Back to blog
Research

Crypto Indices vs Traditional Portfolios: The Modern Investor's Dilemma in 2025

Explore how AI-powered crypto indices stack up against traditional portfolios, offering data-driven insight and practical frameworks for smarter portfolio building in 2025.
Token Metrics Team
8
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

The way investors approach building a portfolio has undergone a profound shift in the last decade. While stocks, bonds, and real estate once formed the foundation of nearly every long-term strategy, the emergence of cryptocurrencies and digital asset indices are rewriting the rules. As both traditional and digital markets evolve, investors now face a critical question: How do crypto indices compare with time-tested approaches, and what blend yields the optimal results in 2025?

The Traditional Portfolio Baseline

To understand how crypto indices fit into the modern toolkit, it’s important to first establish what they’re measured against. The classic 60/40 portfolio—60% U.S. stocks and 40% U.S. bonds—has delivered annual returns of roughly 7.2% over the past two decades with a standard deviation of 11.3% and a Sharpe ratio of 0.48. Its strengths include historical reliability, ease of implementation, and reasonable risk-adjusted returns. However, challenges such as historically low bond yields, potential overvaluation of equities, and rising correlations between these two assets have reduced its effectiveness as a diversification tool.

The modern 80/20 growth portfolio, involving 80% U.S. stocks and 20% international stocks, increases growth potential (8.9% annual return, 14.7% standard deviation, 0.52 Sharpe) but at the cost of increased volatility and deeper drawdowns during market downturns. For pure growth metrics, the S&P 500 index—100% equities—delivered about 9.7% annually with 15.8% standard deviation and a 0.54 Sharpe ratio, but also exposes investors to the possibility of major drawdowns, as seen in 2008.

Token Metrics Crypto Indices Performance

Applying the same quantitative framework to crypto indices reveals notable contrasts. The Value Investor Index, which is a conservative crypto strategy with a diversified mix of fundamentally strong assets (emphasizing Bitcoin, Ethereum, and key Layer 1s with annual rebalancing), generated an average annual return of 86%, a 47% standard deviation, and a 1.68 Sharpe ratio since 2020. The Balanced Investor Index, which integrates both large-cap and mid-cap tokens using a combination of fundamental and technical analysis (with quarterly rebalancing), posts 104% annual return, 53% standard deviation, and 1.87 Sharpe. Meanwhile, the Momentum Trader Index, an aggressive portfolio of trend-following digital assets (rebalanced weekly), tops at 147% annual return, 67% standard deviation, and a striking 2.09 Sharpe ratio.

Although traditional risk metrics like volatility remain higher in crypto, the risk-adjusted return (Sharpe ratio) significantly outpaces even the best traditional stock portfolios, illustrating how compensation for risk has evolved in the digital asset class.

The Direct Comparison: What Do Numbers Tell Us?

Consider an initial investment of $100,000. Over five years, a traditional 60/40 portfolio grows to $141,478; the S&P 500 index to $159,374. By contrast, a similarly sized allocation to Token Metrics crypto indices could historically result in:

Even accounting for volatility, these outcomes represent a multiple of the traditional gains. The Sharpe ratios for crypto indices (1.68-2.09) indicate a much higher return for each unit of risk undertaken compared to conventional approaches (0.48-0.54).

The Correlation Advantage

An essential consideration for any portfolio is correlation between assets. Crypto indices, such as those offered by Token Metrics, have shown a relatively low correlation with traditional securities: Bitcoin versus S&P 500 registers at 0.35, and broader crypto indices at 0.31. Correlation with U.S. bonds is even lower (0.09 for Bitcoin, and 0.12 for indices). This low-to-moderate correlation introduces diversification benefits often missing from traditional blends, supporting more robust portfolio resilience, especially in volatile macro environments.

Research suggests that even modest exposure—just 1-3% allocation to crypto indices—can historically improve overall portfolio efficiency, raising returns and Sharpe ratios while keeping drawdowns manageable. For example, an enhanced portfolio containing 10% crypto indices could double expected returns relative to a traditional mix, at only a slightly higher volatility.

The Optimal Allocation Strategy

Diversification frameworks for crypto exposure vary by risk profile. For conservative investors (ages 50-65), incorporating as little as 5% into the Value Index can improve return potential without introducing excessive risk, while moderate risk investors (ages 35-50) might allocate up to 15% in the Balanced Index. Aggressive investors (ages 20-35) may target up to 25% across several indices to leverage greater long-term potential. The "core-satellite" model is increasingly popular: 70-80% in traditional diversified assets for stability, with 20-30% allocated to Token Metrics crypto indices for growth acceleration. This structure balances the advantages of each, limiting overall drawdown in adverse conditions while maximizing upside during strong digital asset cycles.

Addressing Traditional Investor Concerns

Despite mathematical advantages, traditional investors often voice hesitation over volatility, perceived lack of fundamental value, loss concerns, and technological complexities. Yet, many of these risks are mitigated by systematic index construction and responsible allocation:

The Tax Consideration

Traditional portfolios retain an edge with favorable tax treatment through dividends, long-term capital gains status, and integration within retirement vehicles. Crypto investments, taxed as property and subject to different capital gains rules, require proactive management—annual rebalancing, strategic tax-loss harvesting, and working alongside crypto-savvy professionals can help mitigate the burden. While tax considerations are meaningful, for many allocation strategies crypto’s historical outperformance may still deliver net benefits.

The 2025 Reality: Both, Not Either/Or

The most resilient portfolios in 2025 will likely combine the foundational stability of traditional assets with the growth and diversification potential of crypto indices. Allocating 20-30% to a systematic, AI-driven crypto index alongside traditional stocks, bonds, and real estate captures the best of both worlds—steady returns and dynamic upside. Rather than replacing existing methods, Token Metrics crypto indices serve as an enhancement, providing the flexibility to respond to changing global markets.

Your Action Plan

Achieving an optimized portfolio involves a structured process:

The bottom line is clear: portfolios that blend both sectors are positioned to harness the unique strengths of each, achieving superior results for the next era of investing.

Discover Crypto Gems with Token Metrics AI

Token Metrics uses AI-powered analysis to help you uncover profitable opportunities in the crypto market. Get Started For Free

FAQ: Crypto Indices & Traditional Portfolios

What is a crypto index and how does it differ from a traditional index?

A crypto index is a diversified digital asset portfolio, algorithmically constructed to track the broader crypto market or targeted sectors. Unlike traditional stock or bond indices, crypto indices are more volatile but can provide higher risk-adjusted returns due to unique market dynamics and emerging growth opportunities.

How much of my portfolio should be allocated to crypto indices?

Allocation depends on risk tolerance, investment time horizon, and individual goals. Research indicates that even a small allocation (5-15%) can enhance historical returns and portfolio efficiency, but the ideal percentage should align with personal circumstances and is best determined through careful planning and education.

Are Token Metrics crypto indices actively managed?

Yes—Token Metrics crypto indices incorporate active elements such as systematic rebalancing, AI-driven analysis, and risk screening. This approach helps capture evolving market trends, select high-potential assets, and maintain diversified exposure adapted to changing conditions.

Do crypto indices offer real diversification for traditional portfolios?

Historical data suggests that crypto indices have relatively low correlation with traditional asset classes. Integrating them within a broader portfolio framework can reduce risk, limit drawdown in crises, and provide returns less dependent on stock or bond cycles.

What are the key risks when adding crypto indices to a portfolio?

Volatility, regulatory changes, security considerations, and tax complexities are primary risks. Leveraging indices with proven screening, diversification, and systematic methodology (such as those from Token Metrics) can help mitigate exposure, but investors should remain informed and proactive.

Disclaimer

This blog is for educational and informational purposes only. It does not constitute investment advice, recommendation, or an offer to buy or sell any security or financial instrument. Past performance is not indicative of future results. Always conduct your own research and consult a qualified financial professional before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Support and Resistance API: Auto-Calculate Smart Levels for Better Trades

Token Metrics Team
4

Most traders still draw lines by hand in TradingView. The support and resistance API from Token Metrics auto-calculates clean support and resistance levels from one request, so your dashboard, bot, or alerts can react instantly. In minutes, you’ll call /v2/resistance-support, render actionable levels for any token, and wire them into stops, targets, or notifications. Start by grabbing your key on Get API Key, then Run Hello-TM and Clone a Template to ship a production-ready feature fast.

What You’ll Build in 2 Minutes

A minimal script that fetches Support/Resistance via /v2/resistance-support for a symbol (e.g., BTC, SOL).

  • A one-liner curl to smoke-test your key.
  • A UI pattern to display nearest support, nearest resistance, level strength, and last updated time.

Next Endpoints to add

  • /v2/trading-signals (entries/exits)
  • /v2/hourly-trading-signals (intraday updates)
  • /v2/tm-grade (single-score context)
  • /v2/quantmetrics (risk/return framing)

Why This Matters

Precision beats guesswork. Hand-drawn lines are subjective and slow. The support and resistance API standardizes levels across assets and timeframes, enabling deterministic stops and take-profits your users (and bots) can trust.

Production-ready by design. A simple REST shape, predictable latency, and clear semantics let you add levels to token pages, automate SL/TP alerts, and build rule-based execution with minimal glue code.

Where to Find

Need the Support and Resistance data? The cURL request for it is in the top right of the API Reference for quick access.

👉 Keep momentum: Get API Key • Run Hello-TM • Clone a Template

How It Works (Under the Hood)

The Support/Resistance endpoint analyzes recent price structure to produce discrete levels above and below current price, along with strength indicators you can use for priority and styling. Query /v2/resistance-support?symbol=<ASSET>&timeframe=<HORIZON> to receive arrays of level objects and timestamps.

Polling vs webhooks. For dashboards, short-TTL caching and batched fetches keep pages snappy. For bots and alerts, use queued jobs or webhooks (where applicable) to avoid noisy, bursty polling—especially around market opens and major events.

Production Checklist

  • Rate limits: Respect plan caps; add client-side throttling.
  • Retries/backoff: Exponential backoff with jitter for 429/5xx; log failures.
  • Idempotency: Make alerting and order logic idempotent to prevent duplicates.
  • Caching: Memory/Redis/KV with short TTLs; pre-warm top symbols.
  • Batching: Fetch multiple assets per cycle; parallelize within rate limits.
  • Threshold logic: Add %-of-price buffers (e.g., alert at 0.3–0.5% from level).
  • Error catalog: Map common 4xx/5xx to actionable user guidance; keep request IDs.
  • Observability: Track p95/p99; measure alert precision (touch vs approach).
  • Security: Store API keys in a secrets manager; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Use nearest support for stop placement and nearest resistance for profit targets. Combine with /v2/trading-signals for entries/exits and size via Quantmetrics (volatility, drawdown).
  • Dashboard Builder (Product): Add a Levels widget to token pages; badge strength (e.g., High/Med/Low) and show last touch time. Color the price region (below support, between levels, above resistance) for instant context.
  • Screener Maker (Lightweight Tools): “Close to level” sort: highlight tokens within X% of a strong level. Toggle alerts for approach vs breakout events.
  • Risk Management: Create policy rules like “no new long if price is within 0.2% of strong resistance.” Export daily level snapshots for audit/compliance.

Next Steps

  • Get API Key — generate a key and start free.
  • Run Hello-TM — verify your first successful call.
  • Clone a Template — deploy a levels panel or alerts bot today.
  • Watch the demo: Compare plans: Scale confidently with API plans.

FAQs

1) What does the Support & Resistance API return?

A JSON payload with arrays of support and resistance levels for a symbol (and optional timeframe), each with a price and strength indicator, plus an update timestamp.

2) How timely are the levels? What are the latency/SLOs?

The endpoint targets predictable latency suitable for dashboards and alerts. Use short-TTL caching for UIs, and queued jobs or webhooks for alerting to smooth traffic.

3) How do I trigger alerts or trades from levels?

Common patterns: alert when price is within X% of a level, touches a level, or breaks beyond with confirmation. Always make downstream actions idempotent and respect rate limits.

4) Can I combine levels with other endpoints?

Yes—pair with /v2/trading-signals for timing, /v2/tm-grade for quality context, and /v2/quantmetrics for risk sizing. This yields a complete decide-plan-execute loop.

5) Which timeframe should I use?

Intraday bots prefer shorter horizons; swing/position dashboards use daily or higher-timeframe levels. Offer a timeframe toggle and cache results per setting.

6) Do you provide SDKs or examples?

Use the REST snippets above (JS/Python). The docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale as you grow. See API plans for rate limits and enterprise SLA options.

Disclaimer

This content is for educational purposes only and does not constitute financial advice. Always conduct your own research before making any trading decisions.

Research

Quantmetrics API: Measure Risk & Reward in One Call

Token Metrics Team
5

Most traders see price—quants see probabilities. The Quantmetrics API turns raw performance into risk-adjusted stats like Sharpe, Sortino, volatility, drawdown, and CAGR so you can compare tokens objectively and build smarter bots and dashboards. In minutes, you’ll query /v2/quantmetrics, render a clear performance snapshot, and ship a feature that customers trust. Start by grabbing your key at Get API Key, Run Hello-TM to verify your first call, then Clone a Template to go live fast.

What You’ll Build in 2 Minutes

  • A minimal script that fetches Quantmetrics for a token via /v2/quantmetrics (e.g., BTC, ETH, SOL).
  • A smoke-test curl you can paste into your terminal.
  • A UI pattern that displays Sharpe, Sortino, volatility, max drawdown, CAGR, and lookback window.

Next Endpoints to Add

  • /v2/tm-grade (one-score signal)
  • /v2/trading-signals
  • /v2/hourly-trading-signals (timing)
  • /v2/resistance-support (risk placement)
  • /v2/price-prediction (scenario planning)

Why This Matters

Risk-adjusted truth beats hype. Price alone hides tail risk and whipsaws. Quantmetrics compresses edge, risk, and consistency into metrics that travel across assets and timeframes—so you can rank universes, size positions, and communicate performance like a professional.

Built for dev speed

A clean REST schema, predictable latency, and easy auth mean you can plug Sharpe/Sortino into bots, dashboards, and screeners without maintaining your own analytics pipeline. Pair with caching and batching to serve fast pages at scale.

Where to Find

The Quant Metrics cURL request is located in the top right of the API Reference, allowing you to easily integrate it with your application.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

How It Works (Under the Hood)

Quantmetrics computes risk-adjusted performance over a chosen lookback (e.g., 30d, 90d, 1y). You’ll receive a JSON snapshot with core statistics:

  • Sharpe ratio: excess return per unit of total volatility.
  • Sortino ratio: penalizes downside volatility more than upside.
  • Volatility: standard deviation of returns over the window.
  • Max drawdown: worst peak-to-trough decline.
  • CAGR / performance snapshot: geometric growth rate and best/worst periods.

Call /v2/quantmetrics?symbol=<ASSET>&window=<LOOKBACK> to fetch the current snapshot. For dashboards spanning many tokens, batch symbols and apply short-TTL caching. If you generate alerts (e.g., “Sharpe crossed 1.5”), run a scheduled job and queue notifications to avoid bursty polling.

Production Checklist

  • Rate limits: Understand your tier caps; add client-side throttling and queues.
  • Retries & backoff: Exponential backoff with jitter; treat 429/5xx as transient.
  • Idempotency: Prevent duplicate downstream actions on retried jobs.
  • Caching: Memory/Redis/KV with short TTLs; pre-warm popular symbols and windows.
  • Batching: Fetch multiple symbols per cycle; parallelize carefully within limits.
  • Error catalog: Map 4xx/5xx to clear remediation; log request IDs for tracing.
  • Observability: Track p95/p99 latency and error rates; alert on drift.
  • Security: Store API keys in secrets managers; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Gate entries by Sharpe ≥ threshold and drawdown ≤ limit, then trigger with /v2/trading-signals; size by inverse volatility.
  • Dashboard Builder (Product): Add a Quantmetrics panel to token pages; allow switching lookbacks (30d/90d/1y) and export CSV.
  • Screener Maker (Lightweight Tools): Top-N by Sortino with filters for volatility and sector; add alert toggles when thresholds cross.
  • Allocator/PM Tools: Blend CAGR, Sharpe, drawdown into a composite score to rank reallocations; show methodology for trust.
  • Research/Reporting: Weekly digest of tokens with Sharpe ↑, drawdown ↓, and volatility ↓.

Next Steps

  • Get API Key — start free and generate a key in seconds.
  • Run Hello-TM — verify your first successful call.
  • Clone a Template — deploy a screener or dashboard today.
  • Watch the demo: VIDEO_URL_HERE
  • Compare plans: Scale with API plans.

FAQs

1) What does the Quantmetrics API return?

A JSON snapshot of risk-adjusted metrics (e.g., Sharpe, Sortino, volatility, max drawdown, CAGR) for a symbol and lookback window—ideal for ranking, sizing, and dashboards.

2) How fresh are the stats? What about latency/SLOs?

Responses are engineered for predictable latency. For heavy UI usage, add short-TTL caching and batch requests; for alerts, use scheduled jobs or webhooks where available.

3) Can I use Quantmetrics to size positions in a live bot?

Yes—many quants size inversely to volatility or require Sharpe ≥ X to trade. Always backtest and paper-trade before going live; past results are illustrative, not guarantees.

4) Which lookback window should I choose?

Short windows (30–90d) adapt faster but are noisier; longer windows (6–12m) are steadier but slower to react. Offer users a toggle and cache each window.

5) Do you provide SDKs or examples?

REST is straightforward (JS/Python above). Docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

6) Polling vs webhooks for quant alerts?

Dashboards usually use cached polling. For threshold alerts (e.g., Sharpe crosses 1.0), run scheduled jobs and queue notifications to keep usage smooth and idempotent.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale up. See API plans for rate limits and enterprise SLA options.

Disclaimer

All information provided in this blog is for educational purposes only. It is not intended as financial advice. Users should perform their own research and consult with licensed professionals before making any investment or trading decisions.

Research

Crypto Trading Signals API: Put Bullish/Bearish Calls Right in Your App

Token Metrics Team
4

Timing makes or breaks every trade. The crypto trading signals API from Token Metrics lets you surface bullish and bearish calls directly in your product—no spreadsheet wrangling, no chart gymnastics. In this guide, you’ll hit the /v2/trading-signals endpoint, display actionable signals on a token (e.g., SOL, BTC, ETH), and ship a conversion-ready feature for bots, dashboards, or Discord. Start by creating a key on Get API Key, then Run Hello-TM and Clone a Template to go live fast.

What You’ll Build in 2 Minutes

  • A minimal script that fetches Trading Signals via /v2/trading-signals for one symbol (e.g., SOL).
  • A copy-paste curl to smoke-test your key.
  • A UI pattern to render signal, confidence/score, and timestamp in your dashboard or bot.

Endpoints to add next

  • /v2/hourly-trading-signals (intraday updates)
  • /v2/resistance-support (risk placement)
  • /v2/tm-grade (one-score view)
  • /v2/quantmetrics (risk/return context)

Why This Matters

Action over analysis paralysis. Traders don’t need more lines on a chart—they need an opinionated call they can automate. The trading signals API compresses technical momentum and regime reads into Bullish/Bearish events you can rank, alert on, and route into strategies.

Built for dev speed and reliability. A clean schema, predictable performance, and straightforward auth make it easy to wire signals into bots, dashboards, and community tools. Pair with short-TTL caching or webhooks to minimize polling and keep latency low.

Where to Find

You can find the cURL request for Crypto Trading Signals in the top right corner of the API Reference. Use it to access the latest signals!

Live Demo & Templates

  • Trading Bot Starter: Use Bullish/Bearish calls to trigger paper trades; add take-profit/stop rules with Support/Resistance.
  • Dashboard Signal Panel: Show the latest call, confidence, and last-updated time; add a history table for context.
  • Discord/Telegram Alerts: Post signal changes to a channel with a link back to your app.

How It Works (Under the Hood)

Trading Signals distill model evidence (e.g., momentum regimes and pattern detections) into Bullish or Bearish calls with metadata such as confidence/score and timestamp. You request /v2/trading-signals?symbol=<ASSET> and render the most recent event, or a small history, in your UI.

For intraday workflows, use /v2/hourly-trading-signals to update positions or alerts more frequently. Dashboards typically use short-TTL caching or batched fetches; headless bots lean on webhooks, queues, or short polling with backoff to avoid spiky API usage.

Production Checklist

  • Rate limits: Know your tier caps; add client-side throttling and queues.
  • Retries/backoff: Exponential backoff with jitter; treat 429/5xx as transient.
  • Idempotency: Guard downstream actions (don’t double-trade on retries).
  • Caching: Memory/Redis/KV with short TTLs for reads; pre-warm popular symbols.
  • Webhooks & jobs: Prefer webhooks or scheduled workers for signal change alerts.
  • Pagination/Bulk: Batch symbols; parallelize with care; respect limits.
  • Error catalog: Map common 4xx/5xx to clear fixes; log request IDs.
  • Observability: Track p95/p99 latency, error rate, and alert delivery success.
  • Security: Keep keys in a secrets manager; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Route Bullish into candidate entries; confirm with /v2/resistance-support for risk and TM Grade for quality.
  • Dashboard Builder (Product): Add a “Signals” module per token; color-code state and show history for credibility.
  • Screener Maker (Lightweight Tools): Filter lists by Bullish state; sort by confidence/score; add alert toggles.
  • Community/Discord: Post signal changes with links to token pages; throttle to avoid noise.
  • Allocator/PM Tools: Track signal hit rates by sector/timeframe to inform position sizing (paper-trade first).

Next Steps

  1. Get API Key — create a key and start free.
  2. Run Hello-TM — confirm your first successful call.
  3. Clone a Template — deploy a bot, dashboard, or alerting tool today.

FAQs

1) What does the Trading Signals API return?

A JSON payload with the latest Bullish/Bearish call for a symbol, typically including a confidence/score and generated_at timestamp. You can render the latest call or a recent history for context.

2) Is it real-time? What about latency/SLOs?

Signals are designed for timely, programmatic use with predictable latency. For faster cycles, use /v2/hourly-trading-signals. Add caching and queues/webhooks to reduce round-trips.

3) Can I use the signals in a live trading bot?

Yes—many developers do. A common pattern is: Signals → candidate entry, Support/Resistance → stop/targets, Quantmetrics → risk sizing. Always backtest and paper-trade before going live.

4) How accurate are the signals?

Backtests are illustrative, not guarantees. Treat signals as one input in a broader framework with risk controls. Evaluate hit rates and drawdowns on your universe/timeframe.

5) Do you provide SDKs and examples?

You can integrate via REST using JavaScript and Python snippets above. The docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

6) Polling vs webhooks for alerts?

Dashboards often use cached polling. For bots/alerts, prefer webhooks or scheduled jobs and keep retries idempotent to avoid duplicate trades or messages.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale as you grow. See API plans for allowances; enterprise SLAs and support are available.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products