Crypto Basics

8 Best Crypto Wallets for Investors in 2023

Get the detailed review of 8 best crypto wallets of 2023 in this descriptive guide.
Token Metrics Team
9 Minutes
MIN

In the fast-evolving world of cryptocurrencies, investors need a secure and reliable place to store their digital assets. Crypto wallets play a crucial role in providing a safe haven for these investments. 

With numerous options available in the market, it's important for investors to choose the best crypto wallets that offer both security and convenience. 

In this article, we will understand the importance of a crypto wallet and explore the best crypto wallets for investors in 2023 that offer advanced security features, user-friendly interfaces, and support for a wide range of cryptocurrencies. So let's start with the basics -

What is a Crypto Wallet?

A crypto wallet, also known as a cryptocurrency wallet, is a software application, device, or physical medium that allows users to securely store, manage, and transfer their digital assets, such as Bitcoin, Ethereum, or other cryptocurrencies. 

Its primary purpose is to provide a secure storage solution and facilitate transactions with cryptocurrencies.

Types of Crypto Wallets

1. Software Wallets

Software wallets are digital applications that can be installed on various devices to manage cryptocurrencies. They offer convenience and accessibility. Here are some common types of software wallets:

  • Mobile Wallets - Mobile wallets are smartphone applications designed to run on iOS or Android devices. They offer a user-friendly interface and enable users to manage their crypto assets on the go. 
  • Desktop Wallets - Desktop wallets are applications installed on a personal computer or laptop. They provide enhanced security features and control over the private keys. 

2. Hardware Wallets - Hardware wallets are physical devices specifically designed for storing cryptocurrencies securely. They are offline wallets, making them less susceptible to hacking attempts. Well-known hardware wallets are Ledger Nano S and Trezor.

3. Paper Wallets - Paper wallets involve printing out the public and private keys on a piece of paper. Although they offer enhanced security by keeping the keys offline, they require caution to avoid physical damage or loss.

4. Online Wallets - Online wallets, also known as web wallets, are wallets hosted on the internet by third-party service providers. While they offer convenience, they are considered less secure compared to other types of wallets due to the potential risk of hacking and theft.

Note - When selecting a crypto wallet, investors should consider several factors. Security should be the top priority, followed by ease of use, additional features, and integrations. It's crucial to choose a wallet that aligns with individual preferences and investment strategies.

List of Best Crypto Wallets in 2023

The security of your digital assets is of paramount importance when it comes to cryptocurrencies. A reliable and secure crypto wallet can protect your funds from hackers and ensure that your investments remain safe. 

Additionally, a good crypto wallet should offer a user-friendly interface, seamless integration with various exchanges, and support for multiple cryptocurrencies. 

Let's dive into the best crypto wallets available for investors in 2023.

1. Coinbase Wallet

Key Features

1. Integration with Coinbase exchange
2. Multi-signature functionality
3. Diverse cryptocurrency support

Coinbase Wallet is a popular choice for investors due to its seamless integration with the Coinbase exchange. If you're already using Coinbase, this wallet offers a convenient way to manage your funds. 

The wallet supports multi-signature functionality, adding an extra layer of security to your transactions. It also supports a diverse range of cryptocurrencies, making it suitable for investors with various portfolios.

2. MetaMask

Key Features -

1. Secure Storage
2. Multiple Account Management
3. Decentralized App (dApp) Integration

MetaMask is a widely used web wallet that serves as a gateway to the decentralized web. It seamlessly integrates with popular decentralized applications (dApps) and provides a user-friendly interface for managing multiple cryptocurrencies. 

MetaMask's emphasis on security and its compatibility with various browsers make it a suitable choice for investors seeking accessibility and versatility.

3. TrustWallet

Key Features -

1. Ability to participate in DeFi protocols
2. Integration with hardware wallets for enhanced security
3. Built-in decentralized exchange (DEX)

For investors who prefer to manage their cryptocurrencies on the go, Trust Wallet offers a seamless mobile experience. 

This decentralized wallet is compatible with both Android and iOS devices, allowing you to access your digital assets anytime, anywhere. 

Trust Wallet incorporates the latest security measures, such as biometric authentication and encrypted backups, ensuring that your funds remain secure at all times.

4. Binance

Key Features

1. User-friendly interface
2. Easy integration with the Binance exchange
3. Robust security measures with advanced encryption

The Binance wallet is a professional and user-friendly cryptocurrency storage solution. It supports multiple cryptocurrencies, ensuring flexibility for users. 

The wallet prioritizes security through encryption techniques and offline storage options. Integration with the Binance exchange allows for seamless transfers. 

Additional features include transaction history tracking and balance monitoring, providing complete control over crypto holdings. Overall, the Binance wallet is a reliable and feature-rich choice for crypto enthusiasts.

5. Exodus Wallet

Key Features

1. User-friendly interface
2. Built-in exchange for easy trading
3. Support for multiple cryptocurrencies

Exodus Wallet is a software-based wallet that combines a sleek design with a user-friendly interface. It offers a built-in exchange, allowing you to trade cryptocurrencies without leaving the wallet's interface. 

Exodus supports a variety of cryptocurrencies, making it a versatile option for investors. The wallet also provides backup options and 24/7 customer support to assist users in case of any issues.

6. Crypto.com

Key Features -

1. Advanced security measures
2. Opportunities for staking and yield farming to earn passive income
3. Support for multiple blockchain networks

Crypto.com offers a best-in-class decentralized finance (DeFi) wallet for individuals interested in decentralized finance. With top-notch security measures and a user-friendly interface, it ensures the safety and convenience of users' digital assets. 

The wallet supports multiple blockchain networks and offers easy management of cryptocurrencies, tokens, and NFTs. Additionally, it provides opportunities for staking and yield farming, allowing users to earn passive income. 

Integrated with the broader Crypto.com ecosystem, the DeFi wallet allows seamless interaction with other products and services. Overall, Crypto.com's DeFi wallet is a reliable and feature-rich option for those looking to explore the world of DeFi.

7. Ledger Nano X

Key Features

1. Bluetooth connectivity for mobile use
2. Extensive cryptocurrency support
3. Robust security measures

The Ledger Nano X is a hardware wallet that offers advanced security features and the convenience of mobility. With Bluetooth connectivity, you can connect the wallet to your mobile device and manage your crypto assets on the go. 

Ledger Nano X supports a wide range of cryptocurrencies, including popular ones like Bitcoin, Ethereum, and Ripple. The wallet employs robust security measures to protect your funds and ensures that your private keys never leave the device.

8. Trezor

Key Features

1. Secure offline storage (cold storage)
2. Support for multiple cryptocurrencies
3. User-friendly interface

Trezor is one of the most reputable crypto wallets in the market, known for its exceptional security features. It offers offline storage, also known as cold storage, which keeps your private keys completely offline, away from the reach of hackers. 

With Trezor, you can store a wide range of cryptocurrencies, including Bitcoin, Ethereum, and more. The wallet also features a user-friendly interface, making it easy for beginners to navigate and manage their digital assets.

Frequently Asked Questions

Q1. What is the best crypto wallet for beginners in 2023?

For beginners, Coinbase and Ledger Nano X are excellent choices. Both wallets offer user-friendly interfaces and robust security features to ensure a safe and convenient experience

Q2. Are there any free crypto wallets available for investors?

Yes, there are free crypto wallets available in the market. Wallets like Exodus and Coinbase Wallet offer free versions with basic features. 

However, it's important to note that paid wallets often provide additional security features and enhanced functionality.

Q3. Can I store multiple cryptocurrencies in a single wallet?

Yes, many crypto wallets support multiple cryptocurrencies. Wallets like Trezor, Ledger Nano X, Exodus, and Coinbase Wallet allow you to store various cryptocurrencies in a single wallet, providing convenience for investors with diverse portfolios.

Q4. What is the difference between hardware wallets and software wallets?

Hardware wallets, such as Trezor and Ledger Nano X, are physical devices that store your private keys offline. They offer enhanced security by keeping your keys away from internet-connected devices. 

On the other hand, software wallets, like Exodus and Coinbase Wallet, are applications or programs installed on your computer or mobile device. They offer convenience and easy accessibility but may have slightly lower security compared to hardware wallets.

Q5. Can I recover my crypto assets if I lose my wallet or it gets damaged?

Most crypto wallets provide a recovery process known as the seed phrase or recovery phrase. This is a sequence of words that act as a backup for your wallet. 

If you lose your wallet or it gets damaged, you can use the seed phrase to restore your crypto assets on a new wallet or device.

Q6. How can I ensure the security of my crypto wallet?

To ensure the security of your crypto wallet, it's important to follow these best practices:

  • Choose a reputable and well-established wallet provider.
  • Enable two-factor authentication (2FA) for an added layer of security.
  • Keep your wallet software and devices up to date with the latest security patches.
  • Use a strong and unique password for your wallet.
  • Backup your wallet's seed phrase in a safe and secure location.
  • Be cautious of phishing attempts and only download wallet software from official sources.

Conclusion

Selecting the appropriate cryptocurrency wallet is crucial for safeguarding your digital assets and ensuring a seamless investment journey as a crypto investor. 

By comprehending the different wallet types accessible along with their distinct features, you can make an informed decision that perfectly aligns with your requirements and priorities.

Remember to consider your specific needs and preferences when selecting a wallet. Secure your investments and enjoy the exciting world of cryptocurrencies with a reliable crypto wallet.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How Application Interfaces Work

Token Metrics Team
6
MIN

APIs power modern software by acting as intermediaries that let different programs communicate. Whether you use a weather app, sign in with a social account, or combine data sources for analysis, APIs are the plumbing behind those interactions. This guide breaks down what an API is, how it works, common types and use cases, plus practical steps to evaluate and use APIs responsibly.

What an API Is and Why It Matters

An application programming interface (API) is a contract between two software components. It specifies the methods, inputs, outputs, and error handling that allow one service to use another’s functionality or data without needing to know its internal implementation. Think of an API as a well-documented door: the requester knocks with a specific format, and the server replies according to agreed rules.

APIs matter because they:

  • Enable modular development and reuse of functionality across teams and products.
  • Abstract complexity so consumers focus on features rather than implementation details.
  • Drive ecosystems: public APIs can enable third-party innovation and integrations.

How APIs Work: Key Components

At a technical level, an API involves several elements that define reliable communication:

  • Endpoint: A URL or address where a service accepts requests.
  • Methods/Operations: Actions permitted by the API (e.g., read, create, update, delete).
  • Payload and Format: Data exchange format—JSON and XML are common—and schemas that describe expected fields.
  • Authentication & Authorization: Mechanisms like API keys, OAuth, or JWTs that control access.
  • Rate Limits and Quotas: Controls on request volume to protect stability and fairness.
  • Versioning: Strategies (URI versioning, header-based) for evolving an API without breaking clients.

Most web APIs use HTTP as a transport; RESTful APIs map CRUD operations to HTTP verbs, while alternatives like GraphQL let clients request exactly the data they need. The right style depends on use cases and performance trade-offs.

Common API Use Cases and Types

APIs appear across many layers of software and business models. Common categories include:

  • Public (Open) APIs: Exposed to external developers to grow an ecosystem—examples include mapping, social, and payment APIs.
  • Private/Internal APIs: Power internal systems and microservices within an organization for modularity.
  • Partner APIs: Shared with specific business partners under contract for integrated services.
  • Data APIs: Provide structured data feeds (market data, telemetry, or on-chain metrics) used by analytics and AI systems.

Practical examples: a mobile app calling a backend to fetch user profiles, an analytics pipeline ingesting a third-party data API, or a serverless function invoking a payment API to process transactions.

Design, Security, and Best Practices

Designing and consuming APIs effectively requires both technical and governance considerations:

  1. Design for clarity: Use consistent naming, clear error codes, and robust documentation to reduce friction for integrators.
  2. Plan for versioning: Avoid breaking changes by providing backward compatibility or clear migration paths.
  3. Secure your interfaces: Enforce authentication, use TLS, validate inputs, and implement least-privilege authorization.
  4. Observe and throttle: Monitor latency, error rates, and apply rate limits to protect availability.
  5. Test and simulate: Provide sandbox environments and thorough API tests for both functional and load scenarios.

When evaluating an API to integrate, consider documentation quality, SLAs, data freshness, error handling patterns, and cost model. For data-driven workflows and AI systems, consistency of schemas and latency characteristics are critical.

APIs for Data, AI, and Research Workflows

APIs are foundational for AI and data research because they provide structured, automatable access to data and models. Teams often combine multiple APIs—data feeds, enrichment services, feature stores—to assemble training datasets or live inference pipelines. Important considerations include freshness, normalization, rate limits, and licensing of data.

AI-driven research platforms can simplify integration by aggregating multiple sources and offering standardized endpoints. For example, Token Metrics provides AI-powered analysis that ingests diverse signals via APIs to support research workflows and model inputs.

Discover Crypto Gems with Token Metrics AI

Token Metrics uses AI-powered analysis to help you uncover profitable opportunities in the crypto market. Get Started For Free

What is an API? (FAQ)

1. What does API stand for and mean?

API stands for Application Programming Interface. It is a set of rules and definitions that lets software components communicate by exposing specific operations and data formats.

2. How is a web API different from a library or SDK?

A web API is accessed over a network (typically HTTP) and provides remote functionality or data. A library or SDK is code included directly in an application. APIs enable decoupled services and cross-platform access; libraries are local dependencies.

3. What are REST, GraphQL, and gRPC?

REST is an architectural style using HTTP verbs and resource URIs. GraphQL lets clients specify exactly which fields they need in a single query. gRPC is a high-performance RPC framework using protocol buffers and is suited for internal microservice communication with strict performance needs.

4. How do I authenticate to an API?

Common methods include API keys, OAuth 2.0 for delegated access, and JWTs for stateless tokens. Choose an approach that matches security requirements and user interaction patterns; always use TLS to protect credentials in transit.

5. What are typical failure modes and how should I handle them?

Failures include rate-limit rejections, transient network errors, schema changes, and authentication failures. Implement retries with exponential backoff for transient errors, validate responses, and monitor for schema or semantic changes.

6. Can APIs be used for real-time data?

Yes. Polling HTTP APIs at short intervals can approximate near-real-time, but push-based models (webhooks, streaming APIs, WebSockets, or event streams) are often more efficient and lower latency for real-time needs.

7. How do I choose an API provider?

Evaluate documentation, uptime history, data freshness, pricing, rate limits, privacy and licensing, and community support. For data or AI integrations, prioritize consistent schemas, sandbox access, and clear SLAs.

8. How can I learn to design APIs?

Start with principles like consistent resource naming, strong documentation (OpenAPI/Swagger), automated testing, and security by design. Study public APIs from major platforms and use tools that validate contracts and simulate client behavior.

Disclaimer

This article is for educational and informational purposes only. It does not constitute investment advice, financial recommendations, or endorsements. Readers should perform independent research and consult qualified professionals where appropriate.

Research

Understanding APIs: How They Power Modern Apps

Token Metrics Team
5
MIN

APIs — short for application programming interfaces — are the invisible connectors that let software systems communicate, share data, and build layered services. Whether you’re building a mobile app, integrating a payment gateway, or connecting an AI model to live data, understanding what an API does and how it behaves is essential for modern product and research teams.

What is an API? Core definition and types

An API is a defined set of rules, protocols, and tools that lets one software component request services or data from another. Conceptually, an API is an interface: it exposes specific functions and data structures while hiding internal implementation details. That separation supports modular design, reusability, and clearer contracts between teams or systems.

Common API categories include:

  • Web APIs: HTTP-based interfaces that deliver JSON, XML, or other payloads (e.g., REST, GraphQL).
  • Library or SDK APIs: Language-specific function calls bundled as libraries developers import into applications.
  • Operating system APIs: System calls that let applications interact with hardware or OS services.
  • Hardware APIs: Protocols that enable communication with devices and sensors.

How APIs work: a technical overview

At a high level, interaction with an API follows a request-response model. A client sends a request to an endpoint with a method (e.g., GET, POST), optional headers, and a payload. The server validates the request, performs logic or database operations, and returns a structured response. Key concepts include:

  • Endpoints: URLs or addresses where services are exposed.
  • Methods: Actions such as read, create, update, delete represented by verbs (HTTP methods or RPC calls).
  • Authentication: How the API verifies callers (API keys, OAuth tokens, mTLS).
  • Rate limits: Controls that restrict how frequently a client can call an API to protect availability.
  • Schemas and contracts: Data models (OpenAPI, JSON Schema) that document expected inputs/outputs.

Advanced setups add caching, pagination, versioning, and webhook callbacks for asynchronous events. GraphQL, in contrast to REST, enables clients to request exactly the fields they need, reducing over- and under-fetching in many scenarios.

Use cases across industries: from web apps to crypto and AI

APIs are foundational in nearly every digital industry. Example use cases include:

  • Fintech and payments: APIs connect merchant systems to payment processors and banking rails.
  • Enterprise integration: APIs link CRM, ERP, analytics, and custom services for automated workflows.
  • Healthcare: Secure APIs share clinical data while complying with privacy standards.
  • AI & ML: Models expose inference endpoints so apps can send inputs and receive predictions in real time.
  • Crypto & blockchain: Crypto APIs provide price feeds, on-chain data, wallet operations, and trading endpoints for dApps and analytics.

In AI and research workflows, APIs let teams feed models with curated live data, automate labeling pipelines, or orchestrate multi-step agent behavior. In crypto, programmatic access to market and on-chain signals enables analytics, monitoring, and application integration without manual data pulls.

Best practices and security considerations

Designing and consuming APIs requires intentional choices: clear documentation, predictable error handling, and explicit versioning reduce integration friction. Security measures should include:

  • Authentication & authorization: Use scoped tokens, OAuth flows, and least-privilege roles.
  • Transport security: Always use TLS/HTTPS to protect data in transit.
  • Input validation: Sanitize and validate data to prevent injection attacks.
  • Rate limiting & monitoring: Protect services from abuse and detect anomalies through logs and alerts.
  • Dependency management: Track third-party libraries and patch vulnerabilities promptly.

When integrating third-party APIs—especially for sensitive flows like payments or identity—run scenario analyses for failure modes, data consistency, and latency. For AI-driven systems, consider auditability and reproducibility of inputs and outputs to support troubleshooting and model governance.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is an API?

Q: What is the simplest way to think about an API?

A: Think of an API as a waiter in a restaurant: it takes a client’s request, communicates with the kitchen (the server), and delivers a structured response. The waiter abstracts the kitchen’s complexity.

FAQ — What types of APIs exist?

Q: Which API styles should I consider for a new project?

A: Common choices are REST for broad compatibility, GraphQL for flexible queries, and gRPC for high-performance microservices. Selection depends on client needs, payload shape, and latency requirements.

FAQ — How do APIs handle authentication?

Q: What authentication methods are typical?

A: Typical methods include API keys for simple access, OAuth2 for delegated access, JWT tokens for stateless auth, and mutual TLS for high-security environments.

FAQ — What are common API security risks?

Q: What should teams monitor to reduce API risk?

A: Monitor for excessive request volumes, suspicious endpoints, unusual payloads, and repeated failed auth attempts. Regularly review access scopes and rotate credentials.

FAQ — How do APIs enable AI integration?

Q: How do AI systems typically use APIs?

A: AI systems use APIs to fetch data for training or inference, send model inputs to inference endpoints, and collect telemetry. Well-documented APIs support reproducible experiments and production deployment.

Disclaimer

This article is for educational and informational purposes only. It does not provide financial, legal, or professional advice. Evaluate third-party services carefully and consider security, compliance, and operational requirements before integration.

Research

APIs Explained: What Is an API and How It Works

Token Metrics Team
5
MIN

APIs (application programming interfaces) are the invisible connectors that let software systems talk to each other. Whether you open a weather app, sign in with a social account, or call a machine-learning model, an API is usually orchestrating the data exchange behind the scenes. This guide explains what an API is, how APIs work, common types and use cases, and practical frameworks to evaluate or integrate APIs into projects.

What is an API? Definition & core concepts

An API is a set of rules, protocols, and tools that defines how two software components communicate. At its simplest, an API specifies the inputs a system accepts, the outputs it returns, and the behavior in between. APIs abstract internal implementation details so developers can reuse capabilities without understanding the underlying codebase.

Key concepts:

  • Endpoints: Network-accessible URLs or methods where requests are sent.
  • Requests & responses: Structured messages (often JSON or XML) sent by a client and returned by a server.
  • Authentication: Mechanisms (API keys, OAuth, tokens) that control who can use the API.
  • Rate limits: Constraints on how often the API can be called.

How APIs work: a technical overview

Most modern APIs use HTTP as the transport protocol and follow architectural styles such as REST or GraphQL. A typical interaction looks like this:

  1. Client constructs a request (method, endpoint, headers, payload).
  2. Request is routed over the network to the API server.
  3. Server authenticates and authorizes the request.
  4. Server processes the request, possibly calling internal services or databases.
  5. Server returns a structured response with status codes and data.

APIs also expose documentation and machine-readable specifications (OpenAPI/Swagger, RAML) that describe available endpoints, parameters, data models, and expected responses. Tools can generate client libraries and interactive docs from these specs, accelerating integration.

Types of APIs and common use cases

APIs serve different purposes depending on design and context:

  • Web APIs (REST/HTTP): Most common for web and mobile backends. Use stateless requests, JSON payloads, and standard HTTP verbs.
  • GraphQL APIs: Allow clients to request precisely the fields they need, reducing over-fetching.
  • RPC and gRPC: High-performance, typed remote procedure calls used in microservices and internal infrastructure.
  • SDKs and libraries: Language-specific wrappers around raw APIs to simplify usage.
  • Domain-specific APIs: Payment APIs, mapping APIs, social login APIs, and crypto APIs that expose blockchain data, wallet operations, and on-chain analytics.

Use cases span the product lifecycle: integrating third-party services, composing microservices, extending platforms, or enabling AI models to fetch and write data programmatically.

Evaluating and integrating APIs: a practical framework

When selecting or integrating an API, apply a simple checklist to reduce technical risk and operational friction:

  • Specification quality: Is there an OpenAPI spec, clear examples, and machine-readable docs?
  • Authentication: What auth flows are supported and do they meet your security model?
  • Rate limits & quotas: Do limits match your usage profile? Are paid tiers available for scale?
  • Error handling: Are error codes consistent and documented to support robust client logic?
  • Latency & reliability: Benchmark typical response times and uptime SLAs for production readiness.
  • Data semantics & provenance: For analytics or financial data, understand update frequency, normalization, and source trustworthiness.

Operationally, start with a sandbox key and integrate incrementally: mock responses in early stages, implement retry/backoff and circuit breakers, and monitor usage and costs in production.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common questions about APIs

What is the difference between REST and GraphQL?

REST organizes resources as endpoints and often returns fixed data shapes per endpoint. GraphQL exposes a single endpoint where clients request the exact fields they need. REST is simple and cache-friendly; GraphQL reduces over-fetching but can require more server-side control and caching strategies.

How do API keys and OAuth differ?

API keys are simple tokens issued to identify a client and are easy to use for server-to-server interactions. OAuth provides delegated access where a user can authorize a third-party app to act on their behalf without sharing credentials; it's essential for user-consent flows.

Are there standards for API documentation?

Yes. OpenAPI (formerly Swagger) is widely used for REST APIs and supports automated client generation and interactive documentation. GraphQL has its own schema specification and introspection capabilities. Adopting standards improves developer experience significantly.

What security considerations matter most for APIs?

Common practices include strong authentication, TLS encryption, input validation, explicit authorization, rate limiting, and logging. For sensitive data, consider data minimization, field-level encryption, and strict access controls.

How can AI models use APIs?

AI models can call APIs to fetch external context, enrich inputs, or persist outputs. Examples include retrieving live market data, fetching user profiles, or invoking specialized ML inference services. Manage latency, cost, and error handling when chaining many external calls in a pipeline.

Disclaimer

This article is for educational and informational purposes only. It does not constitute professional, legal, or financial advice. Evaluate any API, provider, or integration according to your own technical, legal, and security requirements before use.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products