Crypto Basics

What is Shiba Inu (SHIB) Coin and is it a Good Investment?

Learn everything about Shiba Inu, its history, benefits and top features in this descriptive guide.
Token Metrics Team
6 minutes
MIN

Shiba Inu (SHIB) is an Ethereum-based altcoin in the world of cryptocurrencies and has recently gained attention. It is a meme-inspired project based on the "Dogecoin" meme featuring the Shiba Inu dog as its mascot.

SHIB has been launched as a decentralized cryptocurrency built on the Ethereum blockchain. It is a deflationary token designed to be used as a medium of exchange and store of value. SHIB has a total supply of 1,000,000,000,000 tokens and is currently being traded on major exchanges such as Binance, OKEx, and Huobi.

SHIB has seen a huge surge in price and popularity since its launch in May 2021 and has become one of the most talked about cryptocurrencies in the market, with arguably the largest community than Bitcoin.

In this article, we will look at Shiba Inu coin, its features, and its potential for investors.

History Of Shiba Inu

Originally, Shiba Inu was launched as a direct competitor of Dogecoin as a joke. Both Shiba Inu and Dogecoin come under the category of meme coins. The meme coin originated from a 2013 meme featuring the Japanese breed dog of the same name. What began as a community-driven token representing a meme became a multi-billion dollar crypto project.

In 2020, an anonymous person or group called "Ryoshi” created a token named after the animal to continue the series of dog meme cryptocurrencies. After gaining full traction in 2021, it was declared the official rival of Dogecoin, leading Floki Inu, Akita Inu, and Dogelon Mars.

From its creation to up until October 2021, the SHIB coin raised from a low of $0.000000000056 to an all-time high of $0.00008616, rising an incredible 150 million percent.

Also, the generous donation of $1 billion in SHIB was a crucial moment in the coin's history that Ethereum's lead engineer and co-founder Vitalik Buterin granted to help fight the devastating spread of COVID-19 in India, making it the largest donation ever given in history. 

The Limelight Of SHIB

Having the support of Elon Musk is like getting the blue tick certification. Elon and his tweets have an extreme market sentiment influence which can make or break the deal for a cryptocurrency.

Shiba Inu is one such outrageously positive outcome of his tweets. When he first posted the Shiba Inu dog image, it gave the first major push to the SHIB token, powering it up by nearly 300%.

Some of the SHIB supporters believe it to be the "Dogecoin-Killer," too.

Top Features of SHIB

SHIB is a deflationary token designed to be used as a medium of exchange and store of value. It is a privacy-enabled decentralized peer-to-peer blockchain network. 

Three types of tokens affect the SHIB ecosystem:

  1. Shiba Inu (SHIB): This is the predominant currency of this project, which sums up to a total supply of 1 quadrillion tokens when it was launched. It can be exchanged with any of the ERC20 tokens of the Ethereum ecosystem.
  2. Leash (LEASH): It is the second token in the Shiba Inu ecosystem, with a total supply of only 107,646 tokens, and was initially a rebase token tied to the price of Dogecoin. A rebase token has a flexible monetary base in that its supply is set to increase or decrease to adjust the token price without affecting the value of anyone's share of coins. The rebase function was later switched off for good, and the token returned to its ERC20 design. 
  3. Bone (BONE): With a total supply of 250,000,000 tokens, only available on ShibaSwap, BONE is intended to fill up the circulation supply gap between the other two tokens. It is a kind of governance token that will allow the ShibArmy to vote on proposals. The more BONE users possess, the more weight their vote will carry in the decision process of future projects.

What are the Benefits of Investing in SHIB?

A Meme-Inspired Cryptocurrency - The core feature of SHIB is that it is a meme-inspired cryptocurrency launched on the Ethereum blockchain. It is a deflationary token designed to be used as a medium of exchange and store of value.

A Lower Price - SHIB is a low-priced token worth in pennies, which is easier for most people to invest in compared to something like Bitcoin.‍

A Decentralized Network - SHIB aims to be a decentralized network to keep on running, without any reasons for halting.‍

An Easy-To-Use Wallet - The SHIB blockchain network has been designed to be easy to use. This makes it a preferred option for most users. Three different wallets are available for use: Android, iOS, and Web.

How to Purchase SHIB Token?

SHIB and LEASH can be bought and sold on ShibaSwap, Uniswap, and a growing number of centralized exchanges (CEXs). On September 16, 2021, Coinbase listed SHIB, joining popular CEXs like Binance, Huobi, and Kucoin in trading the token. 

However, Robinhood, a U.S. financial services platform, has yet to list SHIB due to concerns over its security, as stated by its CEO. In contrast, Robinhood's rival Public.com listed SHIB in October 2021.

Is SHIB Token a Good Investment in 2023?

Shiba Inu's growth largely depends on market sentiment. During extremely fearful times, Shiba Inu underperforms; however, during euphoric times, Shiba Inu has the potential to explode in popularity.

While you analyze Shiba Inu's market position, make it a point to distinguish between market capitalization and price. SHIB's low price can deceive new investors, causing them to inaccurately gauge SHIB's price potential. Market capitalization is usually calculated by multiplying the total circulating supply of coins by the current market price of a single coin, which is useful for determining growth potential. 

At the time of writing, SHIB's price is roughly $0.000012. Therefore, if SHIB were to reach $0.01, investors would experience a return of over 800x. However, more importantly, to reach $0.01, Shiba Inu would need to reach a whopping market value north of $5 trillion. This value is greater than the market value of Apple, Google, and Bitcoin combined. As a result, when making realistic price predictions, it's paramount to consider market capitalization.

SHIB Price and Market Capitalization

As of Feb 1st,2023, Shiba Inu is trading at $0.000012 USD. The current market capitalization of the SHIB token is over $6.70B. This makes SHIB rank 81st in terms of market capitalization among all cryptocurrencies.

The Bottom Line

The Shiba Inu developing team is quite secretive about the coin roadmap. Therefore, it's rather difficult to anticipate what's in the cards for the cryptocurrency in the near future.

The developers might decide to burn other coins to make SHIB more deflationary than it is now and help with a price appreciation. We recently learned that Shiba is preparing to enter the Metaverse and will be burning more SHIB soon, further reducing the total supply.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How They Work and Why They Matter

Token Metrics Team
5
MIN

APIs power modern software: they let apps talk to each other, enable mobile experiences, connect to cloud services, and feed AI agents. Understanding what an API is and how it operates helps product builders, researchers, and technical decision-makers evaluate integrations with clarity.

What is an API?

An API, or application programming interface, is a set of rules and contracts that defines how software components communicate. At its core an API exposes functionality or data so that another program can consume it without needing to understand internal implementation. Think of an API as a menu in a restaurant: you don’t need to know how the chef cooks — you just place an order and receive a result according to the menu’s options.

APIs come in many shapes: web APIs (HTTP-based), library or framework APIs (functions callable within code), and system APIs (operating system calls). In web and cloud contexts, developers most often work with REST, GraphQL, gRPC, and WebSocket APIs.

How APIs work: common patterns and protocols

At a technical level, an API defines the request and response pattern. For web APIs this typically involves:

  • Endpoint: a URL that represents a resource or action.
  • Method: an operation such as GET, POST, PUT, DELETE (for REST) or query/mutation in GraphQL.
  • Payload: the data sent with a request (JSON, XML, binary).
  • Response: the data returned, status codes, and error information.

APIs also incorporate metadata: authentication tokens, rate limits, and versioning headers. Protocol choice matters: REST is simple and widely supported; GraphQL offers flexible queries; gRPC is efficient for high-throughput, typed services; WebSockets suit bidirectional, low-latency streams. The right pattern depends on latency, payload size, and developer ergonomics.

API use cases: where APIs add value

APIs are the connective tissue across many domains. Typical use cases include:

  • Web and mobile apps: fetching user profiles, syncing data, and processing payments.
  • Microservices: internal services communicate via APIs to form scalable systems.
  • Data platforms: exposing analytical results, telemetry, and ETL endpoints.
  • AI and agents: models consume APIs for context, data enrichment, and action execution.
  • Crypto and on-chain tooling: price feeds, on-chain analytics, and wallet services often expose crypto APIs so applications can read ledger data and market signals.

These examples highlight how APIs abstract complexity and enable composability: a developer can integrate capabilities from third parties without rebuilding them.

Design and security: best practices to consider

Designing an API involves functionality, but security and reliability are equally important. Key practices include:

  • Authentication and authorization: use tokens, scopes, and role-based access control to limit what callers can do.
  • Input validation: validate and sanitize inputs to prevent injection and abuse.
  • Rate limiting and quotas: protect backends from spikes and enforce fair use.
  • Clear versioning: avoid breaking changes by introducing versioned endpoints or compatibility layers.
  • Observability: log requests, measure latency, and expose metrics to detect failures early.

Security hardening often includes transport encryption (TLS), secure key management, and routine audits. For APIs that touch financial or sensitive data, layered controls and monitoring are essential to reduce operational risk.

How to evaluate and choose an API

When comparing APIs, use a practical checklist:

  1. Documentation quality: clear examples and error descriptions reduce implementation friction.
  2. Latency and throughput: test typical response times and how the API behaves under load.
  3. Data freshness and coverage: confirm how often data updates and whether it covers required assets or regions.
  4. Security model: ensure authentication mechanisms and compliance posture meet your requirements.
  5. Cost and quotas: consider pricing tiers, rate limits, and overage behavior for production use.

For AI-driven workflows, examine whether the API supports batch access, streaming, and programmatic filtering so models can retrieve relevant context efficiently.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API is a defined interface that allows software components to communicate. It specifies how to request data or services and what responses to expect, enabling integration without exposing internal code.

FAQ: What are REST, GraphQL, and gRPC?

REST is a resource-oriented, HTTP-based approach. GraphQL lets clients request precisely the data they need via queries. gRPC uses binary protocols and strongly typed contracts for efficient inter-service communication—each fits different performance and flexibility needs.

FAQ: How do APIs handle authentication?

Common methods include API keys, OAuth 2.0 tokens, JWTs (JSON Web Tokens), and mutual TLS. Each balances security and developer convenience differently; choose based on threat model and integration scope.

FAQ: Can APIs be used for AI agents?

Yes. AI agents consume APIs for data enrichment, action execution, and orchestration. APIs that provide structured, low-latency data are particularly useful for agent workflows and real-time decision processes.

FAQ: What are common API failure modes?

Failures include rate-limit rejections, timeouts, partial data, authentication errors, and schema changes. Robust clients implement retries with backoff, graceful degradation, and schema validation to handle such scenarios.

FAQ: How should I test an API before integrating?

Perform functional tests, load tests, and end-to-end scenarios. Validate error handling, latency under expected traffic, and behavior at quota limits. Use sandbox keys when available to avoid impacting production systems.

Disclaimer

This article is for educational and informational purposes only and does not constitute financial, legal, or professional advice. Evaluate technologies and services in the context of your own requirements and constraints.

Research

What Is an API? A Practical Guide

Token Metrics Team
4
MIN

APIs power modern software, enabling apps to share data, automate workflows, and connect services. Whether you use a weather feed, social login, or a crypto data stream, understanding what an API is helps you design, evaluate, and integrate digital products more effectively.

What is an API?

An API, or application programming interface, is a defined set of rules that lets one software system communicate with another. At its simplest, an API specifies how requests are structured, which methods are available, and how responses are returned. Developers use APIs to access functionality or data without needing to know internal implementation details.

Think of an API as a contract: it tells you the inputs required, the outputs to expect, and any constraints or error cases. This separation of concerns enables modular development, third-party integrations, and scalable ecosystems.

How APIs work: components and protocols

Most modern APIs expose endpoints—URLs or functions—that accept requests and return responses. Key components include:

  • Endpoints: Specific URLs or methods that provide a capability or data set.
  • Methods: Actions such as GET, POST, PUT, DELETE in HTTP-based APIs.
  • Payloads: Structured request and response bodies (commonly JSON).
  • Authentication: Keys, tokens, or OAuth flows that control access.
  • Rate limits: Constraints on usage to protect service availability.

Different protocols influence API behavior. REST uses resource-oriented URLs and standard HTTP verbs; GraphQL offers flexible queries over a single endpoint; gRPC supports high-performance, binary-protocol calls suitable for microservices. Choosing a protocol depends on latency requirements, payload complexity, and developer experience.

Common API use cases: web, mobile, and crypto

APIs underpin many real-world scenarios:

  • Web and mobile apps: Fetching user data, processing payments, or embedding maps.
  • Microservices: Internal APIs let services communicate within distributed systems.
  • Third-party integrations: Social logins, analytics platforms, and CRM synchronization.
  • Data feeds and analytics: Market prices, news, and on-chain metrics delivered via APIs enable automated research pipelines.

In the crypto space, APIs expose on-chain data, aggregated price feeds, and derived indicators. Developers can combine multiple APIs to build dashboards, bots, or AI research agents. When evaluating crypto APIs, consider latency, historical coverage, and data provenance.

For example, research teams often use AI-driven platforms to enrich raw feeds with signals and insights. One such platform, Token Metrics, integrates data and models to support comparative analysis and idea generation.

Choosing and evaluating APIs: practical criteria

When selecting an API, use a structured evaluation framework:

  1. Functionality — Does the API provide required endpoints and historical coverage?
  2. Reliability — Look at uptime SLAs, error rates, and redundancy.
  3. Data quality — Verify schemas, sample payloads, and provenance.
  4. Performance — Measure latency and throughput relevant to your use case.
  5. Security and access control — Inspect auth models, encryption, and rate limits.
  6. Costs and licensing — Understand pricing tiers and any usage restrictions.
  7. Documentation and SDKs — Clear docs and client libraries speed integration.

Combine quantitative tests (latency, success rate) with qualitative checks (docs clarity, community support). For complex builds, sandbox environments and trial keys help validate assumptions before full integration.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API (application programming interface) is a specification that allows software systems to request and exchange data or trigger actions without exposing internal code. It defines endpoints, parameters, and response formats.

FAQ: How is a REST API different from GraphQL?

REST organizes interactions around resources and uses multiple endpoints; clients request predefined payloads. GraphQL exposes a single endpoint where clients define the shape of the response, reducing over- or under-fetching in many scenarios.

FAQ: What security measures should APIs use?

Common measures include HTTPS/TLS, API keys or OAuth tokens, rate limiting, input validation, and monitoring for unusual patterns. Secure defaults and least-privilege access reduce attack surface.

FAQ: Can I use public APIs for production applications?

Many public APIs are production-ready if they provide SLAs, reliable documentation, and appropriate rate limits. Validate through trials and consider failover strategies and caching for resilience.

FAQ: How do APIs support automation and AI?

APIs provide structured, machine-readable data and endpoints that automation tools and AI agents can call programmatically. Combining APIs with model inference enables workflows like signal generation, backtesting, and report automation.

FAQ: What are rate limits and why do they matter?

Rate limits control how many requests a client can make in a time window to ensure fair usage and protect service availability. Exceeding limits typically leads to temporary blocking or throttled responses.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or investment advice. Readers should perform their own research and consult appropriate professionals before making decisions.

Research

APIs Explained: What They Are and How They Work

Token Metrics Team
5
MIN

APIs power much of the software you use daily — from fetching weather data in a mobile app to connecting decentralized exchanges to analytics dashboards. If youve ever wondered what an API is, why developers rely on them, and how they shape the modern web and crypto ecosystems, this guide breaks down the core concepts, common patterns, and practical steps to evaluate and use APIs effectively.

What is an API?

An API (Application Programming Interface) is a set of rules and protocols that lets different software components communicate. At a high level, an API defines how a caller requests data or functionality and how the provider responds. APIs abstract implementation details so developers can use capabilities — like retrieving market prices or sending messages — without needing to understand the providers internals.

Think of an API as a contract: a client sends a request in a specified format, and the service returns structured responses. Contracts can include endpoints, expected parameters, authentication methods, rate limits, error codes, and data schemas.

How APIs Work — a Technical Overview

Most modern APIs use web protocols (HTTP/HTTPS) and standard formats such as JSON. A typical request cycle looks like this:

  1. Client constructs a request URL or payload, optionally including authentication credentials (API key, OAuth token).
  2. Client sends the request to an API endpoint using a method like GET, POST, PUT, or DELETE.
  3. Server validates the request, applies business logic, and returns a response with data or an error code.
  4. Client parses the response and integrates it into the application.

APIs can enforce rate limits, usage quotas, and schema validation. In production systems, observability (logging, traces, metrics) and secure transport (TLS) are standard to ensure reliability and confidentiality.

Types of APIs & Common Patterns

APIs come in several styles, each with trade-offs:

  • REST (Representational State Transfer): Resource-oriented, uses HTTP verbs and status codes; widely adopted and easy to cache.
  • GraphQL: Lets clients request exactly the fields they need; reduces over-fetching but increases server complexity.
  • gRPC / RPC: Binary protocol for high-performance communication, often used for internal microservices.
  • Webhooks: Server-initiated callbacks to notify clients of events, useful for real-time notifications.

In crypto and finance, youll see specialized APIs that provide order book data, historical trades, on-chain events, and wallet actions. Public APIs are accessible with minimal barriers, while private APIs require credentials and stricter access controls.

How to Evaluate and Use an API (Practical Steps)

Choosing and integrating an API involves technical, operational, and security considerations. A concise evaluation framework:

  1. Functionality: Does the API provide the endpoints and data formats you need? Review sample responses and SDKs.
  2. Performance & Reliability: Check latency, uptime SLA, and historical performance metrics if available.
  3. Security: Verify authentication schemes, encryption, data retention policies, and whether the provider supports IP allowlists or role-based access.
  4. Costs & Rate Limits: Understand free tier limits, pricing per request, and billing granularity to budget accordingly.
  5. Documentation & Support: High-quality docs, examples, and community support accelerate integration and troubleshooting.

When prototyping, use tools like Postman or curl to explore endpoints. Automate tests to validate responses and simulate rate limits. For production, incorporate retries with exponential backoff, circuit breakers, and monitoring to handle transient failures gracefully.

AI-driven research tools can speed analysis of API datasets by surfacing patterns and summarizing changes. For instance, applications that combine market or on-chain APIs with AI models can transform raw feeds into signals or structured insights. An example of a research platform often used for crypto analysis is Token Metrics, which demonstrates how analytics layers can complement API outputs without replacing rigorous technical validation.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API (Application Programming Interface) is a documented way for software components to request services or data from one another. In web contexts, APIs typically expose endpoints over HTTP that return structured data formats such as JSON.

FAQ: How do APIs stay secure?

Common security practices include using HTTPS/TLS, API keys or OAuth for authentication, rate limiting, input validation to prevent injection attacks, and strong access control policies. Regular audits and logging help detect anomalies.

FAQ: Should I use REST or GraphQL?

REST is simple and cache-friendly; GraphQL is flexible for clients that need selective fields. Choose based on client requirements, caching needs, and team familiarity. Both can coexist in larger systems.

FAQ: How do I test an API integration?

Start with manual exploration (Postman, curl), then write automated tests for schema, error handling, rate limit behavior, and performance. Mock external APIs during unit testing and run contract tests during CI/CD.

FAQ: How are APIs used in crypto applications?

Crypto apps use APIs to fetch market prices, execute orders, read on-chain data, and stream events. Reliable APIs reduce complexity for developers but require careful handling of latency, consistency, and security.

Disclaimer

This article is for educational and informational purposes only and does not constitute investment, legal, or professional advice. Content describes technical concepts and practical evaluation steps for APIs; readers should perform independent research and consult qualified professionals when needed.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products