Crypto Basics

8 Best and Profitable Crypto to Mine - Complete List

Discover the complete list of the best and most profitable crypto to mine in 2023. Explore opportunities and maximize your crypto mining gains.
S. Vishwa
7 Minutes
MIN

Cryptocurrency mining has become a popular way to earn passive income in the digital world. With the right resources and knowledge, individuals can generate profits by validating transactions on blockchain networks.

However, with the vast number of cryptocurrencies available, choosing the best ones to mine can take time and effort. 

This comprehensive guide will explore the top cryptocurrencies to mine in 2023, providing you with valuable insights and information to make informed decisions.

What is Crypto Mining?

Cryptocurrency mining is the process of validating transactions on a blockchain network by using computational power. 

Miners contribute their computing resources to solve complex mathematical problems, ensuring the accuracy and security of transactions. Once a miner successfully solves a problem, they are rewarded with a certain amount of cryptocurrency.

Types of Crypto Mining

There are three main types of crypto mining: CPU mining, GPU mining, and ASIC mining.

1. CPU Mining

CPU mining, or Central Processing Unit mining, involves using the processing power of a computer's CPU to mine cryptocurrencies. This method is the least efficient and is generally not profitable for most cryptocurrencies.

2. GPU Mining

GPU mining, or Graphics Processing Unit mining, utilizes the power of a computer's graphics card to mine cryptocurrencies. This method is more efficient than CPU mining and is commonly used for mining altcoins.

3. ASIC Mining

ASIC mining, or Application-Specific Integrated Circuit mining, involves using specialized hardware designed specifically for mining cryptocurrencies. 

ASIC miners are highly efficient and powerful, making them the preferred choice for mining popular cryptocurrencies like Bitcoin.

The Best Crypto to Mine in 2023

When it comes to mining cryptocurrencies, profitability is a key consideration. Here are the top cryptocurrencies that offer promising mining opportunities in 2023:

1. Bitcoin (BTC)

Current Mining Reward: 6.25 BTC/block

Profitability: Approximately $250 per month on average

Description: Bitcoin continues to be the most popular and profitable cryptocurrency to mine. Its high market value and widespread adoption make it a lucrative choice for miners.

2. Monero (XMR)

Current Mining Reward: 0.6 XMR/block

Profitability: Approximately $8.50 per month

Description: Monero is a privacy-focused cryptocurrency that offers enhanced anonymity. Its ASIC-resistant algorithm makes it accessible for CPU and GPU miners.

3. Litecoin (LTC)

Current Mining Reward: 12.5 LTC/block

Profitability: Approximately $66.74 per month

Description: Litecoin is a popular altcoin that offers faster transaction confirmation times than Bitcoin. Its Scrypt algorithm makes it suitable for GPU mining.

4. Ravencoin (RVN)

Current Mining Reward: 2500 RVN/block

Profitability: Approximately $87 per month

Description: Ravencoin is a relatively new cryptocurrency focusing on asset transfer and decentralized applications. It utilizes the KawPow protocol, which is ASIC-resistant.

5. Zcash (ZEC)

Current Mining Reward: 2.5 ZEC/block

Profitability: Approximately $100 per month

Description: Zcash is known for its privacy features, allowing users to conduct private transactions. Its Equihash algorithm makes it suitable for GPU mining.

6. Dogecoin (DOGE)

Current Mining Reward: 10,000 DOGE/block

Profitability: Approximately $27 per month

Description: Dogecoin started as a meme cryptocurrency but has gained significant popularity. Its Scrypt algorithm makes it suitable for CPU and GPU mining.

7. Dash (DASH)

Current Mining Reward: 1.08 DASH/block

Profitability: Approximately $306.31 per month

Description: Dash focuses on instant and private transactions. Its X11 algorithm makes it suitable for ASIC and GPU mining.

8. Grin (GRIN)

Current Mining Reward: 60 GRIN/block

Profitability: Approximately $43.32 per month

Description: Grin is an open-source cryptocurrency that prioritizes privacy and scalability. Its MimbleWimble algorithm makes it suitable for GPU mining.

It's important to note that profitability can vary based on factors such as electricity costs, mining difficulty, and market conditions. Conduct thorough research and consider these factors before committing to mining any cryptocurrency.

How to Mine Cryptocurrency?

Mining cryptocurrencies requires a mining rig (computer), mining software or membership in a mining pool, and a reliable power supply. Here is a step-by-step guide on how to mine cryptocurrencies:

Step 1 - Choose a cryptocurrency to mine based on profitability and your hardware capabilities.

Step 2 - Set up a mining rig with the necessary hardware components, such as CPUs, GPUs, or ASICs.

Step 3 - Install mining software compatible with your chosen cryptocurrency.

Step 4 - Join a mining pool to increase your chances of earning rewards.

Step 5 - Configure your mining software to connect to the mining pool.

Step 6 - Start mining and monitor your mining operation for optimal performance.

Pros and Cons of Crypto Mining

Like any investment, cryptocurrency mining has its pros and cons. Here are some key advantages and disadvantages to consider:

Pros:

  • Potential for passive income.
  • Opportunity to support decentralized networks.
  • Possibility of earning valuable cryptocurrencies.
  • Flexibility in choosing mining hardware and software.

Cons:

  • High initial investment in mining equipment.
  • Electricity costs can be high.
  • Mining difficulty can increase over time, reducing profitability.
  • Market volatility can impact the value of mined cryptocurrencies.

Is Cryptocurrency Mining Profitable?

The profitability of cryptocurrency mining depends on various factors, including electricity costs, mining difficulty, and market conditions. 

While mining popular cryptocurrencies like Bitcoin may require substantial investments and specialized hardware, there are still opportunities to profitably mine smaller, emerging cryptocurrencies.

It's crucial to conduct thorough research, calculate potential costs and rewards, and stay informed about industry trends to make informed decisions about cryptocurrency mining.

Also Read - How Helium Miner Works?

Alternatives to Cryptocurrency Mining

If cryptocurrency mining is not suitable for you, there are alternative ways to participate in the crypto industry. Here are a few options:

  • Trading: Buy and sell cryptocurrencies on exchanges to take advantage of price fluctuations.
  • Staking: Hold and stake cryptocurrencies to earn rewards and support the network's operations.
  • Investing: Purchase cryptocurrencies as long-term investments based on their growth potential.
  • Cloud Mining: Rent mining equipment from a service provider and earn rewards without physical hardware.

Consider your risk tolerance, investment goals, and available resources when exploring alternatives to cryptocurrency mining.

Final Thoughts

Cryptocurrency mining can be profitable for individuals with the necessary resources and knowledge. 

By choosing suitable cryptocurrencies to mine and adopting efficient mining practices, you can generate passive income and contribute to the growth and security of blockchain networks.

However, staying informed about market conditions, mining difficulty, and technological advancements is crucial. 

Conduct thorough research, consider both the advantages and disadvantages, and make informed decisions based on your circumstances.

Remember, the cryptocurrency market is highly volatile, and profitability can fluctuate. Stay adaptable, monitor industry trends, and continuously evaluate your mining operations to maximize potential returns.

Frequently Asked Questions

Q1. What is cryptocurrency mining?

Cryptocurrency mining uses computational power to validate transactions on a blockchain network and earn rewards in the form of cryptocurrency.

Q2. How do I choose the best cryptocurrency to mine?

Consider mining difficulty, market value, and hardware requirements. Research each cryptocurrency's mining algorithm and profitability before making a decision.

Q3. Can I mine cryptocurrencies with my regular computer?

While mining specific cryptocurrencies with a regular computer is possible, it is generally not profitable. Specialized mining hardware is often required for efficient mining.

Q4. How can I maximize profitability in cryptocurrency mining?

To maximize profitability, consider factors such as electricity costs, mining difficulty, and market conditions. Continuously monitor and optimize your mining operations for optimal performance.

Q5. Can I mine multiple cryptocurrencies simultaneously?

It is possible to mine multiple cryptocurrencies simultaneously using different mining rigs or mining pools supporting various cryptocurrencies.

Q6. Are there any legal considerations for cryptocurrency mining?

Cryptocurrency mining legality varies by country. Research and comply with local regulations regarding cryptocurrency mining to ensure legal operation.

Q7. Can I mine cryptocurrencies on my mobile phone?

While mining specific cryptocurrencies on mobile phones is possible, the limited computational power and potential hardware strain make it generally unprofitable and impractical.

Q8. What is the environmental impact of cryptocurrency mining?

Cryptocurrency mining can have a significant environmental impact due to the high energy consumption of mining operations. Consider using renewable energy sources or joining eco-friendly mining initiatives.

Q9. Can I mine cryptocurrencies without joining a mining pool?

Yes, it is possible to mine cryptocurrencies independently without joining a mining pool. This approach is known as solo mining but may result in less frequent rewards due to the lower hash rate.

Q10. How can I estimate the profitability of cryptocurrency mining?

Use mining profitability calculators to estimate potential earnings based on mining hardware, electricity costs, and current market conditions. Keep in mind that profitability can vary.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Understanding REST APIs: A Practical Guide

Token Metrics Team
5
MIN

Modern web and mobile apps exchange data constantly. At the center of that exchange is the REST API — a widely adopted architectural style that standardizes how clients and servers communicate over HTTP. Whether you are a developer, product manager, or researcher, understanding what a REST API is and how it works is essential for designing scalable systems and integrating services efficiently.

What is a REST API? Core principles

A REST API (Representational State Transfer Application Programming Interface) is a style for designing networked applications. It defines a set of constraints that, when followed, enable predictable, scalable, and loosely coupled interactions between clients (browsers, mobile apps, services) and servers. REST is not a protocol or standard; it is a set of architectural principles introduced by Roy Fielding in 2000.

Key principles include:

  • Statelessness: Each request from the client contains all information needed; the server does not store client session state between requests.
  • Resource orientation: Everything is modeled as a resource (users, orders, posts), each identified by a URI (Uniform Resource Identifier).
  • Uniform interface: A standard set of operations (typically HTTP methods) operate on resources in predictable ways.
  • Client-server separation: Clients and servers can evolve independently as long as the interface contract is maintained.
  • Cacheability: Responses can be labeled cacheable or non-cacheable to improve performance and scalability.

How REST APIs work: HTTP methods, status codes, and endpoints

A REST API organizes functionality around resources and uses standard HTTP verbs to manipulate them. Common conventions are:

  • GET — retrieve a resource or list of resources.
  • POST — create a new resource under a collection.
  • PUT — replace an existing resource or create if absent (idempotent).
  • PATCH — apply partial updates to a resource.
  • DELETE — remove a resource.

Responses use HTTP status codes to indicate result state (200 OK, 201 Created, 204 No Content, 400 Bad Request, 401 Unauthorized, 404 Not Found, 500 Internal Server Error). Payloads are typically JSON but can be XML or other formats. Endpoints are structured hierarchically, for example: /api/users to list users, /api/users/123 to operate on user with ID 123.

Design patterns and best practices for reliable APIs

Designing a robust REST API involves more than choosing verbs and URIs. Adopt patterns that make APIs understandable, maintainable, and secure:

  • Consistent naming: Use plural resource names (/products, /orders), and keep endpoints predictable.
  • Versioning: Expose versions (e.g., /v1/) to avoid breaking clients when changing the contract.
  • Pagination and filtering: For large collections, support parameters for page size, cursors, and search filters to avoid large responses.
  • Error handling: Return structured error responses with codes and human-readable messages to help client debugging.
  • Rate limiting and throttling: Protect backends by limiting request rates and providing informative headers.
  • Security: Use TLS, authenticate requests (OAuth, API keys), and apply authorization checks per resource.

Following these practices improves interoperability and reduces operational risk.

Use cases, tools, and how to test REST APIs

REST APIs are used across web services, microservices, mobile backends, IoT devices, and third-party integrations. Developers commonly use tools and practices to build and validate APIs:

  • API specifications: OpenAPI (formerly Swagger) describes endpoints, parameters, responses, and can be used to generate client/server code and documentation.
  • Testing tools: Postman, curl, and automated test frameworks (JUnit, pytest) validate behavior, performance, and regression checks.
  • Monitoring and observability: Logs, distributed tracing, and metrics (latency, error rates) help identify issues in production.
  • Client SDKs and code generation: Generate typed clients for multiple languages to reduce integration friction.

AI-driven platforms and analytics can speed research and debugging by surfacing usage patterns, anomalies, and integration opportunities. For example, Token Metrics can be used to analyze API-driven data feeds and incorporate on-chain signals into application decision layers without manual data wrangling.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is REST API — common questions

What is the difference between REST and RESTful?

"REST" refers to the architectural constraints described by Roy Fielding; "RESTful" is a colloquial adjective meaning an API that follows REST principles. Not all APIs labeled RESTful implement every REST constraint strictly.

How does REST compare to SOAP and GraphQL?

SOAP is a protocol with rigid standards and built-in operations (often used in enterprise systems). GraphQL exposes a single endpoint and lets clients request precise data shapes. REST uses multiple endpoints and standard HTTP verbs. Each approach has trade-offs in flexibility, caching, and tooling.

When should I version my REST API?

Version your API before making breaking changes to request/response formats or behavior that existing clients depend on. Common strategies include URI versioning (e.g., /v1/) or header-based versioning.

Are REST APIs secure by default?

No. Security must be designed in: use HTTPS/TLS, authenticate requests, validate input, apply authorization checks, and limit rate to reduce abuse. Treat REST APIs like any other public interface that requires protection.

How do I test and document a REST API effectively?

Use API specifications (OpenAPI) to auto-generate docs and client stubs. Combine manual testing tools like Postman with automated integration and contract tests in CI pipelines to ensure consistent behavior across releases.

Can REST APIs handle streaming or real-time data?

REST is request/response oriented and not ideal for continuous real-time streams. For streaming, consider WebSockets, Server-Sent Events (SSE), or specialized protocols; REST can still be used for control operations and fallbacks.

Disclaimer: This article is educational and technical in nature. It does not provide investment or legal advice. The information is intended to explain REST API concepts and best practices, not to recommend specific products or actions.

Research

FastAPI: Build High-Performance Python APIs

Token Metrics Team
4
MIN

FastAPI has become a go-to framework for teams that need production-ready, high-performance APIs in Python. It combines modern Python features, automatic type validation via pydantic, and ASGI-based async support to deliver low-latency endpoints. This post breaks down pragmatic patterns for building, testing, and scaling FastAPI services, with concrete guidance on performance tuning, deployment choices, and observability so you can design robust APIs for real-world workloads.

Overview: Why FastAPI and where it fits

FastAPI is an ASGI framework that emphasizes developer experience and runtime speed. It generates OpenAPI docs automatically, enforces request/response typing, and integrates cleanly with async workflows. Compare FastAPI to traditional WSGI stacks (Flask, Django sync endpoints): FastAPI excels when concurrency and I/O-bound tasks dominate, and when you want built-in validation and schema-driven design.

Use-case scenarios where FastAPI shines:

  • Low-latency microservices handling concurrent I/O (databases, HTTP calls, queues).
  • AI/ML inference endpoints that require fast request routing and input validation.
  • Public APIs where OpenAPI/Swagger documentation and typed schemas reduce integration friction.

Async patterns and performance considerations

FastAPI leverages async/await to let a single worker handle many concurrent requests when operations are I/O-bound. Key principles:

  1. Avoid blocking calls inside async endpoints. Use async database drivers (e.g., asyncpg, databases) or wrap blocking operations in threadpools when necessary.
  2. Choose the right server. uvicorn (with or without Gunicorn) is common: uvicorn for development and Gunicorn+uvicorn workers for production. Consider Hypercorn for HTTP/2 or advanced ASGI features.
  3. Benchmark realistic scenarios. Use tools like wrk, k6, or hey to simulate traffic patterns similar to production. Measure p95/p99 latency, not just average response time.

Performance tuning checklist:

  • Enable HTTP keep-alive and proper worker counts (CPU cores × factor depending on blocking).
  • Cache expensive results (Redis, in-memory caches) and use conditional responses to reduce payloads.
  • Use streaming responses for large payloads to minimize memory spikes.

Design patterns: validation, dependency injection, and background tasks

FastAPI's dependency injection and pydantic models enable clear separation of concerns. Recommended practices:

  • Model-driven APIs: Define request and response schemas with pydantic. This enforces consistent validation and enables automatic docs.
  • Modular dependencies: Use dependency injection for DB sessions, auth, and feature flags to keep endpoints thin and testable.
  • Background processing: Use FastAPI BackgroundTasks or an external queue (Celery, RQ, or asyncio-based workers) for long-running jobs—avoid blocking the request lifecycle.

Scenario analysis: for CPU-bound workloads (e.g., heavy data processing), prefer external workers or serverless functions. For high-concurrency I/O-bound workloads, carefully tuned async endpoints perform best.

Deployment, scaling, and operational concerns

Deploying FastAPI requires choices around containers, orchestration, and observability:

  • Containerization: Create minimal Docker images (slim Python base, multi-stage builds) and expose an ASGI server like uvicorn with optimized worker settings.
  • Scaling: Horizontal scaling with Kubernetes or ECS works well. Use readiness/liveness probes and autoscaling based on p95 latency or CPU/memory metrics.
  • Security & rate limiting: Implement authentication at the edge (API gateway) and enforce rate limits (Redis-backed) to protect services. Validate inputs strictly with pydantic to avoid malformed requests.
  • Observability: Instrument metrics (Prometheus), distributed tracing (OpenTelemetry), and structured logs to diagnose latency spikes and error patterns.

CI/CD tips: include a test matrix for schema validation, contract tests against OpenAPI, and canary deploys for backward-incompatible changes.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is FastAPI and how is it different?

FastAPI is a modern, ASGI-based Python framework focused on speed and developer productivity. It differs from traditional frameworks by using type hints for validation, supporting async endpoints natively, and automatically generating OpenAPI documentation.

FAQ: When should I use async endpoints versus sync?

Prefer async endpoints for I/O-bound operations like network calls or async DB drivers. If your code is CPU-bound, spawning background workers or using synchronous workers with more processes may be better to avoid blocking the event loop.

FAQ: How many workers or instances should I run?

There is no one-size-fits-all. Start with CPU core count as a baseline and adjust based on latency and throughput measurements. For async I/O-bound workloads, fewer workers with higher concurrency can be more efficient; for blocking workloads, increase worker count or externalize tasks.

FAQ: What are key security practices for FastAPI?

Enforce strong input validation with pydantic, use HTTPS, validate and sanitize user data, implement authentication and authorization (OAuth2, JWT), and apply rate limiting and request size limits at the gateway.

FAQ: How do I test FastAPI apps effectively?

Use TestClient from FastAPI for unit and integration tests, mock external dependencies, write contract tests against OpenAPI schemas, and include load tests in CI to catch performance regressions early.

Disclaimer

This article is for educational purposes only. It provides technical and operational guidance for building APIs with FastAPI and does not constitute professional or financial advice.

Research

Practical API Testing: Strategies, Tools, and Best Practices

Token Metrics Team
5
MIN

APIs are the connective tissue of modern software. Testing them thoroughly prevents regressions, ensures predictable behavior, and protects downstream systems. This guide breaks API testing into practical steps, frameworks, and tool recommendations so engineers can build resilient interfaces and integrate them into automated delivery pipelines.

What is API testing?

API testing verifies that application programming interfaces behave according to specification: returning correct data, enforcing authentication and authorization, handling errors, and performing within expected limits. Unlike UI testing, API tests focus on business logic, data contracts, and integration between systems rather than presentation. Well-designed API tests are fast, deterministic, and suitable for automation, enabling rapid feedback in development workflows.

Types of API tests

  • Unit/Component tests: Validate single functions or routes in isolation, often by mocking external dependencies to exercise specific logic.
  • Integration tests: Exercise interactions between services, databases, and third-party APIs to verify end-to-end flows and data consistency.
  • Contract tests: Assert that a provider and consumer agree on request/response shapes and semantics, reducing breaking changes in distributed systems.
  • Performance tests: Measure latency, throughput, and resource usage under expected and peak loads to find bottlenecks.
  • Security tests: Check authentication, authorization, input validation, and common vulnerabilities (for example injection, broken access control, or insufficient rate limiting).
  • End-to-end API tests: Chain multiple API calls to validate workflows that represent real user scenarios across systems.

Designing an API testing strategy

Effective strategies balance scope, speed, and confidence. A common model is the testing pyramid: many fast unit tests, a moderate number of integration and contract tests, and fewer end-to-end or performance tests. Core elements of a robust strategy include:

  • Define clear acceptance criteria: Use API specifications (OpenAPI/Swagger) to derive expected responses, status codes, and error formats so tests reflect agreed behavior.
  • Prioritize test cases: Focus on critical endpoints, authentication flows, data integrity, and boundary conditions that pose the greatest risk.
  • Use contract testing: Make provider/consumer compatibility explicit with frameworks that can generate or verify contracts automatically.
  • Maintain test data: Seed environments with deterministic datasets, use fixtures and factories, and isolate test suites from production data.
  • Measure coverage pragmatically: Track which endpoints and input spaces are exercised, but avoid chasing 100% coverage if it creates brittle tests.

Tools, automation, and CI/CD

Tooling choices depend on protocols (REST, GraphQL, gRPC) and language ecosystems. Common tools and patterns include:

  • Postman & Newman: Rapid exploratory testing, collection sharing, and collection-based automation suited to cross-team collaboration.
  • REST-assured / Supertest / pytest + requests: Language-native libraries for integration and unit testing in JVM, Node.js, and Python ecosystems.
  • Contract testing tools: Pact, Schemathesis, or other consumer-driven contract frameworks to prevent breaking changes in services.
  • Load and performance: JMeter, k6, Gatling for simulating traffic and measuring resource limits and latency under stress.
  • Security scanners: OWASP ZAP or dedicated fuzzers for input validation, authentication, and common attack surfaces.

Automation should be baked into CI/CD pipelines: run unit and contract tests on pull requests, integration tests on feature branches or merged branches, and schedule performance/security suites on staging environments. Observability during test runs—collecting metrics, logs, and traces—helps diagnose flakiness and resource contention faster.

AI-driven analysis can accelerate test coverage and anomaly detection by suggesting high-value test cases and highlighting unusual response patterns. For teams that integrate external data feeds into their systems, services that expose robust, real-time APIs and analytics can be incorporated into test scenarios to validate third-party integrations under realistic conditions. For example, Token Metrics offers datasets and signals that can be used to simulate realistic inputs or verify integrations with external data providers.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between unit and integration API tests?

Unit tests isolate individual functions or routes using mocks and focus on internal logic. Integration tests exercise multiple components together (for example service + database) to validate interaction, data flow, and external dependencies.

How often should I run performance tests?

Run lightweight load tests during releases and schedule comprehensive performance runs on staging before major releases or after architecture changes. Frequency depends on traffic patterns and how often critical paths change.

Can AI help with API testing?

AI can suggest test inputs, prioritize test cases by risk, detect anomalies in responses, and assist with test maintenance through pattern recognition. Treat AI as a productivity augmenter that surfaces hypotheses requiring engineering validation.

What is contract testing and why use it?

Contract testing ensures providers and consumers agree on the API contract (schemas, status codes, semantics). It reduces integration regressions by failing early when expectations diverge, enabling safer deployments in distributed systems.

What are best practices for test data management?

Use deterministic fixtures, isolate test databases, anonymize production data when necessary, seed environments consistently, and prefer schema or contract assertions to validate payload correctness rather than brittle value expectations.

How do I handle flaky API tests?

Investigate root causes such as timing, external dependencies, or resource contention. Reduce flakiness by mocking unstable third parties, improving environment stability, adding idempotent retries where appropriate, and capturing diagnostic traces during failures.

Disclaimer

This article is educational and technical in nature and does not constitute investment, legal, or regulatory advice. Evaluate tools and data sources independently and test in controlled environments before production use.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products