Crypto Basics

Top 10 Crypto Portfolio Trackers - Complete List

Discover the top 10 crypto portfolio trackers. Effortlessly manage and optimize your digital assets for maximum returns.
Token Metrics Team
7 Minutes
MIN

Cryptocurrencies have gained significant popularity in recent years, attracting both investors and enthusiasts. As the crypto market continues to expand, it becomes essential for individuals to effectively manage and track their crypto portfolios. 

This article explores the top 10 crypto portfolio trackers available in the market, providing insights into their features, benefits, and functionalities. Let's start with the basics -

What is a Crypto Portfolio Tracker?

Crypto portfolio trackers are software applications or online platforms that allow users to manage and monitor their cryptocurrency investments in a centralized and organized manner.

These trackers provide real-time information on portfolio performance, asset allocation, transaction history, and market trends

By using a crypto portfolio tracker, investors can make informed decisions, track profits, and streamline their crypto investment strategies.

Importance of Tracking Crypto Portfolios

Tracking a crypto portfolio is crucial for several reasons. Firstly, it provides an overview of the performance of different cryptocurrencies within the portfolio, enabling users to identify which assets are performing well and which ones may require adjustments. 

Secondly, it helps investors stay updated with the latest market trends, news, and price fluctuations, allowing them to make timely investment decisions. Lastly, tracking portfolios simplifies tax reporting, as it provides accurate records of transactions and holdings.

List of Best Crypto Portfolio Trackers

In recent time, several crypto portfolio trackers gained significant popularity and widespread usage among investors. Here is the list of few popular crypto portfolio trackers -

1. Token Metrics

Token Metrics crypto portfolio tracker is a comprehensive and sophisticated tool designed to help crypto investors effectively manage and track their digital assets. 

With its intuitive interface and robust features, the portfolio tracker enables users to seamlessly monitor their investments across multiple exchanges and wallets in real-time. 

Token Metrics crypto portfolio tracker

This powerful platform offers detailed analytics, performance metrics, and customizable alerts, empowering investors to make informed decisions based on accurate and up-to-date data. 

The portfolio tracker also provides deep insights into individual cryptocurrency holdings, including historical performance, allocation breakdowns, and risk analysis.

2. Coingecko

CoinGecko is more than just a portfolio tracker; it's a comprehensive cryptocurrency platform that provides market data, news, and insights.

CoinGecko crypto portfolio tracker

With its portfolio management feature, users can track their investments and monitor performance in real-time. CoinGecko also offers a wide range of metrics and charts to help users make informed decisions.

3. CoinMarketCap

CoinMarketCap stands as a highly reputable cryptocurrency price-tracking platform globally. Additionally, the company provides investors with a portfolio tracking solution.

Coinmarketcap crypto portfolio tracker

Although the platform's functionality is somewhat limited, it presents a viable choice for budget-conscious traders who prefer the manual input of their cryptocurrency holdings.

4. Crypto.com

Crypto.com is primarily a crypto exchange but also offers portfolio tracking for hosted wallets. Users can track the past and real-time prices of their invested coins through the mobile app or website.

Crypto.com portfolio tracker

The platform allows tracking of top gainers and losers, newly added coins, and watchlist coins, providing comprehensive data such as price, volume, and market cap with a 7-day chart. It is available on both iOS and Android, and supports NFTs.

5. CoinTracker

CoinTracker simplifies crypto portfolio management by automatically syncing transactions from exchanges and wallets.

Coin Tracker crypto portfolio tracker

It offers tax calculation tools, performance tracking, and insightful analytics. CoinTracker supports over 300 exchanges and integrates with popular wallets like Coinbase and MetaMask.

6. CryptoCompare

CryptoCompare is a reliable and user-friendly portfolio tracker that offers a holistic view of your crypto holdings.

CryptoCompare portfolio tracker

It provides detailed information on prices, market trends, and trading volumes, allowing users to make data-driven decisions. CryptoCompare also offers a wide range of educational resources, making it a valuable tool for beginners.

7. CoinStats

CoinStats is a comprehensive portfolio tracker that offers real-time data on over 3,000 cryptocurrencies. With its intuitive interface and advanced features, CoinStats allows users to monitor their portfolio performance, set price alerts, and track market trends.

CoinStats portfolio tracker

Its integration with various exchanges and wallets makes it a convenient choice for crypto enthusiasts.

8. Kubera

Kubera presents itself as a portfolio tracker specifically designed to cater to a wide range of assets, including cryptocurrencies and NFTs. Unlike offering a free option, Kubera offers personal plans starting at $150 per year.

Kubera crypto portfolio tracker

Kubera also offers features like track multiple assets, automatic and manual import options and identifying top performers.

9. Delta Investment Tracker

Delta is a powerful portfolio management tool that supports over 300 exchanges and cryptocurrencies.

Delta Investment Tracker

Its sleek design and customizable features make it a popular choice for both beginners and experienced traders. With Delta, users can sync multiple wallets and exchanges, set price alerts, and access comprehensive analytics.

10. Crypto Pro

Crypto Pro, originally launched in 2015 as a Bitcoin ticker for the Apple Watch, has evolved into a comprehensive cryptocurrency tracking app.

Crypto Pro portfolio tracker

With support for over 5,000 cryptocurrencies and compatibility with the entire Apple ecosystem, users can conveniently monitor their portfolios, receive live price updates, read news, and set price alerts. 

The app ensures privacy by encrypting user data stored locally on each device, without employing any user analytics or tracking solutions.

How to choose the best crypto portfolio tracker?

When selecting a crypto portfolio tracker, it's essential to consider several factors to ensure it meets your specific needs. Some key factors to consider include:

Security: Look for trackers that prioritize strong security measures, such as encryption, two-factor authentication, and cold storage options.

Supported Exchanges: Check if the tracker supports the exchanges you use to trade cryptocurrencies.

User Interface and Experience: Choose a tracker with an intuitive interface that provides a user-friendly experience.

Compatibility: Ensure the tracker is compatible with the devices and operating systems you use.

Alerts and Notifications: Look for trackers that offer customizable alerts and notifications for price changes, portfolio milestones, and market news.

Reporting and Analytics: Consider trackers that provide detailed reports, analytics, and visualizations to help you understand your portfolio's performance.

Portfolio Synchronization: Opt for trackers that can sync with your wallets and exchanges to automatically update portfolio data.

Customer Support: Check if the tracker offers responsive customer support channels in case you encounter any issues.

FAQs

Q1. Which crypto portfolio tracker is best for beginners?

For beginners, CoinMarketCap and CoinGecko are excellent choices. Both offer user-friendly interfaces, comprehensive features, and educational resources to help beginners navigate the crypto world with ease.

Q2. Can I track my portfolio across multiple exchanges?

Yes, many portfolio trackers like CoinStats, Delta, and CoinTracker support syncing transactions from multiple exchanges, allowing you to conveniently track your holdings in one place.

Q3. Do these portfolio trackers offer mobile apps?

Yes, most of the top portfolio trackers mentioned in this article, including CoinStats, Delta, and CoinGecko, offer mobile apps for both iOS and Android devices, enabling you to track your portfolio on the go.

Q4. Are these portfolio trackers secure?

Yes, reputable portfolio trackers prioritize security and employ various measures like encryption, two-factor authentication, and data protection protocols to ensure the safety of your portfolio data.

Q5. Can I use these portfolio trackers for tax reporting?

Yes, portfolio trackers like CoinTracker provide tax reporting features, allowing you to generate reports and calculate your cryptocurrency gains or losses for tax purposes.

Q6. Are there any free portfolio tracker options available?

Yes, several portfolio trackers offer free versions with basic features and limited capabilities. However, most also offer premium plans with additional features for users who require more advanced portfolio management tools.

Conclusion

In conclusion, tracking and managing your cryptocurrency portfolio is crucial for successful investing. These portfolio trackers offer a range of features and benefits to help you stay on top of your investments. 

Whether you're a beginner or an experienced trader, these portfolio trackers offer user-friendly interfaces, real-time data, customizable features, and integration with exchanges and wallets. 

By choosing the right portfolio tracker, you can effectively monitor your holdings, analyze market trends, set alerts, and make informed decisions to maximize your crypto investment potential.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

API Gateway: Architecture, Patterns & Best Practices

Token Metrics Team
5
MIN

Modern distributed systems rely on effective traffic control, security, and observability at the edge. An API gateway centralizes those responsibilities, simplifying client access to microservices and serverless functions. This guide explains what an API gateway does, common architectural patterns, deployment and performance trade-offs, and design best practices for secure, scalable APIs.

What is an API Gateway?

An API gateway is a server-side component that sits between clients and backend services. It performs request routing, protocol translation, aggregation, authentication, rate limiting, and metrics collection. Instead of exposing each service directly, teams present a single, consolidated API surface to clients through the gateway. This centralization reduces client complexity, standardizes cross-cutting concerns, and can improve operational control.

Think of an API gateway as a policy and plumbing layer: it enforces API contracts, secures endpoints, and implements traffic shaping while forwarding requests to appropriate services.

Core Features and Architectural Patterns

API gateways vary in capability but commonly include:

  • Routing and reverse proxy: Direct requests to the correct backend based on path, headers, or other criteria.
  • Authentication and authorization: Validate tokens (JWT, OAuth2), integrate with identity providers, and enforce access policies.
  • Rate limiting and quotas: Protect backend services from overload and manage multi-tenant usage.
  • Request/response transformation: Convert between protocols (HTTP/gRPC), reshape payloads, or aggregate multiple service calls.
  • Observability: Emit metrics, traces, and structured logs for monitoring and debugging.

Common patterns include:

  1. Edge gateway: A public-facing gateway handling authentication, CDN integration, and basic traffic management.
  2. Internal gateway: Placed inside the trust boundary to manage east-west traffic within a cluster or VPC.
  3. Aggregating gateway: Combines multiple backend responses into a single client payload, useful for mobile or low-latency clients.
  4. Per-tenant gateway: For multi-tenant platforms, separate gateways per customer enforce isolation and custom policies.

Deployment Models and Performance Considerations

Choosing where and how to deploy an API gateway affects performance, resilience, and operational cost. Key models include:

  • Managed cloud gateways: Providers offer scalable gateways with minimal operational overhead. They simplify TLS, identity integration, and autoscaling but can introduce vendor lock-in and per-request costs.
  • Self-managed gateways: Run on Kubernetes or VMs for full control over configuration and plugins. This model increases operational burden but enables custom routing logic and deep integration with internal systems.
  • Sidecar or service mesh complement: In service mesh architectures, a gateway can front the mesh, delegating fine-grained service-to-service policies to sidecar proxies.

Performance trade-offs to monitor:

  • Latency: Each hop through the gateway adds processing time. Use lightweight filters, compiled rules, and avoid heavy transformations on hot paths.
  • Concurrency: Ensure the gateway and backend services scale independently. Backpressure, circuit breakers, and backoff strategies help prevent cascading failures.
  • Caching: Edge caching can drastically reduce load and latency for idempotent GET requests. Consider cache invalidation and cache-control headers carefully.

Design Best Practices and Security Controls

Adopt practical rules to keep gateways maintainable and secure:

  • Limit business logic: Keep the gateway responsible for orchestration and policy enforcement, not core business rules.
  • Token-based auth and scopes: Use scoped tokens and short lifetimes for session tokens. Validate signatures and token claims at the gateway level.
  • Observability-first: Emit structured logs, metrics, and distributed traces. Correlate gateway logs with backend traces for faster root cause analysis.
  • Throttling and quotas: Set conservative defaults and make limits configurable per client or plan. Implement graceful degradation for overloaded backends.
  • Policy-driven config: Use declarative policies (e.g., YAML or CRDs) to version and review gateway rules rather than ad-hoc runtime changes.

AI and analytics tools can accelerate gateway design and operating decisions by surfacing traffic patterns, anomaly detection, and vulnerability signals. For example, products that combine real-time telemetry with model-driven insights help prioritize which endpoints need hardened policies.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is an API gateway vs service mesh?

These technologies complement rather than replace each other. The API gateway handles north-south traffic (client to cluster), enforcing authentication and exposing public endpoints. A service mesh focuses on east-west traffic (service-to-service), offering fine-grained routing, mTLS, and telemetry between microservices. Many architectures use a gateway at the edge and a mesh internally for granular control.

FAQ: Common Questions About API Gateways

How does an API gateway impact latency?

A gateway introduces processing overhead for each request, which can increase end-to-end latency. Mitigations include optimizing filters, enabling HTTP/2 multiplexing, using local caches, and scaling gateway instances horizontally.

Do I need an API gateway for every architecture?

Not always. Small monoliths or single-service deployments may not require a gateway. For microservices, public APIs, or multi-tenant platforms, a gateway adds value by centralizing cross-cutting concerns and simplifying client integrations.

What security measures should the gateway enforce?

At minimum, the gateway should enforce TLS, validate authentication tokens, apply rate limits, and perform input validation. Additional controls include IP allowlists, web application firewall (WAF) rules, and integration with identity providers for RBAC.

Can API gateways aggregate responses from multiple services?

Yes. Aggregation reduces client round trips by composing responses from multiple backends. Use caching and careful error handling to avoid coupling performance of one service to another.

How do I test and version gateway policies?

Use a staging environment to run synthetic loads and functional tests against gateway policies. Store configurations in version control, run CI checks for syntax and policy conflicts, and roll out changes via canary deployments.

Is it better to use a managed gateway or self-host?

Managed gateways reduce operational overhead and provide scalability out of the box, while self-hosted gateways offer deeper customization and potentially lower long-term costs. Choose based on team expertise, compliance needs, and expected traffic patterns.

Disclaimer

This article is for educational and technical information only. It does not constitute investment, legal, or professional advice. Readers should perform their own due diligence when selecting and configuring infrastructure components.

Research

RESTful API Essentials: Design, Security, and Best Practices

Token Metrics Team
5
MIN

APIs are the connective tissue of modern applications; among them, RESTful APIs remain a dominant style because they map cleanly to HTTP semantics and scale well across distributed systems. This article breaks down what a RESTful API is, pragmatic design patterns, security controls, and practical monitoring and testing workflows. If you build or consume APIs, understanding these fundamentals reduces integration friction and improves reliability.

What is a RESTful API?

A RESTful API (Representational State Transfer) is an architectural style for designing networked applications. At its core, REST leverages standard HTTP verbs (GET, POST, PUT, PATCH, DELETE) and status codes to perform operations on uniquely identified resources, typically represented as URLs. Key characteristics include:

  • Statelessness: Each request contains all information the server needs to fulfill it, enabling horizontal scaling.
  • Resource orientation: APIs expose resources (users, orders, blocks, etc.) rather than remote procedure calls.
  • Uniform interface: A consistent set of conventions for requests and responses, improving discoverability and client simplicity.

REST is a pragmatic guideline rather than a strict protocol; many APIs labeled "RESTful" adopt REST principles while introducing pragmatic extensions (e.g., custom headers, versioning strategies).

Design Principles & Resource Modeling

Good REST design begins with clear resource modeling. Ask: what are the nouns in the domain, and how do they relate? Use predictable URL structures and rely on HTTP semantics:

  • /resources - list or create a resource (GET to list, POST to create)
  • /resources/{id} - operate on a single resource (GET, PUT/PATCH, DELETE)
  • /resources/{id}/subresources - nested relationships when needed

Design tips to improve usability and longevity:

  1. Use consistent naming: plural nouns, lowercase, and hyphenation for readability.
  2. Support versioning: include a version in the URL or headers to avoid breaking clients (e.g., /v1/...).
  3. Leverage hypermedia judiciously: HATEOAS can improve discoverability but adds complexity; choose when it benefits clients.
  4. Pagination, filtering, sorting: standardize query parameters for large collections to avoid performance pitfalls.
  5. Use appropriate status codes: communicate success, client errors, and server errors clearly (200, 201, 400, 401, 403, 404, 429, 500, etc.).

Security, Authentication, and Rate Limiting

Security is a primary concern for any public-facing API. Typical controls and patterns include:

  • Authentication: OAuth 2.0 (Bearer tokens) and API keys are common. Choose a mechanism that fits your risk model and client types. Avoid transporting credentials in URLs.
  • Authorization: Implement least-privilege checks server-side to ensure tokens only permit intended actions.
  • Encryption: Always use TLS (HTTPS) to protect data in transit; consider TLS 1.2+ and strict ciphers.
  • Rate limiting and throttling: Protect backends from abuse with per-key or per-IP limits and provide informative 429 responses with Retry-After headers.
  • Input validation and sanitization: Validate request bodies and query parameters to reduce injection and parsing vulnerabilities.
  • Audit and logging: Log authentication events, rate-limit triggers, and error patterns while respecting privacy and compliance requirements.

Designing for security also means operational readiness: automated certificate rotation, secrets management, and periodic security reviews reduce long-term risk.

Performance, Monitoring, and AI-Assisted Tooling

Performance tuning for RESTful APIs covers latency, throughput, and reliability. Practical strategies include caching (HTTP Cache-Control, ETags), connection pooling, and database query optimization. Use observability tools to collect metrics (error rates, latency percentiles), distributed traces, and structured logs for rapid diagnosis.

AI-assisted tools can accelerate many aspects of API development and operations: anomaly detection in request patterns, automated schema inference from traffic, and intelligent suggestions for endpoint design or documentation. While these tools improve efficiency, validate automated changes through testing and staged rollouts.

When selecting tooling, evaluate clarity of integrations, support for your API architecture, and the ability to export raw telemetry for custom analysis.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What distinguishes RESTful APIs from other API styles?

REST focuses on resources and uses HTTP semantics; GraphQL centralizes queries into a single endpoint with flexible queries, and gRPC emphasizes high-performance RPCs with binary protocols. Choose based on client needs, performance constraints, and schema evolution requirements.

How should I version a RESTful API without breaking clients?

Common approaches include URL versioning (e.g., /v1/), header-based versioning, or semantic versioning of the API contract. Regardless of method, document deprecation timelines and provide migration guides and compatibility layers where possible.

What are practical testing strategies for RESTful APIs?

Combine unit tests for business logic with integration tests that exercise endpoints and mocks for external dependencies. Use contract tests to ensure backward compatibility and end-to-end tests in staging environments. Automate tests in CI/CD to catch regressions early.

How do I design for backward compatibility?

Additive changes (new fields, endpoints) are generally safe; avoid removing fields, changing response formats, or repurposing status codes. Feature flags and content negotiation can help introduce changes progressively.

What should be included in API documentation?

Provide clear endpoint descriptions, request/response examples, authentication steps, error codes, rate limits, and code samples in multiple languages. Machine-readable specs (OpenAPI/Swagger) enable client generation and testing automation.

Disclaimer: This content is educational and informational only. It does not constitute professional, legal, security, or investment advice. Test and validate any architectural, security, or operational changes in environments that match your production constraints before rollout.

Research

Practical Guide to Claude API Integration

Token Metrics Team
4
MIN

The Claude API is increasingly used to build context-aware AI assistants, document summarizers, and conversational workflows. This guide breaks down what the API offers, integration patterns, capability trade-offs, and practical safeguards to consider when embedding Claude models into production systems.

Overview: What the Claude API Provides

The Claude API exposes access to Anthropic’s Claude family of large language models. At a high level, it lets developers send prompts and structured instructions and receive text outputs, completions, or assistant-style responses. Key delivery modes typically include synchronous completions, streaming tokens for low-latency interfaces, and tools for handling multi-turn context. Understanding input/output semantics and token accounting is essential before integrating Claude into downstream applications.

Capabilities & Feature Surface

Claude models are designed for safety-focused conversational AI and often emphasize instruction following and helpfulness while applying content filters. Typical features to assess:

  • Instruction clarity: Claude responds robustly to explicit, structured instructions and system-level guidelines embedded in prompts.
  • Context handling: Larger context windows enable multi-turn memory and long-document summarization; analyze limits for your use case.
  • Streaming vs batch: Streaming reduces perceived latency in chat apps. Batch completions suit offline generation and analytics tasks.
  • Safety layers: Built-in moderation and safety heuristics can reduce harmful outputs but should not replace application-level checks.

Integration Patterns & Best Practices

Designing a robust integration with the Claude API means balancing performance, cost, and safety. Practical guidance:

  1. Prompt engineering: Build modular prompts: system instructions, user content, and optional retrieval results. Keep system prompts explicit and version-controlled.
  2. Context management: Implement truncation or document retrieval to stay within context limits. Use semantic search to surface the most relevant chunks before calling Claude.
  3. Latency strategies: Use streaming for interactive UI and batch for background processing. Cache frequent completions when possible to reduce API calls.
  4. Safety & validation: Post-process outputs with rule-based checks, content filters, or secondary moderation models to catch hallucinations or policy violations.
  5. Monitoring: Track token usage, latency percentiles, and error rates. Instrument prompts to correlate model changes with downstream metrics.

Primary Use Cases and Risk Considerations

Claude API use cases span chat assistants, summarization, prompt-driven code generation, and domain-specific Q&A. For each area evaluate these risk vectors:

  • Hallucination risk: Models may fabricate facts; rely on provenance and retrieval augmentation when answers require accuracy.
  • Privacy: Avoid sending sensitive personal data unless contract and data processing terms explicitly permit it.
  • Regulatory exposure: For regulated domains (health, legal, finance) include human oversight and compliance review rather than treating outputs as authoritative.
  • Operational cost: Longer contexts and high throughput increase token costs; profile realistic workloads before scaling.

Tools, Libraries, and Ecosystem Fit

Tooling around Claude often mirrors other LLM APIs: HTTP/SDK clients, streaming libraries, and orchestration frameworks. Combine the Claude API with retrieval-augmented generation (RAG) systems, vector stores for semantic search, and lightweight caching layers. AI-driven research platforms such as Token Metrics can complement model outputs by providing analytics and signal overlays when integrating market or on-chain data into prompts.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is the Claude API?

The Claude API is an interface for sending prompts and receiving text-based model outputs from the Claude family. It supports completions, streaming responses, and multi-turn conversations, depending on the provider’s endpoints.

FAQ — How do I manage long documents and context?

Implement a retrieval-augmented generation (RAG) approach: index documents into a vector store, use semantic search to fetch relevant segments, and summarize or stitch results before sending a concise prompt to Claude. Also consider chunking and progressive summarization when documents exceed context limits.

FAQ — How can I control API costs?

Optimize prompts to be concise, cache common responses, batch non-interactive requests, and choose lower-capacity model variants for non-critical tasks. Monitor token usage and set alerts for unexpected spikes.

FAQ — What safety measures are recommended?

Combine Claude’s built-in safety mechanisms with application-level filters, content validation, and human review workflows. Avoid sending regulated or sensitive data without proper agreements and minimize reliance on unverified outputs.

FAQ — When should I use streaming vs batch responses?

Use streaming for interactive chat interfaces where perceived latency matters. Batch completions are suitable for offline processing, analytics, and situations where full output is required before downstream steps.

Disclaimer

This article is for educational purposes only and does not constitute professional, legal, or financial advice. It explains technical capabilities and integration considerations for the Claude API without endorsing specific implementations. Review service terms, privacy policies, and applicable regulations before deploying AI systems in production.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products