only.
  • Monitor logs and set alerts for unusual patterns like spikes in failed requests.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

Q: What is the simplest way to describe an API?
A: An API is an interface that defines how software components communicate—standardized requests and responses that let systems share data and functionality.

FAQ: How do API types differ?

Q: When should I use REST vs WebSocket or GraphQL?
A: REST is suitable for standard CRUD operations. WebSocket is appropriate for real-time bidirectional needs like live feeds. GraphQL is useful when clients need flexible queries to minimize data transfer.

FAQ: Are APIs secure to use?

Q: What are common API security concerns?
A: Major concerns include credential leakage, insufficient authorization, unencrypted transport, and abuse due to inadequate rate limiting. Following best practices reduces these risks.

FAQ: Can I build production apps with free APIs?

Q: Are free APIs viable for production?
A: Free tiers can be useful for prototypes and low-traffic apps, but evaluate limits, reliability, and support before relying on them for critical production workloads.

FAQ: How to choose the best API for my project?

Q: What factors matter most when selecting an API?
A: Prioritize data relevance, latency, reliability, documentation quality, security controls, and cost. Prototype early to validate assumptions about performance and coverage.

Disclaimer

This article is educational and informational only. It does not provide financial, legal, or investment advice. Evaluate tools and services independently and consult professionals where appropriate.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products