Crypto Basics

What is Shiba Inu (SHIB) Coin and is it a Good Investment?

Learn everything about Shiba Inu, its history, benefits and top features in this descriptive guide.
Token Metrics Team
6 minutes
MIN

Shiba Inu (SHIB) is an Ethereum-based altcoin in the world of cryptocurrencies and has recently gained attention. It is a meme-inspired project based on the "Dogecoin" meme featuring the Shiba Inu dog as its mascot.

SHIB has been launched as a decentralized cryptocurrency built on the Ethereum blockchain. It is a deflationary token designed to be used as a medium of exchange and store of value. SHIB has a total supply of 1,000,000,000,000 tokens and is currently being traded on major exchanges such as Binance, OKEx, and Huobi.

SHIB has seen a huge surge in price and popularity since its launch in May 2021 and has become one of the most talked about cryptocurrencies in the market, with arguably the largest community than Bitcoin.

In this article, we will look at Shiba Inu coin, its features, and its potential for investors.

History Of Shiba Inu

Originally, Shiba Inu was launched as a direct competitor of Dogecoin as a joke. Both Shiba Inu and Dogecoin come under the category of meme coins. The meme coin originated from a 2013 meme featuring the Japanese breed dog of the same name. What began as a community-driven token representing a meme became a multi-billion dollar crypto project.

In 2020, an anonymous person or group called "Ryoshi” created a token named after the animal to continue the series of dog meme cryptocurrencies. After gaining full traction in 2021, it was declared the official rival of Dogecoin, leading Floki Inu, Akita Inu, and Dogelon Mars.

From its creation to up until October 2021, the SHIB coin raised from a low of $0.000000000056 to an all-time high of $0.00008616, rising an incredible 150 million percent.

Also, the generous donation of $1 billion in SHIB was a crucial moment in the coin's history that Ethereum's lead engineer and co-founder Vitalik Buterin granted to help fight the devastating spread of COVID-19 in India, making it the largest donation ever given in history. 

The Limelight Of SHIB

Having the support of Elon Musk is like getting the blue tick certification. Elon and his tweets have an extreme market sentiment influence which can make or break the deal for a cryptocurrency.

Shiba Inu is one such outrageously positive outcome of his tweets. When he first posted the Shiba Inu dog image, it gave the first major push to the SHIB token, powering it up by nearly 300%.

Some of the SHIB supporters believe it to be the "Dogecoin-Killer," too.

Top Features of SHIB

SHIB is a deflationary token designed to be used as a medium of exchange and store of value. It is a privacy-enabled decentralized peer-to-peer blockchain network. 

Three types of tokens affect the SHIB ecosystem:

  1. Shiba Inu (SHIB): This is the predominant currency of this project, which sums up to a total supply of 1 quadrillion tokens when it was launched. It can be exchanged with any of the ERC20 tokens of the Ethereum ecosystem.
  2. Leash (LEASH): It is the second token in the Shiba Inu ecosystem, with a total supply of only 107,646 tokens, and was initially a rebase token tied to the price of Dogecoin. A rebase token has a flexible monetary base in that its supply is set to increase or decrease to adjust the token price without affecting the value of anyone's share of coins. The rebase function was later switched off for good, and the token returned to its ERC20 design. 
  3. Bone (BONE): With a total supply of 250,000,000 tokens, only available on ShibaSwap, BONE is intended to fill up the circulation supply gap between the other two tokens. It is a kind of governance token that will allow the ShibArmy to vote on proposals. The more BONE users possess, the more weight their vote will carry in the decision process of future projects.

What are the Benefits of Investing in SHIB?

A Meme-Inspired Cryptocurrency - The core feature of SHIB is that it is a meme-inspired cryptocurrency launched on the Ethereum blockchain. It is a deflationary token designed to be used as a medium of exchange and store of value.

A Lower Price - SHIB is a low-priced token worth in pennies, which is easier for most people to invest in compared to something like Bitcoin.‍

A Decentralized Network - SHIB aims to be a decentralized network to keep on running, without any reasons for halting.‍

An Easy-To-Use Wallet - The SHIB blockchain network has been designed to be easy to use. This makes it a preferred option for most users. Three different wallets are available for use: Android, iOS, and Web.

How to Purchase SHIB Token?

SHIB and LEASH can be bought and sold on ShibaSwap, Uniswap, and a growing number of centralized exchanges (CEXs). On September 16, 2021, Coinbase listed SHIB, joining popular CEXs like Binance, Huobi, and Kucoin in trading the token. 

However, Robinhood, a U.S. financial services platform, has yet to list SHIB due to concerns over its security, as stated by its CEO. In contrast, Robinhood's rival Public.com listed SHIB in October 2021.

Is SHIB Token a Good Investment in 2023?

Shiba Inu's growth largely depends on market sentiment. During extremely fearful times, Shiba Inu underperforms; however, during euphoric times, Shiba Inu has the potential to explode in popularity.

While you analyze Shiba Inu's market position, make it a point to distinguish between market capitalization and price. SHIB's low price can deceive new investors, causing them to inaccurately gauge SHIB's price potential. Market capitalization is usually calculated by multiplying the total circulating supply of coins by the current market price of a single coin, which is useful for determining growth potential. 

At the time of writing, SHIB's price is roughly $0.000012. Therefore, if SHIB were to reach $0.01, investors would experience a return of over 800x. However, more importantly, to reach $0.01, Shiba Inu would need to reach a whopping market value north of $5 trillion. This value is greater than the market value of Apple, Google, and Bitcoin combined. As a result, when making realistic price predictions, it's paramount to consider market capitalization.

SHIB Price and Market Capitalization

As of Feb 1st,2023, Shiba Inu is trading at $0.000012 USD. The current market capitalization of the SHIB token is over $6.70B. This makes SHIB rank 81st in terms of market capitalization among all cryptocurrencies.

The Bottom Line

The Shiba Inu developing team is quite secretive about the coin roadmap. Therefore, it's rather difficult to anticipate what's in the cards for the cryptocurrency in the near future.

The developers might decide to burn other coins to make SHIB more deflationary than it is now and help with a price appreciation. We recently learned that Shiba is preparing to enter the Metaverse and will be burning more SHIB soon, further reducing the total supply.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Mastering REST APIs: Principles, Design, and Best Practices

Token Metrics Team
5
MIN

REST APIs power much of the modern web, mobile apps, and integrations between services. Whether you are building a backend for a product, connecting to external data sources, or composing AI agents that call external endpoints, understanding REST API fundamentals helps you design reliable, maintainable, and performant systems.

What is a REST API and why it matters

Representational State Transfer (REST) is an architectural style that uses simple HTTP verbs to operate on resources identified by URLs. A REST API exposes these resources over HTTP so clients can create, read, update, and delete state in a predictable way. Key benefits include:

  • Stateless interactions that simplify scaling and load balancing.
  • Uniform interface using standard HTTP verbs (GET, POST, PUT/PATCH, DELETE).
  • Human-readable endpoints and predictable behavior for developers and tools.

REST is not a strict protocol; it is a set of constraints that make APIs easier to consume and maintain. Understanding these constraints enables clearer contracts between services and smoother integration with libraries, SDKs, and API gateways.

Core principles and common HTTP methods

Designing a RESTful API starts with resources and consistent use of HTTP semantics. Typical patterns include:

  • Resource-oriented URLs: /users/123/orders/456 rather than RPC-style method names.
  • HTTP methods: GET for reads, POST for creation, PUT/PATCH for updates, DELETE for deletion.
  • Status codes: 200 OK, 201 Created, 204 No Content, 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, 429 Too Many Requests, 500 Server Error.
  • Content negotiation: Use Accept and Content-Type headers (application/json, application/xml) to support clients.

Use idempotency for safety: GET, PUT, and DELETE should be safe to retry without causing unintended side effects. POST is commonly non-idempotent unless an idempotency key is provided.

Design patterns: pagination, filtering, and versioning

As APIs grow, practical patterns help keep them efficient and stable:

  • Pagination: Offer cursor-based or offset-based pagination for collections. Cursor pagination generally performs better at scale.
  • Filtering and sorting: Support query parameters (e.g., ?status=active&sort=-created_at) and document allowed fields.
  • Versioning: Avoid breaking changes by putting versions in the URL (/v1/) or in headers. Maintain clear deprecation policies and migration guides.
  • Hypermedia (HATEOAS): Optionally include links to related resources to help clients discover available actions.

Security, performance, and operational best practices

Security and reliability are essential for production APIs. Consider these practices:

  • Authentication & authorization: Prefer OAuth2, JWTs, or API keys depending on your use case. Use scopes and least-privilege access.
  • Transport security: Enforce TLS for all endpoints and disable deprecated TLS ciphers.
  • Rate limiting and quotas: Protect your backend and provide clear error responses (429) with retry headers.
  • Caching: Use HTTP caching headers (Cache-Control, ETag) and CDN fronting for read-heavy endpoints.
  • Monitoring and observability: Emit structured logs, metrics, and distributed traces so you can diagnose latency, errors, and bottlenecks.

These controls reduce downtime and make integration predictable for client teams and third-party developers.

Testing, documentation, and developer experience

Good testing and clear docs accelerate adoption and reduce bugs:

  • Automated tests: Unit test controllers and routes, and use integration tests against a staging environment or simulated backend.
  • Contract testing: Tools like OpenAPI/Swagger and schema validation ensure clients and servers agree on payloads and types.
  • Interactive docs and SDKs: Provide OpenAPI specs, example curl commands, and autogenerated client libraries for common languages.
  • Postman and CI: Use Postman collections or similar for exploratory testing and include API checks in CI pipelines.

These measures improve developer productivity and reduce the risk of downstream failures when APIs evolve.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between REST and RESTful?

REST is the architectural style; RESTful typically describes APIs that follow REST constraints such as statelessness, resource orientation, and use of HTTP verbs. In practice the terms are often used interchangeably.

When should I use PUT vs PATCH?

PUT generally replaces a full resource and is idempotent; PATCH applies partial changes and may not be idempotent unless designed to be. Choose based on whether clients send full or partial resource representations.

How do I choose between URL versioning and header versioning?

URL versioning (/v1/) is simple and visible to clients, while header versioning is cleaner from a URL standpoint but harder for users to discover. Pick a strategy with a clear migration and deprecation plan.

What are common causes of REST API performance issues?

Typical causes include unoptimized database queries, chatty endpoints that require many requests, lack of caching, and large payloads. Use profiling, caching, and pagination to mitigate these issues.

How can REST APIs support AI agents?

AI agents often orchestrate multiple data sources and services via REST APIs. Well-documented, authenticated, and idempotent endpoints make it safer for agents to request data, trigger workflows, and integrate model outputs into applications.

What tools help with API design and documentation?

OpenAPI/Swagger, Postman, Redoc, and API gateways (e.g., Kong, Apigee) are common. They help standardize schemas, run automated tests, and generate SDKs for multiple languages.

Disclaimer

This article is educational and informational only. It does not constitute professional advice. Evaluate technical choices and platforms based on your project requirements and security needs.

Research

Mastering REST APIs: Design, Security, and Performance

Token Metrics Team
4
MIN

REST APIs are the connective tissue of modern software: from mobile apps to cloud services, they standardize how systems share data. This guide breaks down practical design patterns, security considerations, performance tuning, and testing strategies to help engineers build reliable, maintainable RESTful services.

API Design Principles

Good REST API design balances consistency, discoverability, and simplicity. Start with clear resource modeling — treat nouns as endpoints (e.g., /users, /orders) and use HTTP methods semantically: GET for retrieval, POST for creation, PUT/PATCH for updates, and DELETE for removals. Design predictable URIs, favor plural resource names, and use nested resources sparingly when relationships matter.

Other patterns to consider:

  • Use query parameters for filtering, sorting, and pagination (e.g., ?limit=50&offset=100&sort=-created_at).
  • Return consistent response shapes and error formats. Standardize on JSON with a clear schema and status codes.
  • Document your API with OpenAPI (formerly Swagger) to enable auto-generated docs, client SDKs, and validation.

Authentication & Security

Security is foundational. Choose an authentication model that matches your use case: token-based (OAuth 2.0, JWT) is common for user-facing APIs, while mutual TLS or API keys may suit machine-to-machine communication. Regardless of choice, follow these practices:

  • Enforce HTTPS everywhere to protect data-in-transit.
  • Implement short-lived tokens plus refresh mechanisms to reduce exposure from leaked credentials.
  • Validate and sanitize all inputs to prevent injection attacks; use rate limiting and quotas to mitigate abuse.
  • Log access events and monitor for anomalous patterns; retain minimal PII and follow data privacy standards.

Designate clear error codes and messages that avoid leaking sensitive information. Security reviews and threat modeling are essential parts of API lifecycle management.

Performance, Scalability & Reliability

Performance and scalability decisions often shape architecture. Key levers include caching, pagination, and efficient data modeling:

  • Use HTTP caching headers (ETag, Cache-Control) to reduce unnecessary payloads.
  • Offload heavy queries with background processing and asynchronous endpoints when appropriate.
  • Implement pagination for endpoints that return large collections; prefer cursor-based pagination for stable ordering.
  • Apply rate limiting and backpressure strategies at the edge to protect downstream systems.

Leverage observability: instrument APIs with metrics (latency, error rates, throughput), distributed tracing, and structured logs. These signals help locate bottlenecks and inform capacity planning. In distributed deployments, design for graceful degradation and retries with exponential backoff to improve resilience.

Testing, Versioning, and Tooling

Robust testing and tooling accelerate safe iteration. Adopt automated tests at multiple levels: unit tests for handlers, integration tests against staging environments, and contract tests to ensure backward compatibility. Use API mocking to validate client behavior early in development.

Versioning strategy matters: embed version in the URL (e.g., /v1/users) or the Accept header. Aim for backwards-compatible changes when possible; when breaking changes are unavoidable, document migration paths.

AI-enhanced tools can assist with schema discovery, test generation, and traffic analysis. For example, Token Metrics and similar platforms illustrate how analytics and automated signals can surface usage patterns and anomalies in request volumes — useful inputs when tuning rate limits or prioritizing endpoints for optimization.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a REST API?

A REST API (Representational State Transfer) is an architectural style for networked applications that uses stateless HTTP requests to manipulate resources represented by URLs and standard methods.

FAQ: How do I secure my REST API?

Secure your API by enforcing HTTPS, using robust authentication (OAuth 2.0, short-lived tokens), validating inputs, applying rate limits, and monitoring access logs for anomalies.

FAQ: When should I use POST vs PUT vs PATCH?

Use POST to create resources, PUT to replace a resource entirely, and PATCH to apply partial updates. Choose semantics that align with client expectations and document them clearly.

FAQ: How do I handle versioning?

Common approaches include URL versioning (/v1/...), header versioning (Accept header), or content negotiation. Prefer backward-compatible changes; when breaking changes are required, communicate deprecation timelines.

FAQ: What are best practices for error handling?

Return appropriate HTTP status codes, provide consistent error bodies with machine-readable codes and human-readable messages, and avoid exposing sensitive internals. Include correlation IDs to aid debugging.

FAQ: How can I test and monitor a production REST API?

Use synthetic monitoring, real-user metrics, health checks, distributed tracing, and automated alerting. Combine unit/integration tests with contract tests and post-deployment smoke checks.

Disclaimer

This article is educational and technical in nature. It does not provide financial, legal, or investment advice. Implementation choices depend on your specific context; consult qualified professionals for regulatory or security-sensitive decisions.

Research

Understanding REST APIs: Architecture, Security & Best Practices

Token Metrics Team
5
MIN

REST APIs power modern web services by defining a simple, uniform way to access and manipulate resources over HTTP. Whether you are designing an internal microservice, integrating third-party data, or building AI agents that call services programmatically, understanding REST API principles helps you build reliable, maintainable systems. This guide breaks down core concepts, design trade-offs, security controls, and practical patterns you can apply when evaluating or implementing RESTful interfaces.

What is a REST API and when to use it

REST (Representational State Transfer) is an architectural style that uses standard HTTP methods to operate on resources identified by URLs. A REST API typically returns structured representations—most commonly JSON—that describe resources such as users, transactions, or telemetry. REST is well suited for:

  • Stateless interactions where each request carries all necessary information.
  • CRUD-style access to resources using predictable verbs (GET, POST, PUT, PATCH, DELETE).
  • Public or internal APIs that benefit from caching, composability, and clear URL semantics.

REST is not a silver bullet: systems requiring real-time bidirectional streams, complex RPC semantics, or strict schema contracts may favor WebSockets, gRPC, or GraphQL depending on latency and payload requirements.

Core design principles and endpoint structure

Good REST design emphasizes simplicity, consistency, and discoverability. Key guidelines include:

  • Resource-oriented URLs: Use nouns for endpoints (e.g., /orders, /users/123) and avoid verbs in paths.
  • HTTP method semantics: Map CRUD to GET (read), POST (create), PUT/PATCH (update), DELETE (remove).
  • Use status codes consistently: 2xx for success, 4xx for client errors, 5xx for server errors. Provide machine-readable error bodies.
  • Pagination and filtering: For large collections, design cursor-based or offset pagination and allow filtering/sorting via query parameters.
  • Versioning: Plan for breaking changes via versioning strategies—URI versioning (/v1/...), header-based versioning, or content negotiation.

Consider API discoverability through hypermedia (HATEOAS) if you need clients to navigate available actions dynamically. Otherwise, well-documented OpenAPI (Swagger) specifications are essential for developer experience and tooling.

Security, authentication, and rate limiting

Security is critical for any publicly exposed REST API. Core controls include:

  • Authentication: Use standards like OAuth 2.0 or API keys depending on client types. Prefer token-based flows for third-party access.
  • Authorization: Enforce least privilege: ensure endpoints validate scope and role permissions server-side.
  • Transport security: Enforce TLS for all traffic; redirect HTTP to HTTPS and use strong TLS configurations.
  • Rate limiting and quotas: Protect services from abuse and ensure fair use. Provide informative headers (e.g., X-RateLimit-Remaining).
  • Input validation and output encoding: Defend against injection and serialization vulnerabilities by validating and sanitizing inputs and outputs.

For sensitive domains like crypto data feeds or identity, combine monitoring, anomaly detection, and clear incident response procedures. When aggregating external data, validate provenance and apply freshness checks.

Implementation patterns, testing, and observability

From implementation to production readiness, the following practical steps improve reliability:

  1. Schema-first development: Define OpenAPI/JSON Schema early to generate client/server stubs and ensure consistency.
  2. Automated testing: Implement contract tests, integration tests against staging environments, and fuzz tests for edge cases.
  3. Robust logging and tracing: Emit structured logs and distributed traces that include request IDs, latency, and error context.
  4. Backward compatibility: Adopt non-breaking change policies and use feature flags or deprecation windows for clients.
  5. Monitoring and SLIs: Track latency percentiles, error rates, and throughput. Define SLOs and alert thresholds.

When building data-driven applications or AI agents that call APIs, consider data quality checks and retry/backoff strategies to handle transient failures gracefully. For crypto and market-data integrations, specialized providers can simplify ingestion and normalization; for example, Token Metrics is often used as an analytics layer by teams that need standardized signals and ratings.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What are the most important HTTP methods to know for REST APIs?

The primary methods are GET (retrieve), POST (create), PUT/PATCH (update), and DELETE (remove). Each has semantic expectations: GET should be safe and idempotent, while POST is typically non-idempotent. Use PATCH for partial updates and PUT for full replacements when appropriate.

How should I version a REST API without breaking clients?

Common strategies include URI versioning (e.g., /v1/resource), header-based versioning, or content negotiation. Regardless of approach, communicate deprecation timelines, provide migration guides, and support old versions during a transition window.

When is REST not the right choice?

REST may be suboptimal for low-latency bidirectional communication (use WebSockets), strict schema contracts and performance-sensitive RPCs (consider gRPC), or when clients need a single call to fetch heterogeneous nested resources (GraphQL can reduce over-/under-fetching).

How do I document and share an API effectively?

Maintain an OpenAPI specification, host interactive docs (Swagger UI, Redoc), and provide example requests, SDKs, and changelogs. Automated validation against the contract helps keep docs and runtime behavior aligned.

What are key observability metrics for REST APIs?

Track latency (P50/P95/P99), request throughput, error rates by endpoint and status code, database or downstream call latencies, and service saturation metrics (CPU, memory, connection counts). Combine logs, traces, and metrics for faster incident response.

Disclaimer

This article is for educational and informational purposes only. It provides technical analysis of REST API design and operational considerations and does not constitute investment, legal, or regulatory advice. Always perform your own due diligence when integrating external services or handling sensitive data.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products