Crypto Basics

What is Polygon (MATIC) - How it Works, Benefits and Use Cases

Learn everything about Polygon (MATIC) crypto including its benefits and use cases.
Token Metrics Team
7 minutes
MIN

Polygon (formerly known as Matic Network) is a protocol for building and connecting Ethereum-compatible blockchain networks. It is designed to provide faster and cheaper transactions on the Ethereum network by using side chains and an adapted version of the Plasma framework.

It also offers a wide range of:

  • Smart contract solutions 
  • Secure identity solutions, and 
  • Wallet solutions. 

History of Polygon (MATIC) Crypto

The history of Polygon Matic dates back to 2017 when the project was founded by Jaynti Kanani and Sandeep Nailwal. In 2021, the project took up a rebranding and went from Matic Network to Polygon. This was done in the light of reflecting a broader focus on providing infrastructure for a wide range of blockchain use cases.   

With Polygon MATIC, users can easily create and manage their own decentralized applications, securely store and transfer assets, and even trade digital assets. With its powerful features and benefits, Polygon MATIC can be a great tool for you to leverage the power of the blockchain. Find out how it can benefit you in the best ways possible below.

Benefits of Polygon

Polygon MATIC has several benefits that make it a great blockchain solution. Here are a few of its top benefits that you need to be aware of: 

  • Scalability - Polygon MATIC has high scalability and can support millions of users and transactions. It can also scale at a very low cost. This means that it can handle high transaction volumes and can support a large user base.
  • Security - Polygon MATIC is a secure platform with state-of-the-art security features. You can easily secure your data and transactions on the platform through the use of the platform’s security features. 
  • Wide range of services and tools - Polygon MATIC offers a wide range of services and tools that can benefit different types of users. Whether you are a developer, an individual, or a business, Polygon MATIC can help you with your decentralized applications and smart contracts.
  • Cost-effective and scalable solutions - With Polygon MATIC, you can easily and cost-effectively deploy various decentralized applications. It also offers scalable solutions that can grow and evolve with your business.

Polygon Use Cases

  • E-commerce and Online Retail - The Polygon MATIC blockchain can help improve e-commerce and online retail. This is because distributed ledger technology can significantly reduce the cost of transactions and make it easier for businesses to manage their supply chain. 
  • Supply chain management - The Polygon MATIC blockchain can also help in supply chain management. It can help track shipments and provide transparency and security across the supply chain.
  • Gaming - The Polygon MATIC blockchain can help improve gaming through tokenization. It can also help gamers exchange their digital assets.
  • Healthcare - The Polygon MATIC blockchain can help in healthcare by enabling secure and immutable record storage. It can also help in improving the efficiency of health-related apps and services.
  • ICO and Crowdfunding - The Polygon MATIC blockchain can help improve the ICO and crowdfunding experience. It can also help in improving the tokenization process and provide transparency.

Polygon Security Features

The Polygon MATIC blockchain is a secure and reliable blockchain solution. It uses a distributed ledger technology that is decentralized and peer-to-peer. This means that there is no single point of failure and it is not controlled by a single entity. This makes it secure and reliable. When it comes to security, the Polygon MATIC blockchain has many features. 

Some of these features are discussed below: 

  • Advanced consensus algorithms - The Polygon MATIC blockchain uses advanced consensus algorithms to verify transactions. This makes it secure and reliable. These algorithms include PBFT (Practical Byzantine Fault Tolerance), VRF (Variable Resonance), and EOS consensus. 
  • Strong authentication method - The Polygon MATIC blockchain has a strong authentication method that makes it difficult to hack or spoof. Even if someone is able to hack into the network, they can only hack a single node and not the entire network. 
  • Encrypted communication - The communication between the nodes on the Polygon MATIC blockchain is encrypted. This makes it difficult to hack or spoof.

Polygon (MATIC) Cost

The cost of using Polygon MATIC will depend on your usage. The more you use the platform, the higher the cost will be. You can also choose to outsource your needs and use Polygon MATIC as a service. 

Here are a few things you should know about the Polygon MATIC cost: 

  • The cost of using the Polygon MATIC blockchain platform for deploying DApps is $1499.
  • The cost of deploying a smart contract is $599. 
  • The cost of deploying wallets is $499. 
  • The cost of deploying an identity and security solution is $1199. 
  • The cost of deploying a trading platform is $1499.

Note: These prices may have changed due to change in MATIC's price.

These are the costs of using Polygon MATIC as a service. For more details on the cost, visit their website.

Polygon Crypto Alternatives

  • Ethereum - Ethereum is a popular blockchain platform used for developing decentralized applications and smart contracts. It is also used for ICOs and crowdfunding. 
  • Hyperledger - Hyperledger is another popular blockchain platform used for developing decentralized applications and smart contracts.
  • EOS - EOS is also a blockchain platform used for developing decentralized applications and smart contracts. 
  • Cardano - Cardano is a scalable blockchain platform that can support large volumes of transactions.

Is Polygon (MATIC) a Good Investment?

As for whether Polygon is a good investment, it's important to remember that the cryptocurrency market is highly volatile and that investing in any cryptocurrency carries a high level of risk. It's important to do your own research and carefully consider your investment options before making any decisions.

How to Buy Polygon (MATIC) Crypto?

If you're interested in buying MATIC, you can do so on a number of cryptocurrency exchanges that offer it. Some popular options include Binance, Coinbase, and Kraken. Be sure to carefully compare the fees and features of different exchanges before choosing one to use. Below are the 5 simple steps that you can follow to get your own Polygon:

  1. Choose a Crypto Exchange Broker 
  2. Create your account (Crypto Wallet)
  3. Link your Bank Account to your wallet 
  4. Pick the Cryptocurrency you want to invest in
  5. Choose your storage method

Great, but, do we know where Polygon is headed in the future?  

Future of Polygon (MATIC)

It's difficult to predict the future of Polygon with certainty, but the project has gained significant traction in the cryptocurrency community and has the potential to continue growing and gaining adoption in the future. However, as with any investment, it's important to be aware of the risks and to carefully consider your options before making any decisions.

The Bottom Line

Token Metrics is happy to provide you with AI-driven market updates and information regarding the crypto world but it is you who needs to be the decision maker when it comes to your crypto investments. 

Polygon (formerly Matic Network) offers innovative technology that could potentially democratize blockchain through the creation of customized, interoperable networks. While it's difficult to predict the future performance of MATIC, the project has a strong team and partnerships with well-known companies.

However, as with any cryptocurrency investment, there is a high level of risk and it's important to carefully consider all options before making any decisions. Blockchain technology is still in its early stages and it may be more profitable to invest in the technology itself rather than just the hype. It's also important to exercise caution when building a cryptocurrency portfolio.

Disclaimer: The information provided on this website does not constitute  investment/trading/financial advice and you should not treat any of the website’s content as such. Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.  We only offer comprehensive information which may change according to time. 

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How Applications Talk to Each Other

Token Metrics Team
5
MIN

APIs power modern software by enabling different programs, services, and devices to exchange data and trigger actions. Whether you use a weather app, log in with a social account, or connect a trading bot to a price feed, an API is usually working behind the scenes. This guide breaks down what an API is, how it functions technically, common types and use cases, and practical steps to evaluate and use APIs safely and efficiently.

What Is an API? A Clear Definition

An API — short for Application Programming Interface — is a formal set of rules and endpoints that lets one software component request data or services from another. Rather than a single piece of software, think of an API as a contract: it defines the methods, parameters, and expected responses so developers can integrate components without sharing internal implementation details.

Key elements in that contract include:

  • Endpoints: Named access points (URLs or URIs) where requests are sent.
  • Methods: Actions such as GET, POST, PUT, DELETE that indicate intent.
  • Payloads: Structured data sent with requests or responses, often JSON or XML.
  • Authentication & Authorization: Mechanisms that control who can call the API and what actions are allowed.

How APIs Work: A Technical Overview

At a technical level, APIs follow client-server interactions. A client application composes a request and sends it to an API endpoint over a transport layer like HTTP(S). The API server validates the request, performs the requested operation (e.g., fetch data, initiate a transaction), and returns a response. Responses include status codes and structured data that the client can parse and handle.

Important architectural patterns and protocols include:

  • REST: Resource-oriented architecture using standard HTTP verbs and stateless requests.
  • GraphQL: Query language that lets clients request precisely the fields they need.
  • WebSockets / gRPC: For real-time or high-performance RPC-style communication.

Security and reliability are intrinsic: rate limits, API keys, OAuth flows, TLS encryption, and schema validation help maintain integrity and availability. Observability — logs, metrics, and tracing — allows teams to debug integrations and measure performance.

API Types and Practical Use Cases

APIs power many familiar scenarios across industries. Common types and examples:

  • Public APIs: Openly available endpoints for developers (e.g., maps, weather, social feeds).
  • Private/Internal APIs: Used within an organization to modularize services and speed development.
  • Partner APIs: Shared selectively with business partners for integrations.
  • Data & Financial APIs: Provide market data, price feeds, or on-chain metrics used by analytics and trading systems.

Typical use cases include:

  1. Integrating third-party services (payments, authentication, notifications).
  2. Feeding data into dashboards, analytics, or machine learning pipelines.
  3. Automating workflows (CI/CD, orchestration) across tools and platforms.
  4. Building AI agents that chain multiple APIs for retrieval, reasoning, and action.

In domains like crypto and AI research, APIs let developers access price histories, on-chain data, and model outputs programmatically. AI-driven research tools such as Token Metrics combine signals and historical analysis through APIs to support systematic investigation of datasets.

How to Evaluate and Use an API: Practical Checklist

When choosing or integrating an API, apply a structured evaluation to reduce technical and operational risk:

  • Documentation Quality: Clear examples, error codes, and SDKs reduce implementation time.
  • Rate Limits & Pricing: Check throughput constraints and cost model to avoid unexpected bills.
  • Data Freshness & Coverage: For time-sensitive systems, confirm update frequency and historical depth.
  • Authentication & Permissions: Prefer APIs that support token-based auth and role-restricted access.
  • SLAs & Uptime: Review availability guarantees and incident history if reliability matters.
  • Security Practices: Ensure TLS, input validation, and secure key handling are in place.

Integration steps:

  1. Sandbox: Start with a sandbox environment or test key to validate behavior safely.
  2. Schema Validation: Use contract tests to detect breaking changes early.
  3. Monitoring: Instrument calls with retries, metrics, and alerting on error rates.
  4. Governance: Rotate keys regularly and enforce least-privilege on production secrets.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common Questions About APIs

What is the difference between an API and a web service?

An API is a broader concept describing an interface for software interaction. A web service is a specific kind of API that uses web protocols (usually HTTP) to exchange data. Not all APIs are web services (some use binary RPC), but most public APIs today are web-based.

How do I authenticate with an API?

Common methods include API keys, OAuth 2.0 flows, JWT tokens, and mutual TLS. The choice depends on security needs: OAuth is suitable for delegated access, while API keys are simple for server-to-server integrations.

What is rate limiting and why does it matter?

Rate limiting restricts the number of requests a client can make in a time window. It protects the API provider from abuse and ensures fair usage. Clients should implement exponential backoff and respect provided retry headers.

Can APIs change without notice?

APIs can evolve, which is why versioning matters. Good providers document deprecation schedules and maintain backward-compatible versions. Contract testing and version pinning help clients avoid disruptions.

How do I secure API keys and secrets?

Never hard-code secrets in client-side code. Store keys in secure vaults, use environment variables for servers, restrict keys by origin/IP, and rotate keys on a regular schedule.

What formats do APIs typically use for data?

JSON is the dominant format due to readability and language support. XML remains in some legacy systems. Binary formats like Protocol Buffers are used where performance and compact size are priorities.

How do APIs enable AI and automation?

APIs expose data and model capabilities that AI agents can call for retrieval, scoring, and orchestration. Combining data APIs with model APIs allows automated workflows that augment research and decision-support processes.

Disclaimer

This article is for informational and educational purposes only. It does not constitute professional, legal, or financial advice. Evaluate APIs and tools based on your own technical, legal, and operational requirements before integrating them into production systems.

Research

APIs Explained: A Practical Guide for Developers

Token Metrics Team
5
MIN

APIs power much of the digital world but the term can feel abstract to newcomers. Whether you are building a web app, integrating an AI model, or pulling market data for research, understanding what an API is and how to evaluate one speeds development and improves reliability. This guide breaks down core concepts, common patterns, and practical steps to choose and use APIs effectively—without assuming prior expertise.

How an API Works: The Basics

An API (Application Programming Interface) is a defined set of rules and protocols that lets one software program request services or data from another. At a high level, an API specifies:

  • Endpoints: named URLs or addresses where requests are sent.
  • Methods: actions you can perform (for web APIs, common HTTP methods are GET, POST, PUT, DELETE).
  • Parameters and payloads: the inputs required or optional for a request.
  • Responses and status codes: how the server returns data and signals success or error.

Think of an API as a waitstaff in a restaurant: you (the client) place an order (request) using a menu (API documentation), and the kitchen (server) returns a dish (response). The menu defines what is possible and how to order it.

Key API Architectures and Types

APIs come in different styles depending on design goals and constraints:

  • REST (Representational State Transfer): The most common web API pattern, using HTTP verbs and resource-oriented URLs. REST emphasizes stateless communication and cacheable responses.
  • GraphQL: A query language that allows clients to request exactly the data they need in a single request, reducing over- and under-fetching.
  • gRPC: A high-performance RPC framework using Protocol Buffers, suited for low-latency service-to-service calls.
  • Webhooks: Server-to-client callbacks that push data to a consumer when events happen, rather than requiring constant polling.
  • Library/SDK APIs: Language-specific interfaces bundled as packages that abstract network details for developers.

Each type has trade-offs: REST is simple and widely compatible, GraphQL is flexible for variable payloads, and gRPC is optimized for performance between services.

Real-World Uses: Crypto, AI, and Beyond

APIs are central to modern crypto and AI stacks. In crypto, APIs provide access to market prices, on-chain data, wallet balances, and transaction histories. In AI, APIs expose model inference endpoints, allowing applications to send prompts and receive processed outputs without hosting models locally.

When connecting these domains—such as feeding on-chain data into an AI research pipeline—developers use layered APIs: one service to fetch reliable market or chain data, another to run models or scoring logic. For example, research platforms and data providers expose standardized endpoints so teams can automate backtesting, signal generation, and analytics workflows.

For neutral examples of an analytics provider in the crypto space, see Token Metrics, which demonstrates how specialized APIs and models can structure insights for research use cases.

How to Evaluate and Use an API: Practical Checklist

Choosing and integrating an API is a mix of technical evaluation and operational planning. Use this checklist:

  1. Documentation quality: Clear, example-driven docs accelerate integration and reduce errors.
  2. Rate limits and pricing: Understand throughput limits, cost per request, and billing models to avoid surprises.
  3. Data consistency and latency: For real-time needs, measure update frequency and response times.
  4. Authentication and security: Prefer APIs that use robust auth (OAuth, API keys with scoped permissions) and TLS encryption.
  5. Error handling and retries: Check how errors are communicated and design idempotent requests or backoff strategies.
  6. SDKs and language support: Availability of client libraries can shorten development time, but inspect their maintenance status.
  7. Operational SLAs and reliability: For production systems, review uptime guarantees and incident history if available.

Applying this framework helps teams decide between alternatives (self-hosting vs managed, REST vs GraphQL) based on their latency, cost, and control needs.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common Questions About APIs

What is the difference between an API and an SDK?

An API is a set of rules for interacting with a service, typically over a network. An SDK (Software Development Kit) is a package that may include APIs, helper libraries, and tools to make integrating those APIs easier in a specific programming language.

How do REST and GraphQL compare for client apps?

REST maps resources to endpoints and is simple to cache and reason about. GraphQL lets clients request only needed fields and combine multiple resources in one query, which can reduce round trips but may add server-side complexity.

Are public APIs safe to use for sensitive data?

Public APIs can be secure if they implement proper authentication, encryption, and access controls. Avoid sending sensitive secrets through unencrypted channels and use scoped credentials and least-privilege principles.

How do rate limits affect application design?

Rate limits cap how many requests a client can make in a time window. Design strategies include batching requests, caching responses, exponential backoff on errors, and choosing higher-tier plans if sustained throughput is required.

Can I combine multiple APIs in a single workflow?

Yes. Orchestration patterns let you fetch data from one API, transform it, and pass it to another (for example, pulling market data into an AI inference pipeline). Maintain clear error handling and data validation between steps.

How should I test an API integration?

Use sandbox or staging environments when possible, write automated tests for expected responses and error states, monitor real-world requests, and include assertions for schema and performance thresholds.

What are the typical authentication methods?

Common methods include API keys, OAuth 2.0 tokens, and mutual TLS. Select a method that balances ease of use and security for your application's context.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or professional advice. Evaluate APIs and tools independently, review provider terms, and consider operational and security requirements before integration.

Research

APIs Explained: How They Power Modern Apps

Token Metrics Team
5
MIN

APIs (Application Programming Interfaces) are the invisible connectors that let software systems talk to each other. Whether you open a weather app, embed a payment form, or fetch crypto market data, APIs are doing the behind-the-scenes work. This guide explains what an API is, how APIs function, common types, practical use cases, and how to evaluate them securely and effectively.

What is an API?

An API is a defined set of rules and protocols that allows one software component to request services or data from another. Think of an API as a waiter in a restaurant: you (the client) request a dish, the waiter (the API) passes the order to the kitchen (the server), and then returns the prepared meal. APIs standardize interactions so developers can integrate external functionality without understanding internal implementation details.

How APIs Work: Basic Mechanics

At a technical level, most modern APIs use web protocols over HTTP/HTTPS. A client sends a request (GET, POST, PUT, DELETE) to a defined endpoint URL. The server processes the request, optionally interacts with databases or other services, and returns a response, often in JSON or XML format. Key components:

  • Endpoint: The URL where the API listens for requests.
  • Method: Defines the action (e.g., GET to read, POST to create).
  • Headers: Metadata such as authentication tokens and content type.
  • Payload: Data sent to the server (for POST/PUT).
  • Response: Data returned by the server, with status codes like 200 (OK) or 404 (Not Found).

Types of APIs You’ll Encounter

APIs come in several architectural styles and transport patterns. Understanding differences helps pick the right integration model.

  • REST APIs: Representational State Transfer is the most common style. REST uses standard HTTP methods and stateless requests, typically with JSON payloads. It’s simple and broadly supported.
  • GraphQL: A query language that lets clients request exactly the fields they need. Useful for complex data models and reducing over-fetching.
  • WebSocket APIs: Provide persistent two-way communication, enabling low-latency streaming—useful for live market feeds or chat applications.
  • gRPC: A high-performance, binary RPC framework well suited for microservices and internal communication.
  • Third-party and SDK APIs: Many platforms expose endpoints plus language-specific SDKs to simplify integration.

APIs in Crypto and AI: Practical Use Cases

In crypto and AI contexts, APIs are central to tooling and research workflows:

  • Market data: Price, volume, order book snapshots and historical candles from exchanges or aggregators via REST or WebSocket.
  • On-chain data: Blockchain explorers expose endpoints to query transactions, addresses, and contract state.
  • Trading execution: Exchanges provide authenticated endpoints to place orders and manage positions.
  • AI model inference: ML providers offer APIs to run models or pipelines without exposing underlying infrastructure.

AI-driven research platforms and analytics services can combine multiple API feeds to produce indicators, signals, or summaries. Platforms like Token Metrics illustrate how aggregated datasets and models can be exposed via APIs to power decision-support tools.

Evaluating and Using APIs: A Practical Framework

Before integrating an API, apply a simple due-diligence framework:

  1. Documentation quality: Clear, versioned docs and examples reduce integration time and prevent unexpected behavior.
  2. Latency & throughput: Measure response times and rate limits to ensure they meet your application’s needs.
  3. Data coverage & freshness: Verify supported assets, historical depth, and update frequency—especially for time-sensitive use cases.
  4. Authentication & permissions: Check available auth methods (API keys, OAuth) and least-privilege controls.
  5. Reliability & SLAs: Look for uptime guarantees, status pages, and error handling patterns.
  6. Cost model: Understand free tiers, rate-limited endpoints, and pricing for higher throughput.

Security Best Practices for API Integrations

APIs introduce attack surfaces. Adopt defensive measures:

  • Use HTTPS and verify certificates to prevent man-in-the-middle attacks.
  • Store API keys securely (environment variables, secrets managers) and rotate them periodically.
  • Implement rate limit handling and exponential backoff to avoid cascading failures.
  • Limit permissions—use API keys scoped to necessary endpoints only.
  • Monitor logs and set alerts for unusual patterns like spikes in failed requests.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

Q: What is the simplest way to describe an API?
A: An API is an interface that defines how software components communicate—standardized requests and responses that let systems share data and functionality.

FAQ: How do API types differ?

Q: When should I use REST vs WebSocket or GraphQL?
A: REST is suitable for standard CRUD operations. WebSocket is appropriate for real-time bidirectional needs like live feeds. GraphQL is useful when clients need flexible queries to minimize data transfer.

FAQ: Are APIs secure to use?

Q: What are common API security concerns?
A: Major concerns include credential leakage, insufficient authorization, unencrypted transport, and abuse due to inadequate rate limiting. Following best practices reduces these risks.

FAQ: Can I build production apps with free APIs?

Q: Are free APIs viable for production?
A: Free tiers can be useful for prototypes and low-traffic apps, but evaluate limits, reliability, and support before relying on them for critical production workloads.

FAQ: How to choose the best API for my project?

Q: What factors matter most when selecting an API?
A: Prioritize data relevance, latency, reliability, documentation quality, security controls, and cost. Prototype early to validate assumptions about performance and coverage.

Disclaimer

This article is educational and informational only. It does not provide financial, legal, or investment advice. Evaluate tools and services independently and consult professionals where appropriate.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products