Crypto Basics

What is Polygon (MATIC) - How it Works, Benefits and Use Cases

Learn everything about Polygon (MATIC) crypto including its benefits and use cases.
Token Metrics Team
7 minutes
MIN

Polygon (formerly known as Matic Network) is a protocol for building and connecting Ethereum-compatible blockchain networks. It is designed to provide faster and cheaper transactions on the Ethereum network by using side chains and an adapted version of the Plasma framework.

It also offers a wide range of:

  • Smart contract solutions 
  • Secure identity solutions, and 
  • Wallet solutions. 

History of Polygon (MATIC) Crypto

The history of Polygon Matic dates back to 2017 when the project was founded by Jaynti Kanani and Sandeep Nailwal. In 2021, the project took up a rebranding and went from Matic Network to Polygon. This was done in the light of reflecting a broader focus on providing infrastructure for a wide range of blockchain use cases.   

With Polygon MATIC, users can easily create and manage their own decentralized applications, securely store and transfer assets, and even trade digital assets. With its powerful features and benefits, Polygon MATIC can be a great tool for you to leverage the power of the blockchain. Find out how it can benefit you in the best ways possible below.

Benefits of Polygon

Polygon MATIC has several benefits that make it a great blockchain solution. Here are a few of its top benefits that you need to be aware of: 

  • Scalability - Polygon MATIC has high scalability and can support millions of users and transactions. It can also scale at a very low cost. This means that it can handle high transaction volumes and can support a large user base.
  • Security - Polygon MATIC is a secure platform with state-of-the-art security features. You can easily secure your data and transactions on the platform through the use of the platform’s security features. 
  • Wide range of services and tools - Polygon MATIC offers a wide range of services and tools that can benefit different types of users. Whether you are a developer, an individual, or a business, Polygon MATIC can help you with your decentralized applications and smart contracts.
  • Cost-effective and scalable solutions - With Polygon MATIC, you can easily and cost-effectively deploy various decentralized applications. It also offers scalable solutions that can grow and evolve with your business.

Polygon Use Cases

  • E-commerce and Online Retail - The Polygon MATIC blockchain can help improve e-commerce and online retail. This is because distributed ledger technology can significantly reduce the cost of transactions and make it easier for businesses to manage their supply chain. 
  • Supply chain management - The Polygon MATIC blockchain can also help in supply chain management. It can help track shipments and provide transparency and security across the supply chain.
  • Gaming - The Polygon MATIC blockchain can help improve gaming through tokenization. It can also help gamers exchange their digital assets.
  • Healthcare - The Polygon MATIC blockchain can help in healthcare by enabling secure and immutable record storage. It can also help in improving the efficiency of health-related apps and services.
  • ICO and Crowdfunding - The Polygon MATIC blockchain can help improve the ICO and crowdfunding experience. It can also help in improving the tokenization process and provide transparency.

Polygon Security Features

The Polygon MATIC blockchain is a secure and reliable blockchain solution. It uses a distributed ledger technology that is decentralized and peer-to-peer. This means that there is no single point of failure and it is not controlled by a single entity. This makes it secure and reliable. When it comes to security, the Polygon MATIC blockchain has many features. 

Some of these features are discussed below: 

  • Advanced consensus algorithms - The Polygon MATIC blockchain uses advanced consensus algorithms to verify transactions. This makes it secure and reliable. These algorithms include PBFT (Practical Byzantine Fault Tolerance), VRF (Variable Resonance), and EOS consensus. 
  • Strong authentication method - The Polygon MATIC blockchain has a strong authentication method that makes it difficult to hack or spoof. Even if someone is able to hack into the network, they can only hack a single node and not the entire network. 
  • Encrypted communication - The communication between the nodes on the Polygon MATIC blockchain is encrypted. This makes it difficult to hack or spoof.

Polygon (MATIC) Cost

The cost of using Polygon MATIC will depend on your usage. The more you use the platform, the higher the cost will be. You can also choose to outsource your needs and use Polygon MATIC as a service. 

Here are a few things you should know about the Polygon MATIC cost: 

  • The cost of using the Polygon MATIC blockchain platform for deploying DApps is $1499.
  • The cost of deploying a smart contract is $599. 
  • The cost of deploying wallets is $499. 
  • The cost of deploying an identity and security solution is $1199. 
  • The cost of deploying a trading platform is $1499.

Note: These prices may have changed due to change in MATIC's price.

These are the costs of using Polygon MATIC as a service. For more details on the cost, visit their website.

Polygon Crypto Alternatives

  • Ethereum - Ethereum is a popular blockchain platform used for developing decentralized applications and smart contracts. It is also used for ICOs and crowdfunding. 
  • Hyperledger - Hyperledger is another popular blockchain platform used for developing decentralized applications and smart contracts.
  • EOS - EOS is also a blockchain platform used for developing decentralized applications and smart contracts. 
  • Cardano - Cardano is a scalable blockchain platform that can support large volumes of transactions.

Is Polygon (MATIC) a Good Investment?

As for whether Polygon is a good investment, it's important to remember that the cryptocurrency market is highly volatile and that investing in any cryptocurrency carries a high level of risk. It's important to do your own research and carefully consider your investment options before making any decisions.

How to Buy Polygon (MATIC) Crypto?

If you're interested in buying MATIC, you can do so on a number of cryptocurrency exchanges that offer it. Some popular options include Binance, Coinbase, and Kraken. Be sure to carefully compare the fees and features of different exchanges before choosing one to use. Below are the 5 simple steps that you can follow to get your own Polygon:

  1. Choose a Crypto Exchange Broker 
  2. Create your account (Crypto Wallet)
  3. Link your Bank Account to your wallet 
  4. Pick the Cryptocurrency you want to invest in
  5. Choose your storage method

Great, but, do we know where Polygon is headed in the future?  

Future of Polygon (MATIC)

It's difficult to predict the future of Polygon with certainty, but the project has gained significant traction in the cryptocurrency community and has the potential to continue growing and gaining adoption in the future. However, as with any investment, it's important to be aware of the risks and to carefully consider your options before making any decisions.

The Bottom Line

Token Metrics is happy to provide you with AI-driven market updates and information regarding the crypto world but it is you who needs to be the decision maker when it comes to your crypto investments. 

Polygon (formerly Matic Network) offers innovative technology that could potentially democratize blockchain through the creation of customized, interoperable networks. While it's difficult to predict the future performance of MATIC, the project has a strong team and partnerships with well-known companies.

However, as with any cryptocurrency investment, there is a high level of risk and it's important to carefully consider all options before making any decisions. Blockchain technology is still in its early stages and it may be more profitable to invest in the technology itself rather than just the hype. It's also important to exercise caution when building a cryptocurrency portfolio.

Disclaimer: The information provided on this website does not constitute  investment/trading/financial advice and you should not treat any of the website’s content as such. Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.  We only offer comprehensive information which may change according to time. 

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: What an API Does and Why It Matters

Token Metrics Team
5
MIN

APIs power much of the modern software economy, but the term can feel abstract. This guide breaks down what an API is, how APIs work in practice, common types you’ll encounter, and practical frameworks for evaluating or integrating an API into your projects.

What is an API? A concise definition

An API, or application programming interface, is a set of rules and protocols that lets different software components communicate. Think of an API as a contract: one system exposes specific operations (endpoints) and data structures, and other systems call those operations to request services or information. The API hides internal complexity and provides a predictable interface for developers.

At its core, an API specifies:

  • The actions available (e.g., read data, submit a transaction, trigger a process).
  • The input and output formats (often JSON or XML for web APIs).
  • The transport protocol and authentication methods (HTTP, gRPC, OAuth, API keys).

How APIs work — protocols, endpoints, and flows

APIs can be implemented with different technologies, but common patterns include REST, GraphQL, and RPC (gRPC). A typical web API flow involves a client sending an HTTP request to an endpoint URL, the server processing that request, and then returning a structured response. Key components to understand:

  • Endpoint: A specific URL that performs an action or returns data.
  • Method: HTTP verbs such as GET, POST, PUT, DELETE indicate intent.
  • Payload: The data sent with requests (body) or returned (response).
  • Authentication: Controls access — API keys, OAuth tokens, or signed requests.
  • Rate limits: Servers often limit calls per minute to protect resources.

Understanding these pieces helps you design predictable integrations and debug issues like unexpected latencies or malformed responses.

Common API types and real-world examples

Different APIs serve different needs. Here are common categories and examples:

  • Public / Open APIs: Accessible to external developers. Examples: public weather APIs, mapping APIs.
  • Private APIs: Used internally within an organization to modularize services.
  • Partner APIs: Shared with specific partners under contract.
  • Web APIs (REST/GraphQL): Most common for web and mobile apps. REST APIs expose resources via endpoints; GraphQL exposes a flexible query schema.
  • Streaming / WebSocket APIs: Real-time data feeds such as live market prices or chat messages.

Practical examples: integrating a payment processor via its REST API, pulling exchange rates from a crypto API for display, or using a mapping API to embed location features.

Evaluating and integrating APIs: a practical checklist

When researching or choosing an API, apply a short framework: compatibility, cost, reliability, and security (CCRS).

  1. Compatibility: Does the API support the required protocols and data formats? Is client SDK support available for your stack?
  2. Cost: Understand pricing tiers, rate limits, and overage fees. Check if a free tier or trial exists for testing.
  3. Reliability: Review historical uptime, SLAs, and status page transparency. Look for rate limit details and failover options.
  4. Security: Evaluate authentication models, data encryption, and compliance notes (e.g., GDPR, SOC2 where relevant).

Additional integration tips: use sandbox environments for testing, log API requests/responses for troubleshooting, and build retry/backoff logic to handle transient failures.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common questions about APIs

What is the difference between REST and GraphQL?

REST defines endpoints that return fixed data structures, which can result in over- or under-fetching. GraphQL exposes a query language where clients request exactly the fields they need, reducing extra data transfer but adding schema complexity on the server side.

How do API keys differ from OAuth tokens?

API keys are simple credentials often used for server-to-server authentication or identifying an app. OAuth is an authorization framework that enables delegated access (user consents) and typically issues short-lived access tokens with refresh mechanics for better security.

Are APIs secure by default?

No. Security depends on implementation: use HTTPS, validate and sanitize inputs, enforce proper authentication/authorization, rotate keys periodically, and monitor for unusual activity. Treat APIs as a potential attack surface and apply standard security controls.

What are typical API rate limits and how should I handle them?

Rate limits vary widely: some services allow thousands of requests per minute, others are stricter. Implement client-side throttling, exponential backoff on retries, and caching where appropriate to reduce request volume and avoid hitting limits.

How can AI and analytics help when working with APIs?

AI-driven tools can help parse API responses, detect anomalies, prioritize endpoints by value, and synthesize insights from multiple data feeds. Platforms such as Token Metrics use AI to aggregate on-chain and market data, which can speed evaluation when integrating crypto-related APIs.

What are common pitfalls when building with third-party APIs?

Common issues include unexpected breaking changes, insufficient error handling, underestimating rate limits, hidden costs, and lack of observability. Mitigate these by reading docs thoroughly, using versioned endpoints, and automating monitoring and alerts.

Disclaimer: This article is for educational and informational purposes only. It explains technical concepts and practical frameworks related to APIs and does not provide investment, legal, or professional advice. Evaluate services independently and consult appropriate experts for decision-making.

Research

APIs Explained: How They Power Web & Crypto Apps

Token Metrics Team
5
MIN

APIs — short for Application Programming Interfaces — are the invisible wiring that connects software, data, and services. From mobile apps fetching weather to crypto platforms streaming on-chain data, APIs turn discrete systems into interoperable ecosystems. This guide explains what an API is, how it works, common types and protocols, practical evaluation criteria, and how AI-driven tools can help you research and integrate APIs safely and effectively.

What is an API? A practical definition

An API is a set of rules and conventions that lets one software program request services or data from another. Think of it as a contract: the provider exposes endpoints and documented inputs/outputs, and the consumer sends requests and receives structured responses. APIs abstract complexity, enforce consistency, and enable modular development.

At a high level, an API specifies:

  • Available operations (endpoints) and the expected parameters
  • Data formats for requests and responses (JSON, XML, etc.)
  • Authentication and authorization methods (API keys, OAuth)
  • Rate limits, error handling, and versioning policies

How APIs work: endpoints, methods and data flow

Most modern web APIs operate over HTTP. A consumer makes a request to a URL (endpoint) using an HTTP method such as GET, POST, PUT, or DELETE. The server processes the request and returns a response payload plus status codes that signal success or error.

Core concepts:

  • Endpoint: A URI representing a resource or action (e.g., /prices/bitcoin).
  • Request: Includes method, headers (authentication, content-type), query or body parameters.
  • Response: Status code (200, 404, 500) and structured data (commonly JSON).
  • Idempotency: Whether repeated requests have the same effect (important for retries).

Understanding these mechanics helps you design integrations, debug issues, and interpret API documentation efficiently.

Common API types and protocols

Not all APIs are built the same. Choosing the right style depends on use case, performance needs, and client ecosystem.

  • REST APIs: Resource-based, conventionally using HTTP verbs and stateless interactions. Popular due to simplicity and broad tooling support.
  • GraphQL: Query language that lets clients request exactly the fields they need. Useful when clients need flexible, efficient queries across related data.
  • WebSockets: Persistent, bidirectional socket connections ideal for real-time updates (chat, market feeds).
  • gRPC: High-performance RPC framework using Protocol Buffers—good for microservices and low-latency systems.
  • SOAP: Legacy, XML-based protocol with strict standards—still used in some enterprise environments.

Each approach has trade-offs: REST is simple but may require multiple round-trips, GraphQL reduces over-fetching but adds server complexity, and WebSockets enable streaming but require connection management.

Security, authentication, and operational governance

APIs often provide access to valuable data and functionality, so security and governance are paramount. Key considerations include:

  • Authentication: API keys, OAuth 2.0, JWTs. Choose methods that match risk and user flows.
  • Authorization: Enforce least privilege—limit which endpoints and operations each credential can access.
  • Rate limits and quotas: Protect infrastructure from overload and abusive usage.
  • Encryption & TLS: Always use HTTPS for data in transit; consider encryption at rest for sensitive payloads.
  • Auditing & monitoring: Log access patterns, errors, and anomalies for forensic and operational visibility.
  • Versioning: Maintain backward compatibility with explicit versioning strategies to avoid breaking consumers.

Operational SLAs, clear error codes, and robust documentation reduce integration friction and surface potential risks early.

How to evaluate and integrate an API: a practical checklist

When assessing a third-party API, use a structured framework:

  1. Documentation quality: Are endpoints, schemas, examples, and rate limits clearly described?
  2. Sandbox & test keys: Is there a sandbox for dry runs without impacting production data?
  3. Latency & throughput: Does the API meet your performance requirements under expected load?
  4. Reliability: Check status pages, historical uptime, and incident response practices.
  5. Cost model: Understand pricing tiers, overage fees, and whether free tiers suffice for initial development.
  6. Security posture: What authentication methods, encryption, and compliance certifications are provided?

For proofs of concept, use API testing tools (Postman, curl) and programmatic SDKs where available. Track metrics during integration and plan for retries, backoff strategies, and graceful degradation.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API (Application Programming Interface) is a defined set of rules and endpoints that allows one software system to request data or services from another. It standardizes how data is exchanged and operations are invoked between systems.

FAQ: REST vs GraphQL — when to use each?

REST is simple and widely supported, ideal for straightforward resource-based access. GraphQL excels when clients need flexible, aggregated queries and want to reduce over-fetching. Choice depends on client needs and server complexity tolerance.

FAQ: How do APIs stay secure?

Security relies on strong authentication (API keys, OAuth), encryption (HTTPS/TLS), authorization controls, rate limiting, input validation, and monitoring. Regular audits and threat modeling help identify and mitigate risks.

FAQ: What are common API use cases?

APIs power mobile and web apps, payment processing, identity providers, data feeds (market, weather, maps), IoT device control, and integrations between enterprise systems or blockchain nodes.

FAQ: How do I test an API safely?

Use sandbox environments and test keys where available. Employ tools like Postman for exploratory testing, write automated integration tests, validate edge cases and error handling, and verify rate-limit behaviors under load.

Disclaimer

This article is for educational and informational purposes only. It explains technical concepts and evaluation frameworks but does not constitute professional, legal, or investment advice. Always perform your own due diligence when selecting or integrating APIs.

Research

APIs Explained: How They Work and Why They Matter

Token Metrics Team
5
MIN

APIs sit at the center of modern software. Whether a mobile app fetches weather data, a dashboard queries on-chain activity, or an AI agent calls a language model, an API is the bridge that enables machines to communicate. This article breaks down what an API is, how it works, common types and use cases, and practical steps to evaluate and use one safely and effectively.

What Is an API?

An API (Application Programming Interface) is a defined set of rules and protocols that allow software components to communicate. It specifies the methods available, the expected inputs and outputs, and the underlying conventions for transport and encoding. In web development, APIs typically include endpoints you can call over HTTP, request and response formats (commonly JSON), and authentication rules.

Think of an API as a contract: the provider promises certain functionality (data, computations, actions) and the consumer calls endpoints that adhere to that contract. Examples include a weather API returning forecasts, a payment API creating transactions, or a blockchain data API exposing balances and transactions.

How APIs Work: The Technical Overview

At a technical level, most web APIs follow simple request/response patterns:

  • Client issues an HTTP request to an endpoint (URL).
  • Request includes a method (GET, POST, PUT, DELETE), headers, authentication tokens, and optionally a body.
  • Server processes the request and returns a response with a status code and a body (often JSON).

Key concepts to understand:

  • HTTP methods: indicate intent—GET to read, POST to create, PUT/PATCH to update, DELETE to remove.
  • Authentication: can use API keys, OAuth tokens, JWTs, or mutual TLS. Authentication defines access and identity.
  • Rate limits: providers throttle calls per unit time to protect infrastructure.
  • Versioning: APIs use versioned endpoints (v1, v2) so changes don’t break consumers.
  • Webhooks: push-style endpoints that let providers send real-time events to a consumer URL.

Types of APIs and Common Use Cases

APIs come in many shapes tailored to different needs:

  • REST APIs: resource-oriented, use HTTP verbs and stateless requests. Widely used for web services.
  • GraphQL: provides a flexible query layer so clients request exactly the fields they need.
  • gRPC: high-performance, binary protocol ideal for internal microservices.
  • WebSocket/APIs for streaming: support continuous two-way communication for real-time data.

Use cases span industries: integrating payment gateways, building mobile backends, connecting to cloud services, feeding analytics dashboards, and powering crypto tools that stream price, order book, and on-chain data. AI systems also consume APIs—calling models for text generation, embeddings, or specialized analytics.

How to Build, Evaluate and Use an API

Whether you are a developer integrating an API or evaluating a provider, use a systematic approach:

  1. Read the docs: good documentation should include endpoints, example requests, error codes, SDKs, and usage limits.
  2. Test quickly: use tools like curl or Postman to make basic calls and inspect responses and headers.
  3. Check authentication and permissions: ensure tokens are scoped correctly and follow least-privilege principles.
  4. Evaluate performance and reliability: review SLA information, latency benchmarks, and historical uptime if available.
  5. Understand pricing and quotas: map expected usage to cost tiers and rate-limits to avoid surprises.
  6. Security review: watch for sensitive data exposure, enforce transport encryption (HTTPS), and rotate keys regularly.

For domain-specific APIs, such as those powering crypto analytics or trading signals, additional considerations include data freshness, source transparency (e.g., direct node reads vs. indexers), and on-chain coverage. Tools that combine data feeds with AI analytics can speed research—one example of a platform in that space is Token Metrics, which layers model-driven insights on top of market and on-chain inputs.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What Is an API?

Q: What is the difference between an API and an SDK?

A: An API is a set of rules for communicating with a service. An SDK (Software Development Kit) is a bundled set of tools, libraries, and often an API wrapper that helps developers integrate with that service more easily in a specific programming language.

FAQ — REST vs GraphQL: Which to use?

Q: When is GraphQL preferable to REST?

A: GraphQL is useful when clients need flexible queries and want to avoid over- or under-fetching data. REST remains a strong default for simple, cache-friendly resource-based services and broad interoperability.

FAQ — API Security

Q: What are basic security best practices for APIs?

A: Require HTTPS, enforce strong authentication (OAuth, signed tokens), validate and sanitize inputs, implement rate limits, use scopes for permissions, and log access for auditability. Rotate credentials and monitor anomalous usage.

FAQ — Using Crypto APIs

Q: How do I get started with crypto or market data APIs?

A: Begin by identifying the data you need (prices, order books, on-chain events), locate providers with clear documentation and sample code, test endpoints in a sandbox, and account for latency and historical coverage. Combining raw feeds with analytics tools can help accelerate research.

FAQ — API Keys and Rate Limits

Q: What is an API key and why are rate limits important?

A: An API key is a token that identifies and authenticates a client. Rate limits prevent abuse and keep shared services stable—exceeding limits typically returns 429 errors and may incur additional costs or temporary blocks.

Disclaimer

This content is for informational and educational purposes only. It does not constitute investment, legal, tax, or professional advice. Evaluate tools, APIs, and services according to your own research and risk tolerance.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products