Crypto Basics

10 Best Crypto Trading Strategies for Traders in 2023

Learn the best cryptocurrency trading strategies and how to use them in this descriptive guide.
Marcus K
8 minutes
MIN

Crypto trading has emerged as a popular and lucrative form of investment over the past few years. As the crypto market continues to grow and evolve, more and more traders are turning to various strategies to help them navigate the market and increase their profits.

A successful crypto trading strategy requires a deep understanding of the market, technical analysis, risk management, and a willingness to adapt to changing market conditions.

In this post, we will explore the best crypto trading strategies to use in 2023.

Top 10 Crypto Trading Strategies

Let's explore some of the most popular crypto trading strategies, their advantages and disadvantages, and how to implement them effectively. Whether you're a seasoned trader or a beginner, understanding these strategies can help you make informed decisions and achieve your trading goals.

Here are the 10 crypto trading strategies that traders commonly use:

1. HODLing an asset

HODLing, as it is commonly known in the cryptocurrency world, refers to the practice of holding onto a cryptocurrency for the long term, rather than selling it for a short-term gain. The term originated in 2013 when a user on a Bitcoin forum misspelled the word "hold" as "hodl" in a post encouraging others to resist the temptation to sell during a price drop. HODL also commonly come to stand for "hold on for dear life" among crypto investors.

The basic idea behind HODLing is that cryptocurrencies are still in their early stages of development and have the potential for significant long-term growth. By holding onto a cryptocurrency for the long term, investors hope to benefit from its potential future value, rather than just its current market price.

However, HODLing does involve risks, as the cryptocurrency market is highly volatile and can experience significant price swings in a short amount of time. Therefore, it's important to conduct research and due diligence before deciding to HODL a particular cryptocurrency, and to have a solid understanding of the market trends and the underlying technology and fundamentals of the cryptocurrency in question.

2. Swing Trading Strategy

Swing trading consists of buying and holding a cryptocurrency for a short period of time, usually a few days or weeks, with the aim of profiting from price movements within that time frame. The goal is to capture short-term price swings or "swings" in the market.

Swing traders often use technical analysis to identify potential entry and exit points for their trades. They look for chart patterns, such as trend lines, support and resistance levels, and moving averages, to determine the direction of the market and the optimal time to buy or sell a cryptocurrency.

3. Scalping Trading Strategy

Crypto scalping is a trading strategy that involves making small, quick profits by buying and selling cryptocurrencies within a short time frame, usually a few minutes to an hour. Scalpers aim to profit from small price movements, taking advantage of short-term volatility in the market.

To be successful at crypto scalping, traders need to be able to quickly identify opportunities and act fast. They often use technical analysis to identify short-term trends and support and resistance levels to determine entry and exit points for their trades. Scalpers may also use trading bots or automated algorithms to execute their trades quickly and efficiently.

Furthermore, scalpers need to be disciplined and patient, as it can take time to identify profitable trades and execute them quickly.

4. Technical Analysis

Technical analysis is a trading strategy that involves studying historical market data, such as price charts and volume, to identify patterns and trends that can help predict future price movements of a cryptocurrency. It's based on the idea that past market behavior can help inform future market behavior.

In technical analysis, traders use various tools and indicators to analyze market data and make trading decisions. Some of the most commonly used indicators include moving averages, trend lines, support and resistance levels, and relative strength index (RSI). Traders may also use chart patterns, such as head and shoulders, triangles, and flags, to identify potential price movements.

Technical analysis can be useful in predicting short-term price movements of a cryptocurrency, but it does have limitations. It cannot account for unexpected events, such as regulatory changes, technological advancements, or other external factors that can affect the cryptocurrency market.

5. Fundamental Analysis

Fundamental analysis is a basic yet powerful trading strategy that promotes studying the underlying factors that influence the value of a cryptocurrency. These factors can include the technology and development of the cryptocurrency, the market demand for it, the regulatory environment, and other macroeconomic factors that can affect the cryptocurrency market.

In fundamental analysis, traders look at a cryptocurrency's fundamentals, such as its whitepaper, development team, partnerships, adoption rate, and market share, to determine its long-term value and potential for growth.

One of the key advantages of fundamental analysis is that it can provide insights into the long-term value and potential of a cryptocurrency, beyond just short-term price movements. It can also help traders identify undervalued or overvalued cryptocurrencies and make informed investment decisions based on their analysis.

6. Arbitrage Trading Strategy

Arbitrage is a trading strategy that involves taking advantage of price differences between different cryptocurrency exchanges or markets to make a profit. In the context of cryptocurrency, arbitrage involves buying a cryptocurrency on one exchange where it is priced lower and simultaneously selling it on another exchange where it is priced higher, thereby profiting from the price difference.

To successfully execute an arbitrage trade, traders need to be able to identify price discrepancies quickly and act fast. This often involves using trading bots or automated algorithms to scan multiple exchanges simultaneously and identify potential arbitrage opportunities.

7. News Based Trading Strategy

News-based trading is a trading strategy that involves using news events and announcements to make trading decisions. This strategy involves monitoring news sources, such as financial news outlets, social media, and official announcements, to identify events or news that could potentially impact the cryptocurrency market.

When a news event is announced, traders will analyze the information and try to predict how it will affect the price of a particular cryptocurrency. Based on their analysis, traders may enter or exit positions in anticipation of the market's reaction to the news.

News-based trading can be a profitable strategy if done correctly, as news events can have a significant impact on the cryptocurrency market.

For example, a positive announcement from a major company about adopting a cryptocurrency can lead to an increase in demand and drive up prices. Conversely, negative news such as a security breach or regulatory crackdown can lead to a decrease in demand and drive down prices.

8. Market Making Strategy

Market making is a trading strategy used by professional traders to provide liquidity to the market. In the context of cryptocurrency, market makers buy and sell cryptocurrencies with the goal of making a profit by buying at a lower price and selling at a higher price, while also providing liquidity to the market.

Market makers do this by placing limit orders on both sides of the order book, buying at a lower price and selling at a higher price than the current market price. By doing so, they provide liquidity to the market, ensuring that buyers and sellers can easily execute their trades without significant slippage.

Market making can be yielding profits as market makers earn a profit from the bid-ask spread, which is the difference between the highest price that a buyer is willing to pay for a cryptocurrency (the bid) and the lowest price that a seller is willing to sell for (the ask).

9. Position Trading Strategy

Position trading involves holding a position in a cryptocurrency for an extended period of time, typically weeks, months, or even years. Position traders aim to profit from long-term trends and market movements by taking a position in a cryptocurrency and holding it for an extended period, regardless of short-term fluctuations in price. 

Position traders typically use fundamental analysis to identify cryptocurrencies with strong long-term potential and then hold the position for an extended period of time, waiting for the market to move in their favor.

This strategy can be used to capture long-term trends and take advantage of long-term market movements, potentially resulting in significant profits. In addition to this, traders can monetize from reinvesting their profits to increase the size of the position. 

10. Algorithmic Trading Strategy

This is one analytical trading strategy that uses computer programs to execute trades based on pre-programmed instructions, also known as algorithms. In the context of cryptocurrency, algorithmic trading can be used to buy and sell cryptocurrencies based on market conditions, technical indicators, or other factors.

Algorithmic trading programs can be customized to suit a trader's specific needs and can be used to automate the trading process, allowing traders to execute trades more quickly and efficiently. These programs can analyze market data in real-time, making trading decisions based on predefined rules and criteria.

When done correctly, it can help traders to react quickly to changing market conditions and take advantage of short-term opportunities. Also, algorithmic trading programs can help to remove emotions from the trading process, allowing traders to stick to their trading plan and avoid making impulsive decisions.

How Token Metrics Can Help Strategize Your Trading?

Strategizing your crypto investments can now get easier with the Token Metrics TradingView Indicator.

Head over here to explore → www.tokenmetrics.com/trading-view-indicator

Start analyzing your assets by getting hold of the right metrics such as:

  • Identifying bullish/bearish trends
  • Adaptive trend line indicator
  • Short term support and resistance range
  • Clear long/short signals
  • Market movements

And so much more…

The Bottom Line

Remember that trading cryptocurrencies can be risky, and it's important to do your research, understand the risks involved, and develop a sound trading strategy that suits your goals and risk tolerance.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How They Power Apps and AI

Token Metrics Team
6
MIN

APIs are the invisible connectors that let software talk to software. Whether you book a flight, check a crypto price, or ask an AI agent to summarize a document, APIs are likely working behind the scenes. This guide breaks down what an API is, how it works, common types and use cases, and practical steps for research and integration.

What is an API?

An API, or application programming interface, is a defined set of rules and data structures that lets one software component request services or data from another. Think of an API as a contract: the provider exposes endpoints and data formats, and the consumer uses those endpoints to perform actions or retrieve information. This abstraction hides implementation details, enabling interoperability and composability across systems.

At its core, an API specifies:

  • Available operations (endpoints) and accepted parameters
  • Request and response formats (JSON, XML, etc.)
  • Authentication and rate limits
  • Error handling and status codes

APIs accelerate development by allowing teams to reuse services instead of rebuilding functionality. They also enable ecosystems: marketplaces, integrations, and data sharing across organizations.

How APIs Work: Components & Protocols

APIs are implemented over protocols and architectural styles. The most common is REST (Representational State Transfer), which uses HTTP verbs (GET, POST, PUT, DELETE) and URIs to model resources. Alternatives like GraphQL let clients request specific data shapes, which can reduce over- and under-fetching in complex applications.

Key components to understand:

  • Endpoint: A URL representing a resource or action (e.g., /api/v1/prices).
  • Method: The HTTP action to perform (GET to read, POST to create).
  • Payload: The body of a request for create/update operations, usually JSON.
  • Authentication: API keys, OAuth tokens, or other schemes control access.
  • Rate limits: Providers throttle requests to protect services.

Beyond REST and GraphQL, there are webhooks (server-to-server push notifications), gRPC for high-performance RPC-style communication, and socket-based APIs for real-time streams. The choice of protocol affects latency, throughput, and developer ergonomics.

Types of APIs and Real-World Use Cases

APIs come in several flavors depending on visibility and purpose:

  • Public APIs: Exposed to external developers for integrations and apps.
  • Private APIs: Internal to an organization, used to modularize services.
  • Partner APIs: Shared with selected partners under specific agreements.

Common use cases illustrate how APIs deliver value:

  • Payment processing APIs enable e-commerce sites to accept credit cards without storing sensitive data.
  • Mapping and location APIs power ride-hailing, logistics, and geofencing features.
  • Data APIs supply market prices, on-chain metrics, or social feeds for dashboards and trading bots.
  • AI and ML model APIs let applications delegate tasks like transcription, summarization, or image analysis to cloud services.

For example, crypto applications rely heavily on exchange and on-chain data APIs to aggregate prices, monitor wallets, and execute analytics at scale. Evaluating latency, historical coverage, and data quality is critical when selecting a provider for time-series or transactional data.

How Developers and AI Use APIs

Developers use APIs to compose microservices, integrate third-party functionality, and automate workflows. For AI systems, APIs are essential both to access model inference and to fetch context data that models use as inputs.

Practical patterns include:

  1. Chaining: Calling multiple APIs in sequence to enrich a response (e.g., fetch user profile, then fetch personalized recommendations).
  2. Caching: Store frequent responses to reduce latency and cost.
  3. Bulk vs. Stream: Use batch endpoints for historical backfills and streaming/webhooks for real-time events.

When integrating APIs for analytics or AI, consider data consistency, schema evolution, and error semantics. Tools and platforms can monitor usage, surface anomalies, and provide fallbacks for degraded endpoints.

For researchers and teams assessing providers, structured evaluations help: compare SLA terms, data freshness, query flexibility, cost per request, and developer experience. Platforms that combine market data with AI-driven signals can accelerate exploratory analysis; for example, Token Metrics provides AI-backed research and ratings that teams often use to prioritize datasets and hypothesis testing.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is an API?

Q1: What is the difference between an API and a library?

An API defines a set of rules and endpoints for interaction between systems, often over a network. A library is a local collection of functions and classes that an application links to at runtime. Libraries run in-process; APIs often run across processes or machines.

FAQ — How secure are APIs?

Q2: How should APIs be secured?

Common security measures include authentication (API keys, OAuth), encryption (TLS), input validation, rate limiting, and monitoring for anomalous patterns. Security practices should match the sensitivity of data and regulatory requirements.

FAQ — REST vs. GraphQL

Q3: When to choose REST over GraphQL?

REST is simple and well-suited to resource-based designs and caching. GraphQL is useful when clients need precise control over returned fields and want to minimize round trips. The right choice depends on client needs, caching strategy, and team expertise.

FAQ — What drives API costs?

Q4: What factors affect API pricing?

Pricing typically depends on request volume, data granularity, retention of historical data, and premium features such as websockets, SLAs, or enriched analytics. Evaluate costs under realistic usage patterns and spikes.

FAQ — How to get started with an API?

Q5: How do I evaluate and integrate a new API?

Start by reading docs, testing sandbox endpoints, and estimating request volumes. Validate data formats, authentication flows, and edge cases (rate limits, errors). Prototype with small workloads before committing to production usage.

FAQ — Are APIs regulated?

Q6: Do APIs involve legal or compliance considerations?

APIs that handle personal data, financial transactions, or regulated assets may be subject to privacy laws, financial regulations, or contractual obligations. Assess compliance requirements, data residency, and logging needs early in the design process.

Disclaimer

This article is for educational purposes only and does not constitute investment, legal, or professional advice. Information contained here is neutral and analytical; always perform independent research and consult qualified professionals for decisions involving legal or financial risk.

Research

Understanding APIs: What They Are and How They Work

Token Metrics Team
5
MIN

APIs (Application Programming Interfaces) are the invisible wiring that lets modern software communicate. From mobile apps fetching data to AI agents orchestrating workflows, APIs enable systems to request services, exchange structured data, and extend functionality without exposing internal implementation. This article unpacks what an API is, how different API styles operate, where they’re used (including crypto and AI contexts), and practical approaches to evaluate, integrate, and secure them.

What an API Is: core concepts and terminology

An API is a set of rules and conventions that allows one software component to interact with another. At its simplest, an API defines:

  • Endpoints: Named access points that accept requests (for example, /users or /price).
  • Methods: Actions supported at an endpoint (common HTTP verbs: GET, POST, PUT, DELETE).
  • Request/Response formats: Structured payloads, typically JSON or XML, that describe inputs and outputs.
  • Authentication and authorization: How clients prove identity and gain access to resources (API keys, OAuth, JWT).
  • Rate limits and quotas: Constraints that protect services from abuse and manage capacity.

Think of an API as a contract: the provider promises certain behaviors and data shapes, and the consumer agrees to use the API according to those rules. That contract enables modular design, reusability, and language-agnostic integration.

How APIs work: protocols, formats, and architectural styles

APIs use protocols and conventions to carry requests and responses. The most common patterns include:

  • REST (Representational State Transfer): Uses standard HTTP methods and resource-oriented URLs. REST favors stateless interactions and JSON payloads.
  • GraphQL: Lets clients request exactly the fields they need in a single query, reducing over- and under-fetching.
  • gRPC: A high-performance RPC framework that uses protocol buffers for compact binary messages—often used for internal microservices.
  • Webhooks: A push model where the API provider sends events to a client URL when something changes.

Choosing an architecture depends on latency needs, payload sizes, versioning strategy, and developer ergonomics. For instance, GraphQL can simplify complex frontend queries, while REST remains straightforward for simple resource CRUD operations.

Common API types and real-world use cases (including crypto and AI)

APIs power an enormous variety of use cases across industries. Representative examples include:

  • Data APIs: Provide access to datasets or market data (weather, financial prices, on-chain metrics).
  • Service APIs: Offer functionality like payments, authentication, or messaging.
  • Platform APIs: Enable third-party apps to extend a core product—social platforms, cloud providers, and exchanges expose platform APIs.
  • AI and ML APIs: Expose model inference endpoints for tasks such as text generation, image recognition, or embeddings.

In the crypto ecosystem, APIs are fundamental: explorers, node providers, exchanges, and analytics platforms expose endpoints for price feeds, order books, trade history, wallet balances, and on-chain events. AI-driven research tools use APIs to combine market data, on-chain signals, and model outputs into research workflows and agents.

How to evaluate and integrate an API: practical steps

Adopting an API requires both technical and operational considerations. A pragmatic evaluation process includes:

  1. Define needs: Identify required data, latency tolerance, throughput, and allowable costs.
  2. Review documentation: Clear docs, example requests, schema definitions, and SDKs accelerate integration.
  3. Test endpoints: Use sandbox keys or Postman to validate payloads, error handling, and edge cases.
  4. Assess SLAs and rate limits: Understand uptime guarantees and throttling behavior; build retry/backoff strategies.
  5. Security and compliance: Check authentication methods, encryption, and data retention policies.
  6. Monitoring and observability: Plan logging, latency monitoring, and alerting to detect regressions post-integration.

When integrating multiple APIs—such as combining market data with model inference—consider a middleware layer that normalizes data shapes, caches frequent responses, and orchestrates calls to minimize latency and cost.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API — common questions

What is the difference between an API and a web service?

An API is a broader concept that defines interfaces for software interaction. A web service is a type of API that operates over network protocols such as HTTP. In practice, REST and GraphQL are web service styles used to implement APIs.

Are public APIs safe to use?

Public APIs can be safe if they follow security best practices: HTTPS everywhere, proper authentication, input validation, and rate limiting. Consumers should validate responses, handle errors, and avoid exposing credentials in client-side code.

How do API keys differ from OAuth?

API keys are simple tokens that identify a client application and are often used for server-to-server interactions. OAuth is a delegated authorization framework that allows users to grant limited access to their accounts without sharing credentials—common for user-facing integrations.

What is API rate limiting and why does it matter?

Rate limiting constrains how many requests a client can make in a time window. It prevents abuse, protects backend resources, and ensures fair usage. Clients should implement retries with exponential backoff and caching to stay within limits.

When should I use GraphQL instead of REST?

Choose GraphQL when clients need flexible, precise queries that fetch nested or disparate fields in a single request. REST can be simpler for straightforward resource CRUD and when predictable caching semantics are required.

Can APIs be used for real-time data?

Yes. Real-time patterns include WebSockets, Server-Sent Events (SSE), and streaming APIs. Some platforms also provide push notifications or webhooks to deliver near-instant updates to subscribers.

How do I handle versioning in APIs?

Common strategies include using version numbers in the URL (e.g., /v1/) or via headers. Maintain backward compatibility, communicate deprecation timelines, and provide migration guides to minimize friction for integrators.

What monitoring should I implement after integrating an API?

Track uptime, latency percentiles, error rates, and throughput. Instrument retries, logging of failed requests, and alerts for sustained degradation. Observability helps diagnose issues and communicate with API providers when needed.

Disclaimer: This article is for educational and informational purposes only. It explains technical concepts related to APIs and integration practices and does not provide financial, investment, or regulatory advice. Always evaluate tools and services according to your own requirements and compliance needs.

Research

APIs Explained: How They Connect Software and Data

Token Metrics Team
5
MIN

APIs — application programming interfaces — are the invisible glue that lets software talk to software. Whether you're building a dashboard, feeding data into an AI model, or fetching market prices for analytics, understanding what an API is and how it works is essential to designing reliable systems. This guide explains APIs in plain language, shows how they’re used in crypto and AI, and outlines practical steps for safe, scalable integration.

What is an API? Core definition and common types

An API (application programming interface) is a defined set of rules and endpoints that lets one software program request and exchange data or functionality with another. Think of it as a contract: the provider defines what inputs it accepts and what output it returns, and the consumer follows that contract to integrate services reliably.

Common API types:

  • REST APIs: Use HTTP verbs (GET, POST, PUT, DELETE) and structured URLs. They are stateless and often return JSON.
  • GraphQL: Allows clients to request exactly the data they need via a single endpoint, improving efficiency for complex queries.
  • WebSocket / Streaming APIs: Provide persistent connections for real-time data flows, useful for live feeds like price updates or chat.
  • RPC & gRPC: Remote procedure calls optimized for low-latency, typed interactions, often used in microservices.

How APIs work: requests, endpoints, and authentication

At a technical level, using an API involves sending a request to an endpoint and interpreting the response. Key components include:

  • Endpoint: A URL representing a resource or action (e.g., /v1/prices/bitcoin).
  • Method: The HTTP verb that signals the intent (GET to read, POST to create, etc.).
  • Headers & Body: Metadata (like authentication tokens) and payloads for requests that change state.
  • Response codes: Numeric codes (200 OK, 404 Not Found, 429 Too Many Requests) that indicate success or error types.
  • Authentication: API keys, OAuth tokens, JWTs, or mutual TLS are common ways to authenticate and authorize consumers.

Understanding these elements helps teams design error handling, retry logic, and monitoring so integrations behave predictably in production.

APIs in crypto and AI: practical use cases

APIs enable many building blocks in crypto and AI ecosystems. Examples include:

  • Market data & price feeds: REST or websocket APIs provide real-time and historical prices, order book snapshots, and trade events.
  • On-chain data: Indexing services expose transactions, balances, and contract events via APIs for analytics and compliance workflows.
  • Model serving: AI inference APIs let applications call trained models to generate predictions, embeddings, or natural language outputs.
  • Wallet & transaction APIs: Abstract common wallet operations like address generation, signing, and broadcasting transactions.

When integrating APIs for data-driven systems, consider latency, data provenance, and consistency. For research and model inputs, services that combine price data with on-chain metrics and signals can reduce the time it takes to assemble reliable datasets. For teams exploring such aggregations, Token Metrics provides an example of an AI-driven analytics platform that synthesizes multiple data sources for research workflows.

Best practices and security considerations for API integration

Secure, maintainable APIs follow established practices that protect data and reduce operational risk:

  1. Authentication & least privilege: Use scoped API keys or OAuth to limit access, rotate credentials regularly, and avoid embedding secrets in client code.
  2. Rate limiting and retries: Respect provider rate limits, implement exponential backoff, and design idempotent operations to avoid duplication.
  3. Input validation and sanitization: Validate incoming data and sanitize outputs to prevent injection and misuse.
  4. Versioning: Use semantic versioning in endpoint paths (e.g., /v1/) and deprecate old versions with clear timelines.
  5. Monitoring and observability: Log requests, latency, errors, and usage patterns. Set alerts for anomalies and integrate telemetry into incident response playbooks.
  6. Data integrity and provenance: When using third-party feeds, capture timestamps, unique identifiers, and proof-of-origin where available so downstream analysis can trace sources.

Following these practices helps teams scale API usage without sacrificing reliability or security.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is an API and why is it useful?

An API is a set of rules that enables software components to interact. It’s useful because it abstracts complexity, standardizes data exchange, and enables modular development across systems and teams.

Which API type should I choose: REST, GraphQL, or streaming?

Choose based on access patterns: REST is simple and widely supported; GraphQL excels when clients need flexible queries and fewer round trips; streaming (WebSocket) is best for low-latency, continuous updates. Consider caching, complexity, and tooling support.

How do I secure API keys and credentials?

Store secrets in secure vaults or environment variables, avoid hardcoding them in source code, rotate keys periodically, and apply principle of least privilege to limit access scopes.

What are rate limits and how should I handle them?

Rate limits restrict how many requests a client can make in a time window. Handle them by respecting limits, implementing exponential backoff for retries, caching responses, and batching requests where possible.

How do I evaluate an API provider?

Assess documentation quality, uptime SLAs, authentication methods, data freshness, cost model, and community or support channels. Test with realistic workloads and review security practices and versioning policies.

Can APIs be used to power AI agents?

Yes. AI agents often call APIs for data ingestion, model inference, or action execution. Reliable APIs for feature data, model serving, and orchestration are key to building robust AI workflows.

Disclaimer

This article is for educational and informational purposes only. It does not constitute financial, investment, legal, or professional advice. Evaluate APIs and data sources independently and consider security and compliance requirements specific to your use case.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products