Crypto Basics

8 Best Bitcoin Wallets of 2023 for BTC Investors

Discover the best Bitcoin wallets in 2023 for secure BTC storage. Choose from our top picks to safeguard your investments in the ever-evolving crypto space.
Marcus K
8 Minutes
MIN

Cryptocurrencies like Bitcoin have gained immense popularity in recent years, and with that popularity comes the need for secure and convenient ways to store and manage these digital assets. That's where Bitcoin wallets come in. 

This article will explore the best Bitcoin wallets available in 2023, providing the information you need to make an informed decision.

What is a Bitcoin Wallet?

A Bitcoin wallet is a digital storage solution that allows you to securely store, send, and receive Bitcoin and other cryptocurrencies. 

It consists of a pair of cryptographic keys: a public key, which serves as your wallet address and allows others to send Bitcoin to you, and a private key, which grants you access to your funds and authorizes transactions. 

While your Bitcoin is stored in the blockchain, the wallet is simply a tool to manage and access your funds.

Types of Bitcoin Wallets

Many types of Bitcoin wallets are available, each with advantages and considerations. Let's explore the most common types:

Hot Wallets

Hot wallets are connected to the internet, allowing easy access to your cryptocurrencies. They come in various forms, including web, desktop, and mobile wallets. 

Hot wallets are convenient for those who need frequent access to their funds but are generally considered less secure than cold wallets.

Cold Wallets

Cold wallets are offline storage solutions that offer higher security for your Bitcoin. They are typically hardware wallets or paper wallets. Cold wallets are ideal for long-term storage and for those who prioritize safety.

Hardware Wallets

Hardware wallets are physical devices that store your private keys offline. They are often in the form of USB devices and offer enhanced security features. Hardware wallets are considered one of the most secure options for storing Bitcoin.

Paper Wallets

Paper wallets are physical documents that contain your private and public keys. They are typically printed as QR codes and offer high security since they are stored offline. Paper wallets are a cost-effective option for long-term storage.

Choosing the Best Bitcoin Wallet for Your Needs

When choosing a Bitcoin wallet, it's essential to consider factors such as security, ease of use, supported cryptocurrencies, and your preferences. Here are some things to keep in mind:

Security: Look for wallets prioritizing security features such as two-factor authentication, encryption, and seed phrase backups. Cold wallets generally offer the highest level of protection.

Ease of Use: Consider your level of technical expertise and choose a wallet with a user-friendly interface and intuitive features. Some crypto wallets are designed for beginners, while others cater to advanced users.

Supported Cryptocurrencies: Ensure that your chosen wallet supports the cryptocurrencies you own or plan to invest in. Different wallets have varying levels of compatibility.

Backup and Recovery: Look for wallets offering backup and recovery options if you lose access to your wallet or get damaged. Seed phrases or private key backups are essential for wallet recovery.

Customer Support: Consider the wallet provider's availability and quality of customer support. It can be vital if you encounter issues or have questions about your wallet.

List of Best Bitcoin Wallets

Now that we understand the different types of Bitcoin wallets and the factors to consider, let's explore the best ones available in 2023.

1. Coinbase Wallet

Coinbase Wallet is a popular choice for both beginners and experienced users. It offers a user-friendly interface and seamless integration with the Coinbase cryptocurrency exchange. 

As a non-custodial wallet, users have complete control over their private keys and are not reliant on the exchange for security.

One of the critical features of Coinbase Wallet is its support for multiple cryptocurrencies. It allows users to manage and exchange their assets easily within the wallet. 

The wallet also includes security features such as biometric authentication and a seed phrase for account recovery.

Coinbase Wallet is available on both desktop and mobile devices, making it convenient for users to manage their assets on the go. 

While the wallet is free, transaction fees may apply when sending or receiving cryptocurrencies.

2. Trust Wallet

Trust Wallet is a mobile-first wallet that supports over 40 blockchains and thousands of tokens. It is known for its user-friendly interface and advanced features, such as a built-in decentralized exchange (DEX) that allows users to trade tokens directly within the wallet.

Trust Wallet is acquired by the popular cryptocurrency exchange Binance and offers high security and privacy. 

It includes features such as a seed phrase for account recovery and support for hardware wallets. Trust Wallet is available for iOS and Android devices and is free to use, although transaction fees may apply.

3. Trezor

Trezor is a leading hardware wallet provider offering secure offline cryptocurrency storage. It supports over 1,000 cryptocurrencies and provides advanced security features, making it an ideal choice for those who prioritize the safety of their digital assets.

Trezor wallets are physical devices that store private keys offline, ensuring protection against hacks and cyber attacks. The wallets include two-factor authentication, encrypted backups, multiple wallets, and account support.

The Trezor Model T and Trezor One are the two models Trezor offers. They are compatible with various cryptocurrencies and provide a user-friendly asset management interface. 

While the upfront cost may be higher than other wallet options, the long-term security benefits make it a worthwhile investment.

4. Ledger

Ledger is another reputable hardware wallet provider offering secure offline cryptocurrency storage. The Ledger Nano X and Ledger Nano S are the two models that support over 1,800 cryptocurrencies.

Like Trezor, Ledger wallets provide a high level of security through offline storage and advanced security features. They include a user-friendly interface called Ledger Live, which allows users to manage their assets and perform transactions. 

Ledger wallets are compatible with various third-party wallets and services, providing flexibility for users.

While the initial cost of a Ledger wallet may be a consideration, its enhanced security and peace of mind make it a popular choice among cryptocurrency enthusiasts.

5. Exodus

Exodus is a user-friendly desktop and mobile wallet that supports over 130 cryptocurrencies. It offers a sleek design and intuitive interface, making it accessible to beginners and experienced users.

One of the standout features of Exodus is its built-in exchange, which allows users to trade assets directly within the wallet. It also provides features such as customizable transaction fees and support for hardware wallets. 

Exodus emphasizes security with features like a seed phrase for account recovery and encrypted private keys stored on the user's device.

Exodus is free, though transaction fees may apply when sending or receiving cryptocurrencies. The wallet also offers 24/7 customer support, providing users with assistance when needed.

6. Mycelium

Mycelium is a mobile wallet geared towards advanced users. It primarily focuses on Bitcoin and Ethereum and offers features like hardware wallet integration, multiple account support, and watch-only addresses.

Mycelium has a long history in cryptocurrency and is known for its security and technical features. The wallet stores private keys on the user's device and protects them with a PIN code. 

While Mycelium may not be as user-friendly as some other wallets, it is a popular choice among those with a deep understanding of cryptocurrencies.

Mycelium is available for both iOS and Android devices and is free to use. Transaction fees may apply when sending or receiving cryptocurrencies.

7. ZenGo

ZenGo is an innovative mobile wallet offering a unique wallet security approach. It eliminates the need for a seed phrase or private key, relying instead on biometric authentication and a unique cryptographic protocol for account recovery.

ZenGo is known for its user-friendly interface and support for multiple cryptocurrencies. It offers a secure and convenient way to manage crypto assets, minimizing the risk of losing access to funds due to misplaced or forgotten seed phrases.

ZenGo is available for both iOS and Android devices and is free to use. Transaction fees may apply when sending or receiving cryptocurrencies.

8. Crypto.com DeFi Wallet

Crypto.com DeFi Wallet is a hot wallet designed for users prioritizing security and versatility. It incorporates two-factor authentication for enhanced security and supports over 500 tokens and coins.

As part of the broader Crypto.com ecosystem, this wallet offers a user-friendly interface and diverse support for crypto coins and ERC-20 tokens. It includes features such as crypto staking, allowing users to earn rewards on their assets.

Crypto.com DeFi Wallet is available for both iOS and Android devices and is free to use. Transaction fees may apply for trading and transferring cryptocurrencies within the network.

Conclusion

Choosing the right Bitcoin wallet is crucial for securely managing your cryptocurrency assets. Whether you prefer a hot wallet's convenience or a cold wallet's enhanced security, plenty of options are available to suit your needs.

Consider security, ease of use, supported cryptocurrencies, and your preferences when selecting a wallet. The wallets mentioned in this article represent some of the best options available in 2023, each with its features and advantages.

Remember, it's crucial to prioritize the security of your Bitcoin and other cryptocurrencies. Keep your private keys and seed phrases secure, and avoid sharing them with anyone.

With the right Bitcoin wallet, you can confidently manage your cryptocurrency assets and take advantage of the exciting opportunities offered by the world of digital currencies.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How They Power Apps and Data

Token Metrics Team
5
MIN

APIs are one of the least visible yet most powerful pieces of modern software infrastructure. Whether you're building a mobile app, connecting to market data, or integrating an AI model, APIs are the bridges that let systems share data and functionality. This guide unpacks what an API is, how different API styles work, and practical steps to evaluate and use APIs safely and effectively.

What an API Is: A Practical Definition

An API—short for Application Programming Interface—is a set of rules and protocols that lets one software system request services or data from another. At its simplest, an API specifies the inputs a caller must provide, the format of those inputs, and the shape of the output it can expect. APIs abstract internal implementation details so developers can build on top of existing services without reinventing core functionality.

Key conceptual elements include:

  • Endpoints: Named URLs or addresses that expose specific functionality or data.
  • Requests & Responses: Standardized messages (often JSON) sent to and returned from endpoints.
  • Authentication: Mechanisms (API keys, OAuth tokens) that control who can access the interface.
  • Rate limits & quotas: Rules that protect services and ensure fair usage.

How APIs Work: The Mechanics

At a technical level, most modern APIs follow a request-response model. A client sends a request to an endpoint, the server processes that request using internal logic or data stores, and then returns a response. The most common flow includes:

  1. Client constructs a request (method, headers, body) according to the API specification.
  2. Client authenticates using the required scheme (API key, bearer token, etc.).
  3. Server validates input, applies business logic, and accesses data sources.
  4. Server returns a standardized response with status codes and a body payload.

APIs also include non-functional considerations: latency, consistency, error handling, and observability. Robust APIs document error codes, expected payloads, and examples to reduce integration friction.

Common API Types and When to Use Them

Not all APIs are the same. Choosing the right style depends on use case, performance needs, and complexity.

  • REST (Representational State Transfer): Widely used, HTTP-based, resource-oriented, typically JSON over GET/POST methods. Good for CRUD-style operations and public web services.
  • GraphQL: Client-driven queries that let callers request precisely the fields they need. Useful when reducing overfetching matters or when multiple clients require different views of the same data.
  • WebSocket: Full-duplex channels for real-time, low-latency communication. Common for live market feeds, chat systems, and push notifications.
  • RPC / gRPC: Procedure-call semantics with efficient binary serialization, often used in microservices and high-throughput internal systems.

In crypto and AI contexts, combinations are common: REST for configuration and historical data, WebSocket for live updates, and specialized RPC endpoints for blockchain node interactions.

Practical Uses, Evaluation, and Best Practices

APIs are used to access market data, execute trades (in regulated contexts), fetch on-chain metrics, call ML inference endpoints, and orchestrate microservices. When evaluating or integrating an API, consider:

  • Documentation quality: Clear examples, schemas, and code snippets shorten integration time.
  • Authentication & access models: Ensure the offered auth methods match your security needs and deployment model.
  • Rate limits and pricing: Understand throughput constraints and cost implications for production usage.
  • Data freshness and SLAs: Check update frequency, latency expectations, and uptime guarantees if available.
  • Error handling and retries: Use idempotent patterns and backoff strategies when calls fail temporarily.

For teams building AI agents or analytic dashboards, designing APIs with predictable schemas and clear versioning reduces downstream friction. AI-driven research platforms can augment manual analysis by normalizing data and providing signal overlays; for example, tools like Token Metrics integrate multiple data sources and can be accessed via APIs to feed models or dashboards.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What Is an API?

Q: How is an API different from a library or SDK?
A: A library is code included in an application at compile/runtime and runs locally; an SDK bundles libraries and tools for a platform. An API is an interface—often remote—that defines how to interact with a service that may run on different infrastructure.

FAQ: What security practices should I follow?

Q: How should I secure API access?
A: Use strong authentication (tokens, OAuth), enforce least privilege, rotate keys, use TLS for transport encryption, validate inputs server-side, and monitor usage for anomalies.

FAQ: What are rate limits and why do they matter?

Q: Why do APIs throttle requests?
A: Rate limits protect service stability, prevent abuse, and ensure fair access. Design clients to respect published limits and apply exponential backoff on failures.

FAQ: How do API versions work?

Q: What approaches are used for versioning?
A: Common patterns: URL versioning (/v1/...), header-based versioning, or content negotiation. Versioning maintains backward compatibility and lets providers evolve interfaces without breaking clients.

FAQ: How do I choose the right API style?

Q: REST, GraphQL, or WebSocket—how to decide?
A: Choose REST for straightforward resource access and broad compatibility, GraphQL when clients need flexible queries to minimize payloads, and WebSocket for real-time streaming or low-latency updates.

Disclaimer

This article is for informational purposes only and does not constitute financial, legal, or professional advice. It outlines technical concepts and best practices for understanding and integrating APIs. Evaluate services and compliance considerations independently before sending or acting on production data.

Research

APIs Explained: What an API Does and Why It Matters

Token Metrics Team
5
MIN

APIs power much of the modern software economy, but the term can feel abstract. This guide breaks down what an API is, how APIs work in practice, common types you’ll encounter, and practical frameworks for evaluating or integrating an API into your projects.

What is an API? A concise definition

An API, or application programming interface, is a set of rules and protocols that lets different software components communicate. Think of an API as a contract: one system exposes specific operations (endpoints) and data structures, and other systems call those operations to request services or information. The API hides internal complexity and provides a predictable interface for developers.

At its core, an API specifies:

  • The actions available (e.g., read data, submit a transaction, trigger a process).
  • The input and output formats (often JSON or XML for web APIs).
  • The transport protocol and authentication methods (HTTP, gRPC, OAuth, API keys).

How APIs work — protocols, endpoints, and flows

APIs can be implemented with different technologies, but common patterns include REST, GraphQL, and RPC (gRPC). A typical web API flow involves a client sending an HTTP request to an endpoint URL, the server processing that request, and then returning a structured response. Key components to understand:

  • Endpoint: A specific URL that performs an action or returns data.
  • Method: HTTP verbs such as GET, POST, PUT, DELETE indicate intent.
  • Payload: The data sent with requests (body) or returned (response).
  • Authentication: Controls access — API keys, OAuth tokens, or signed requests.
  • Rate limits: Servers often limit calls per minute to protect resources.

Understanding these pieces helps you design predictable integrations and debug issues like unexpected latencies or malformed responses.

Common API types and real-world examples

Different APIs serve different needs. Here are common categories and examples:

  • Public / Open APIs: Accessible to external developers. Examples: public weather APIs, mapping APIs.
  • Private APIs: Used internally within an organization to modularize services.
  • Partner APIs: Shared with specific partners under contract.
  • Web APIs (REST/GraphQL): Most common for web and mobile apps. REST APIs expose resources via endpoints; GraphQL exposes a flexible query schema.
  • Streaming / WebSocket APIs: Real-time data feeds such as live market prices or chat messages.

Practical examples: integrating a payment processor via its REST API, pulling exchange rates from a crypto API for display, or using a mapping API to embed location features.

Evaluating and integrating APIs: a practical checklist

When researching or choosing an API, apply a short framework: compatibility, cost, reliability, and security (CCRS).

  1. Compatibility: Does the API support the required protocols and data formats? Is client SDK support available for your stack?
  2. Cost: Understand pricing tiers, rate limits, and overage fees. Check if a free tier or trial exists for testing.
  3. Reliability: Review historical uptime, SLAs, and status page transparency. Look for rate limit details and failover options.
  4. Security: Evaluate authentication models, data encryption, and compliance notes (e.g., GDPR, SOC2 where relevant).

Additional integration tips: use sandbox environments for testing, log API requests/responses for troubleshooting, and build retry/backoff logic to handle transient failures.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common questions about APIs

What is the difference between REST and GraphQL?

REST defines endpoints that return fixed data structures, which can result in over- or under-fetching. GraphQL exposes a query language where clients request exactly the fields they need, reducing extra data transfer but adding schema complexity on the server side.

How do API keys differ from OAuth tokens?

API keys are simple credentials often used for server-to-server authentication or identifying an app. OAuth is an authorization framework that enables delegated access (user consents) and typically issues short-lived access tokens with refresh mechanics for better security.

Are APIs secure by default?

No. Security depends on implementation: use HTTPS, validate and sanitize inputs, enforce proper authentication/authorization, rotate keys periodically, and monitor for unusual activity. Treat APIs as a potential attack surface and apply standard security controls.

What are typical API rate limits and how should I handle them?

Rate limits vary widely: some services allow thousands of requests per minute, others are stricter. Implement client-side throttling, exponential backoff on retries, and caching where appropriate to reduce request volume and avoid hitting limits.

How can AI and analytics help when working with APIs?

AI-driven tools can help parse API responses, detect anomalies, prioritize endpoints by value, and synthesize insights from multiple data feeds. Platforms such as Token Metrics use AI to aggregate on-chain and market data, which can speed evaluation when integrating crypto-related APIs.

What are common pitfalls when building with third-party APIs?

Common issues include unexpected breaking changes, insufficient error handling, underestimating rate limits, hidden costs, and lack of observability. Mitigate these by reading docs thoroughly, using versioned endpoints, and automating monitoring and alerts.

Disclaimer: This article is for educational and informational purposes only. It explains technical concepts and practical frameworks related to APIs and does not provide investment, legal, or professional advice. Evaluate services independently and consult appropriate experts for decision-making.

Research

APIs Explained: How They Power Web & Crypto Apps

Token Metrics Team
5
MIN

APIs — short for Application Programming Interfaces — are the invisible wiring that connects software, data, and services. From mobile apps fetching weather to crypto platforms streaming on-chain data, APIs turn discrete systems into interoperable ecosystems. This guide explains what an API is, how it works, common types and protocols, practical evaluation criteria, and how AI-driven tools can help you research and integrate APIs safely and effectively.

What is an API? A practical definition

An API is a set of rules and conventions that lets one software program request services or data from another. Think of it as a contract: the provider exposes endpoints and documented inputs/outputs, and the consumer sends requests and receives structured responses. APIs abstract complexity, enforce consistency, and enable modular development.

At a high level, an API specifies:

  • Available operations (endpoints) and the expected parameters
  • Data formats for requests and responses (JSON, XML, etc.)
  • Authentication and authorization methods (API keys, OAuth)
  • Rate limits, error handling, and versioning policies

How APIs work: endpoints, methods and data flow

Most modern web APIs operate over HTTP. A consumer makes a request to a URL (endpoint) using an HTTP method such as GET, POST, PUT, or DELETE. The server processes the request and returns a response payload plus status codes that signal success or error.

Core concepts:

  • Endpoint: A URI representing a resource or action (e.g., /prices/bitcoin).
  • Request: Includes method, headers (authentication, content-type), query or body parameters.
  • Response: Status code (200, 404, 500) and structured data (commonly JSON).
  • Idempotency: Whether repeated requests have the same effect (important for retries).

Understanding these mechanics helps you design integrations, debug issues, and interpret API documentation efficiently.

Common API types and protocols

Not all APIs are built the same. Choosing the right style depends on use case, performance needs, and client ecosystem.

  • REST APIs: Resource-based, conventionally using HTTP verbs and stateless interactions. Popular due to simplicity and broad tooling support.
  • GraphQL: Query language that lets clients request exactly the fields they need. Useful when clients need flexible, efficient queries across related data.
  • WebSockets: Persistent, bidirectional socket connections ideal for real-time updates (chat, market feeds).
  • gRPC: High-performance RPC framework using Protocol Buffers—good for microservices and low-latency systems.
  • SOAP: Legacy, XML-based protocol with strict standards—still used in some enterprise environments.

Each approach has trade-offs: REST is simple but may require multiple round-trips, GraphQL reduces over-fetching but adds server complexity, and WebSockets enable streaming but require connection management.

Security, authentication, and operational governance

APIs often provide access to valuable data and functionality, so security and governance are paramount. Key considerations include:

  • Authentication: API keys, OAuth 2.0, JWTs. Choose methods that match risk and user flows.
  • Authorization: Enforce least privilege—limit which endpoints and operations each credential can access.
  • Rate limits and quotas: Protect infrastructure from overload and abusive usage.
  • Encryption & TLS: Always use HTTPS for data in transit; consider encryption at rest for sensitive payloads.
  • Auditing & monitoring: Log access patterns, errors, and anomalies for forensic and operational visibility.
  • Versioning: Maintain backward compatibility with explicit versioning strategies to avoid breaking consumers.

Operational SLAs, clear error codes, and robust documentation reduce integration friction and surface potential risks early.

How to evaluate and integrate an API: a practical checklist

When assessing a third-party API, use a structured framework:

  1. Documentation quality: Are endpoints, schemas, examples, and rate limits clearly described?
  2. Sandbox & test keys: Is there a sandbox for dry runs without impacting production data?
  3. Latency & throughput: Does the API meet your performance requirements under expected load?
  4. Reliability: Check status pages, historical uptime, and incident response practices.
  5. Cost model: Understand pricing tiers, overage fees, and whether free tiers suffice for initial development.
  6. Security posture: What authentication methods, encryption, and compliance certifications are provided?

For proofs of concept, use API testing tools (Postman, curl) and programmatic SDKs where available. Track metrics during integration and plan for retries, backoff strategies, and graceful degradation.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API (Application Programming Interface) is a defined set of rules and endpoints that allows one software system to request data or services from another. It standardizes how data is exchanged and operations are invoked between systems.

FAQ: REST vs GraphQL — when to use each?

REST is simple and widely supported, ideal for straightforward resource-based access. GraphQL excels when clients need flexible, aggregated queries and want to reduce over-fetching. Choice depends on client needs and server complexity tolerance.

FAQ: How do APIs stay secure?

Security relies on strong authentication (API keys, OAuth), encryption (HTTPS/TLS), authorization controls, rate limiting, input validation, and monitoring. Regular audits and threat modeling help identify and mitigate risks.

FAQ: What are common API use cases?

APIs power mobile and web apps, payment processing, identity providers, data feeds (market, weather, maps), IoT device control, and integrations between enterprise systems or blockchain nodes.

FAQ: How do I test an API safely?

Use sandbox environments and test keys where available. Employ tools like Postman for exploratory testing, write automated integration tests, validate edge cases and error handling, and verify rate-limit behaviors under load.

Disclaimer

This article is for educational and informational purposes only. It explains technical concepts and evaluation frameworks but does not constitute professional, legal, or investment advice. Always perform your own due diligence when selecting or integrating APIs.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products