Back to blog
Research

Coinbase Base App Revolution: Why This Crypto Super App Could Change Everything

The Coinbase Base app represents a potentially transformative moment in crypto infrastructure. By combining social features, trading capabilities, and developer tools into a single platform, it could become the primary gateway for mainstream crypto adoption.
Token Metrics Team
6 min
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

The cryptocurrency industry is witnessing a paradigm shift as major exchanges race to build comprehensive "super apps" that consolidate trading, social features, and DeFi into single platforms. Leading this revolution is Coinbase's Base app, a ambitious project that could redefine how users interact with crypto.

What is the Base App?

The Base app represents Coinbase's vision of a crypto "everything app" – think WeChat for the blockchain era. Built on Coinbase's Layer 2 solution, Base, this platform integrates multiple crypto functions into one seamless experience:

Core Features

1. Centralized & Decentralized Trading

  • Full Coinbase exchange access
  • Integrated DEX trading (Aerodrome, Uniswap, others)
  • Real-time price discovery across venues
  • Professional trading tools for retail users

2. Social Creator Economy

  • Zora-powered social feeds
  • Creator coin monetization
  • Weekly reward distributions
  • Direct creator-to-fan interactions

3. Mini App Ecosystem

  • Farcaster-powered applications
  • Gaming and entertainment
  • DeFi protocol interfaces (Morpho, others)
  • Developer-friendly SDK

4. Integrated Payments

  • Base Pay for USDC transactions
  • Merchant integrations
  • Cross-border payments
  • Traditional payment rails bridge

The Technical Foundation: Farcaster Integration

What is Farcaster?

Farcaster serves as the technical backbone for the Base app's social and mini-app functionality. As a decentralized social networking protocol built on Ethereum, Farcaster enables:

  • Decentralized Identity: User-owned social graphs
  • Mini App Development: Easy-to-build social applications
  • Creator Monetization: Native token and NFT integration
  • Censorship Resistance: No single point of control

Developer Opportunities

The Base app ecosystem presents significant opportunities for developers:

Mini App Development:

  • Low barrier to entry with comprehensive SDKs
  • Built-in user base through Base app distribution
  • Viral potential through social integration
  • Multiple monetization options

Success Stories:

  • ZORA: Creator coins and content monetization
  • BankerCoin: Trading and transaction automation
  • Noice: Micro-tipping and creator coin distribution
  • QR Coin: Dynamic billboard advertising through QR auctions
  • DeFi Interfaces: Direct protocol access within the app

Market Impact: The Exchange Wars

The Race for Exchange Blockchains

Multiple major exchanges are pursuing similar strategies:

Coinbase (Base):

  • First-mover advantage in US market
  • Strong regulatory compliance
  • Institutional trust and backing

OKX (X Layer):

  • Recent 100%+ pump in OKB token
  • Focus on Asian markets
  • Advanced trading features

Binance (BNB Chain):

  • Established ecosystem with largest user base
  • Strong international presence
  • Comprehensive DeFi integration

Kraken (Inc L2):

  • Traditional finance integration
  • Professional trader focus
  • Regulatory compliance emphasis

Token Economics and Valuations

The exchange blokchain trend is driving significant value creation:

BNB Example:

  • Market cap: ~$100 billion
  • Exceeds Coinbase's equity valuation (~$84 billion)
  • Demonstrates token premium over traditional equity

Implications for Coinbase:

  • Potential Base token could double company's valuation
  • Regulatory clarity improving launch prospects
  • Investor pressure mounting for tokenization

Why the Base App Could Win

Unique Advantages

1. Regulatory Clarity

  • US-based with clear compliance framework
  • Trump administration crypto-friendly policies
  • Established relationships with regulators

2. User Experience Focus

  • Mobile-first design philosophy
  • Intuitive interface for crypto newcomers
  • Seamless onboarding from traditional finance

3. Ecosystem Integration

  • Direct fiat on/off ramps
  • Credit card integration
  • Traditional payment methods

4. Developer Support

  • Comprehensive documentation
  • Active developer community
  • Regular hackathons and boot camps
  • Financial incentives for builders

Network Effects

The Base app is designed to create powerful network effects:

  • More users attract more developers
  • More apps provide more utility
  • More utility drives more user adoption
  • More adoption increases token value and ecosystem rewards

Investment Opportunities

Direct Plays

Aerodrome (AERO):

  • Primary liquidity provider for Base
  • Direct integration benefits
  • Lower market cap than competitors
  • Significant upside as Base app scales

Farcaster Ecosystem:

  • Potential token launch expected
  • $180M raised in funding
  • Critical infrastructure provider
  • Mini app revenue sharing potential

Indirect Beneficiaries

Zora (ZORA):

  • Social layer integration
  • Creator economy infrastructure
  • NFT and creator coin platforms
  • Growing adoption metrics

Base Ecosystem Tokens:

  • Early-stage projects building on Base
  • Mini app tokens and creator coins
  • Protocol tokens with Base integration

Risks and Challenges

Technical Risks

Scalability Concerns:

  • L2 transaction capacity limitations
  • User experience during high demand
  • Cross-chain interoperability challenges

Competition Intensity:

  • Multiple well-funded competitors
  • Rapid feature copying
  • User acquisition costs

Regulatory Risks

Token Launch Uncertainty:

  • SEC approval for Base token unclear
  • Potential classification issues
  • Compliance costs and restrictions

International Expansion:

  • Varying regulatory frameworks
  • Competition from local players
  • Operational complexity

Market Risks

Narrative Rotation:

  • Crypto market attention spans shortening
  • Base narrative may be temporary
  • Other sectors could emerge as dominant

The Broader Implications

Industry Transformation

The success of super apps could fundamentally change crypto:

User Behavior:

  • Single app for all crypto needs
  • Reduced friction for newcomers
  • Higher engagement and retention

Developer Economics:

  • Platform dependency risks
  • Revenue sharing models
  • Innovation constraints vs. opportunities

Market Structure:

  • Exchange consolidation pressures
  • Middleware protocol opportunities
  • New value capture mechanisms

Traditional Finance Disruption

Crypto super apps pose a direct threat to:

  • Traditional payment processors
  • Social media platforms
  • Financial services companies
  • E-commerce platforms

Getting Started: Early Access Strategy

For Users

Current Status: Limited beta with waitlist Access Methods:

  • Team invitations only (no user referrals)
  • Active development with user feedback integration
  • Expected full launch within 1-2 months

Preparation Steps:

  1. Follow Base and Coinbase social channels
  2. Engage with Base ecosystem projects
  3. Participate in developer communities
  4. Build early adoption portfolio positions

For Developers

Opportunity Windows:

  • Mini app development with Farcaster SDK
  • Base ecosystem tool creation
  • Creator economy infrastructure
  • Cross-chain bridge solutions

Long-Term Vision

The Base app represents more than just another crypto platform – it's a bet on the future of digital interaction. Success could establish Coinbase as the dominant force in crypto user experience, while failure could cede ground to more agile competitors.

Key Success Metrics to Watch

User Adoption:

  • Daily active users growth
  • Transaction volume trends
  • User retention rates
  • Geographic expansion

Developer Ecosystem:

  • Mini app quantity and quality
  • Developer retention rates
  • Revenue sharing distributions
  • Innovation rate

Market Performance:

  • Base ecosystem token performance
  • Trading volume growth
  • Creator economy metrics
  • Cross-platform integrations

Conclusion

The Coinbase Base app represents a potentially transformative moment in crypto infrastructure. By combining social features, trading capabilities, and developer tools into a single platform, it could become the primary gateway for mainstream crypto adoption.

For investors and developers, the opportunity lies not just in the Base app itself, but in the entire ecosystem it's creating. Early positioning in Base-native projects, particularly those with lower market caps and strong integration potential, could yield significant returns as the platform scales.

However, success is far from guaranteed. The competitive landscape is intense, regulatory challenges remain, and crypto market narratives shift rapidly. The winners will be those who can execute flawlessly while adapting to changing market conditions.

The race for the crypto super app is just beginning – and the Base app has taken an early lead.

Stay ahead of crypto infrastructure trends. The platforms that win user mindshare today will shape the industry's future tomorrow.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Understanding REST APIs: Design, Security & Best Practices

Token Metrics Team
5

Modern web and mobile applications rely heavily on REST APIs to exchange data, integrate services, and enable automation. Whether you're building a microservice, connecting to a third-party data feed, or wiring AI agents to live systems, a clear understanding of REST API fundamentals helps you design robust, secure, and maintainable interfaces.

What is a REST API?

REST (Representational State Transfer) is an architectural style for distributed systems. A REST API exposes resources—often represented as JSON or XML—using URLs and standard HTTP methods. REST is not a protocol but a set of constraints that favor statelessness, resource orientation, and a uniform interface.

Key benefits include simplicity, broad client support, and easy caching, which makes REST a default choice for many public and internal APIs. Use-case examples include content delivery, telemetry ingestion, authentication services, and integrations between backend services and AI models that require data access.

Core Principles & HTTP Methods

Understanding core REST principles helps you map business entities to API resources and choose appropriate operations:

  • Resources: Model nouns (e.g., /users, /orders) rather than actions.
  • Statelessness: Every request should contain all information to process it; avoid server-side session state.
  • Representation: Use consistent formats such as JSON:API or HAL for predictable payloads.
  • HTTP Verbs: GET for retrieval, POST to create, PUT/PATCH to update, DELETE to remove. Idempotency and safety semantics matter when designing retries and error handling.
  • Status Codes: Use standard HTTP status codes (200, 201, 204, 400, 401, 403, 404, 429, 500) to communicate outcomes clearly to clients.

Adhering to these constraints makes integrations easier, especially when connecting analytics, monitoring, or AI-driven agents that rely on predictable behavior and clear failure modes.

Design Patterns and Best Practices

Building a usable REST API involves choices beyond the basics. Consider these patterns and practices:

  • Versioning: Use URI (e.g., /v1/) or header-based versioning to avoid breaking clients when evolving schemas.
  • Pagination and Filtering: Support limit/offset or cursor-based pagination and flexible query filters to keep responses performant.
  • Hypermedia (HATEOAS): Optionally include links to related resources to improve discoverability for advanced clients.
  • Idempotency Keys: For non-idempotent operations, accept idempotency keys so retries don’t create duplicates.
  • Documentation and SDKs: Maintain OpenAPI/Swagger specs and generate client SDKs to reduce integration friction.

For teams building APIs that feed ML or AI pipelines, consistent schemas and semantic versioning are particularly important. They minimize downstream data drift and make model retraining and validation repeatable.

Security, Monitoring, and Scaling

Security and operational visibility are core to production APIs:

  • Authentication & Authorization: Use OAuth 2.0, JWTs, or API keys depending on risk profile. Apply least-privilege principles to tokens and scopes.
  • Transport Security: Enforce TLS for all traffic and HSTS where applicable.
  • Rate Limiting & Throttling: Protect against abuse and ensure fair usage. Return clear retry-after headers to guide clients.
  • Observability: Emit structured logs, request IDs, and metrics (latency, error rates) and hook them into dashboards and alerting systems.
  • Schema Validation: Validate payloads at the boundary to prevent invalid data from propagating into downstream services.

Scaling often combines stateless application design, caching (CDNs or reverse proxies), and horizontal autoscaling behind load balancers. For APIs used by data-hungry AI agents, consider async patterns (webhooks, message queues) to decouple long-running tasks from synchronous request flows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQs

What distinguishes REST from other API styles like GraphQL?

REST emphasizes resources and uses HTTP verbs and status codes. GraphQL exposes a flexible query language letting clients request only needed fields. REST is often simpler to cache and monitor, while GraphQL can reduce over-fetching for complex nested data. Choose based on client needs, caching, and complexity.

How should I version a REST API without breaking clients?

Common strategies include URI versioning (/v1/) and header-based versioning. Maintain backward compatibility whenever possible, provide deprecation notices, and publish migration guides. Semantic versioning of your API contract helps client teams plan upgrades.

What are practical steps to secure a public REST API?

Require TLS, use strong authentication (OAuth 2.0 or signed tokens), validate inputs, enforce rate limits, and monitor anomalous traffic. Regularly audit access controls and rotate secrets. Security posture should be part of the API lifecycle.

How can REST APIs support AI-driven workflows?

APIs can supply training data, feature stores, and live inference endpoints. Design predictable schemas, low-latency endpoints, and asynchronous jobs for heavy computations. Tooling and observability help detect data drift, which is critical for reliable AI systems. Platforms like Token Metrics illustrate how API-led data can support model-informed insights.

When should I use synchronous vs asynchronous API patterns?

Use synchronous APIs for short, fast operations with immediate results. For long-running tasks (batch processing, complex model inference), use asynchronous patterns: accept a request, return a job ID, and provide status endpoints or webhooks to report completion.

Disclaimer

This article is educational and technical in nature. It does not constitute investment, legal, or professional advice. Evaluate tools and architectures against your requirements and risks before deployment.

Research

Practical Guide to Building Robust REST APIs

Token Metrics Team
5

REST APIs power much of the web and modern integrations—from mobile apps to AI agents that consume structured data. Understanding the principles, common pitfalls, and operational practices that make a REST API reliable and maintainable helps teams move faster while reducing friction when integrating services.

What Is a REST API and Why It Matters

Representational State Transfer (REST) is an architectural style for networked applications. A REST API exposes resources (users, accounts, prices, etc.) via predictable HTTP endpoints and methods (GET, POST, PUT, DELETE). Its simplicity, cacheability, and wide tooling support make REST a go-to pattern for many back-end services and third-party integrations.

Key behavioral expectations include statelessness (each request contains the information needed to process it), use of standard HTTP status codes, and a resource-oriented URI design. These conventions improve developer experience and enable robust monitoring and error handling across distributed systems.

Core Design Principles and Endpoint Modeling

Designing a clear resource model at the outset avoids messy ad-hoc expansions later. Consider these guidelines:

  • Use nouns for resources: /users/123/orders, not /getUserOrder?id=123.
  • Support filtering and pagination: query parameters like ?limit=50&cursor=... prevent heavy payloads and improve UX.
  • Version with intent: /v1/ or header-based versioning can be used. Document breaking changes and provide migration paths.
  • Return consistent error shapes: include machine-readable codes, human messages, and optionally documentation links.

Model relationships thoughtfully: prefer nested resources for clarity (e.g., /projects/42/tasks) but avoid excessive nesting depth. A well-documented schema contract reduces integration errors and accelerates client development.

Authentication, Authorization & Security Practices

Security for REST APIs is multi-layered. Common patterns:

  • Token-based auth: OAuth 2.0 bearer tokens or API keys for service-to-service calls.
  • Scopes and RBAC: scope tokens narrowly to minimize blast radius; implement role-based access control for complex domains.
  • Transport security: always require TLS (HTTPS) and enforce secure headers (HSTS, CSP where relevant).
  • Validate inputs: server-side validation and strict schema checks prevent injection and logic errors.

Also consider rate limiting, token expiry, and key rotation policies. For APIs that surface sensitive data, adopt least-privilege principles and audit logging so access patterns can be reviewed.

Performance, Caching & Reliability

Latency and scalability are often where APIs meet their limits. Practical levers include:

  • HTTP caching: use ETags, Cache-Control, and conditional requests to reduce payloads and server load.
  • Pagination and streaming: avoid returning entire datasets; prefer cursors or chunked responses for large collections.
  • CDN and edge caching: cache public or semi-static responses at the edge to reduce origin traffic.
  • Graceful degradation and circuit breakers: fallback behaviors for downstream failures keep core features available.

Instrument your API with observability: structured logs, distributed traces, and metrics (latency, error rates, throughput). These signals enable data-driven tuning and prioritized fixes.

Testing, Tooling & Developer Experience

Quality APIs are well-tested and easy to adopt. Include:

  • Contract tests: verify server responses meet the documented schema to prevent regressions.
  • Integration and end-to-end tests: test authentication flows, error handling, and rate-limit behaviors.
  • Interactive docs and SDKs: OpenAPI/Swagger specs, Postman collections, and generated client libraries lower friction for integrators.
  • Mock servers: let front-end and AI agent teams iterate without waiting on back-end deployments.

Automate CI checks that validate linting, schema changes, and security scanning to maintain long-term health.

REST APIs for Crypto Data and AI Agents

When REST APIs expose market data, on-chain metrics, or signal feeds for analytics and AI agents, additional considerations apply. Data freshness, deterministic timestamps, provenance metadata, and predictable rate limits matter for reproducible analytics. Design APIs so consumers can:

  • Request time-series data with explicit timezones and sampling resolutions.
  • Retrieve provenance (source, block number, or snapshot id) to allow historical reconstruction.
  • Subscribe to webhooks or use polling efficiently to keep agents synchronized without exceeding quotas.

AI-driven workflows often combine multiple endpoints; consistent schemas and clear quotas simplify orchestration and reduce operational surprises. For example, Token Metrics demonstrates how structured crypto insights can be surfaced via APIs to support research and model inputs for agents.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Frequently Asked Questions

What is the difference between REST and RESTful?

"REST" refers to the architectural constraints defined by Roy Fielding. "RESTful" is an informal adjective describing APIs that follow REST principles—though implementations vary in how strictly they adhere to the constraints.

How should I version a REST API?

Use semantic intent when versioning. URL-based versions (e.g., /v1/) are explicit, while header-based or content negotiation approaches avoid URL churn. Regardless, document deprecation timelines and provide backward-compatible pathways.

When should I use REST versus GraphQL?

REST is simple and cache-friendly for resource-centric models. GraphQL excels when clients need flexible queries across nested relationships. Consider client requirements, caching strategy, and operational complexity when choosing.

How do I handle rate limiting and quotas?

Expose limit headers, return standard status codes (e.g., 429), and provide retry-after guidance. Offer tiered quotas and clear documentation so integrators can design backoffs and fallback strategies.

What tools help document and test REST APIs?

OpenAPI (Swagger) for specs, Postman for interactive exploration, Pact for contract testing, and CI-integrated schema validators are common choices. Combine these with monitoring and API gateways for observability and enforcement.

Disclaimer

This article is for educational and technical reference only. It is not financial, legal, or investment advice. Always evaluate tools and services against your own technical requirements and compliance obligations before integrating them into production systems.

Research

Mastering REST APIs: Principles, Design, Practices

Token Metrics Team
5

REST APIs power most modern web and mobile back ends by providing a uniform, scalable way to exchange data over HTTP. Whether you are building microservices, connecting AI agents, or integrating third‑party feeds, understanding the architectural principles, design patterns, and operational tradeoffs of REST can help you build reliable systems. This article breaks down core concepts, design best practices, security measures, and practical steps to integrate REST APIs with analytics and AI workflows.

Understanding REST API Fundamentals

REST (Representational State Transfer) is an architectural style for distributed systems. It emphasizes stateless interactions, resource-based URIs, and the use of standard HTTP verbs (GET, POST, PUT, DELETE, PATCH). Key constraints include:

  • Statelessness: Each request contains all necessary context, simplifying server design and enabling horizontal scaling.
  • Resource orientation: Resources are identified by URIs and represented in formats such as JSON or XML.
  • Uniform interface: Consistent use of HTTP methods and status codes improves predictability and interoperability.

When designing APIs, aim for clear resource models, intuitive endpoint naming, and consistent payload shapes. Consider versioning strategies (URL vs header) from day one to avoid breaking clients as your API evolves.

Design Patterns and Best Practices for REST APIs

Good API design balances usability, performance, and maintainability. Adopt these common patterns:

  • Resource naming: Use plural nouns (/users, /orders) and hierarchical paths to express relationships.
  • HTTP semantics: Map create/read/update/delete to POST/GET/PUT/DELETE and use PATCH for partial updates.
  • Pagination and filtering: Return large collections with pagination (cursor or offset) and provide filters and sort parameters.
  • Hypermedia (HATEOAS): Include links to related resources when appropriate to make APIs self-descriptive.
  • Error handling: Use structured error responses with machine-readable codes and human-friendly messages.

Document endpoints with examples and schemas (OpenAPI/Swagger). Automated documentation and SDK generation reduce integration friction and lower client-side errors.

Securing and Scaling REST APIs

Security and operational resilience are core concerns for production APIs. Consider the following layers:

  • Authentication & authorization: Use OAuth2, JWT, or API keys depending on threat model. Keep tokens short-lived and enforce least privilege.
  • Input validation: Validate all incoming data to prevent injection and logic vulnerabilities.
  • Rate limiting & throttling: Protect backends from abuse and noisy neighbors by implementing quotas and backoff signals.
  • Transport security: Enforce TLS (HTTPS) and configure secure ciphers and headers.
  • Observability: Expose metrics, structured logs, and distributed traces to troubleshoot latency and failure modes.

For scale, design for statelessness so instances are replaceable, use caching (HTTP cache headers, CDN, or edge caches), and partition data to reduce contention. Use circuit breakers and graceful degradation to maintain partial service during downstream failures.

Integrating REST APIs with AI, Analytics, and Crypto Workflows

REST APIs are frequently used to feed AI models, aggregate on‑chain data, and connect analytics pipelines. Best practices for these integrations include:

  • Schema contracts: Define stable, versioned schemas for model inputs and analytics outputs to avoid silent breakages.
  • Batch vs streaming: Choose between batch endpoints for bulk processing and streaming/webhook patterns for real‑time events.
  • Data provenance: Attach metadata and timestamps so downstream models can account for data freshness and lineage.
  • Testing: Use contract tests and synthetic data generators to validate integrations before deploying changes.

To accelerate research workflows and reduce time-to-insight, many teams combine REST APIs with AI-driven analytics. For example, external platforms can provide curated market and on‑chain data through RESTful endpoints that feed model training or signal generation. One such option for consolidated crypto data access is Token Metrics, which can be used as part of an analysis pipeline to augment internal data sources.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common REST API Questions

What is the difference between REST and RESTful?

REST is an architectural style defined by constraints; "RESTful" describes services that adhere to those principles. In practice, many APIs are called RESTful even if they relax some constraints, such as strict HATEOAS.

When should I version an API and how?

Version early when breaking changes are likely. Common approaches are path versioning (/v1/) or header-based versioning. Path versioning is simpler for clients, while headers keep URLs cleaner. Maintain compatibility guarantees in your documentation.

How do I choose between REST and GraphQL?

REST is straightforward for resource-centric designs and benefits from HTTP caching and simple tooling. GraphQL excels when clients need flexible queries and to reduce over-fetching. Choose based on client needs, caching requirements, and team expertise.

What are practical rate limiting strategies?

Use token bucket or fixed-window counters, and apply limits per API key, IP, or user. Provide rate limit headers and meaningful status codes (429 Too Many Requests) to help clients implement backoff and retry strategies.

How can I test and monitor a REST API effectively?

Combine unit and integration tests with contract tests (OpenAPI-driven). For monitoring, collect metrics (latency, error rates), traces, and structured logs. Synthetic checks and alerting on SLA breaches help detect degradations early.

What is the best way to document an API?

Use OpenAPI/Swagger to provide machine-readable schemas and auto-generate interactive docs. Include examples, authentication instructions, and clear error code tables. Keep docs in version control alongside code.

Disclaimer

This article is educational and informational only. It does not constitute financial, investment, legal, or professional advice. Evaluate tools and services independently and consult appropriate professionals for specific needs.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products