Crypto Basics

10 Best Crypto Trading Strategies for Traders in 2023

Learn the best cryptocurrency trading strategies and how to use them in this descriptive guide.
Marcus K
8 minutes
MIN

Crypto trading has emerged as a popular and lucrative form of investment over the past few years. As the crypto market continues to grow and evolve, more and more traders are turning to various strategies to help them navigate the market and increase their profits.

A successful crypto trading strategy requires a deep understanding of the market, technical analysis, risk management, and a willingness to adapt to changing market conditions.

In this post, we will explore the best crypto trading strategies to use in 2023.

Top 10 Crypto Trading Strategies

Let's explore some of the most popular crypto trading strategies, their advantages and disadvantages, and how to implement them effectively. Whether you're a seasoned trader or a beginner, understanding these strategies can help you make informed decisions and achieve your trading goals.

Here are the 10 crypto trading strategies that traders commonly use:

1. HODLing an asset

HODLing, as it is commonly known in the cryptocurrency world, refers to the practice of holding onto a cryptocurrency for the long term, rather than selling it for a short-term gain. The term originated in 2013 when a user on a Bitcoin forum misspelled the word "hold" as "hodl" in a post encouraging others to resist the temptation to sell during a price drop. HODL also commonly come to stand for "hold on for dear life" among crypto investors.

The basic idea behind HODLing is that cryptocurrencies are still in their early stages of development and have the potential for significant long-term growth. By holding onto a cryptocurrency for the long term, investors hope to benefit from its potential future value, rather than just its current market price.

However, HODLing does involve risks, as the cryptocurrency market is highly volatile and can experience significant price swings in a short amount of time. Therefore, it's important to conduct research and due diligence before deciding to HODL a particular cryptocurrency, and to have a solid understanding of the market trends and the underlying technology and fundamentals of the cryptocurrency in question.

2. Swing Trading Strategy

Swing trading consists of buying and holding a cryptocurrency for a short period of time, usually a few days or weeks, with the aim of profiting from price movements within that time frame. The goal is to capture short-term price swings or "swings" in the market.

Swing traders often use technical analysis to identify potential entry and exit points for their trades. They look for chart patterns, such as trend lines, support and resistance levels, and moving averages, to determine the direction of the market and the optimal time to buy or sell a cryptocurrency.

3. Scalping Trading Strategy

Crypto scalping is a trading strategy that involves making small, quick profits by buying and selling cryptocurrencies within a short time frame, usually a few minutes to an hour. Scalpers aim to profit from small price movements, taking advantage of short-term volatility in the market.

To be successful at crypto scalping, traders need to be able to quickly identify opportunities and act fast. They often use technical analysis to identify short-term trends and support and resistance levels to determine entry and exit points for their trades. Scalpers may also use trading bots or automated algorithms to execute their trades quickly and efficiently.

Furthermore, scalpers need to be disciplined and patient, as it can take time to identify profitable trades and execute them quickly.

4. Technical Analysis

Technical analysis is a trading strategy that involves studying historical market data, such as price charts and volume, to identify patterns and trends that can help predict future price movements of a cryptocurrency. It's based on the idea that past market behavior can help inform future market behavior.

In technical analysis, traders use various tools and indicators to analyze market data and make trading decisions. Some of the most commonly used indicators include moving averages, trend lines, support and resistance levels, and relative strength index (RSI). Traders may also use chart patterns, such as head and shoulders, triangles, and flags, to identify potential price movements.

Technical analysis can be useful in predicting short-term price movements of a cryptocurrency, but it does have limitations. It cannot account for unexpected events, such as regulatory changes, technological advancements, or other external factors that can affect the cryptocurrency market.

5. Fundamental Analysis

Fundamental analysis is a basic yet powerful trading strategy that promotes studying the underlying factors that influence the value of a cryptocurrency. These factors can include the technology and development of the cryptocurrency, the market demand for it, the regulatory environment, and other macroeconomic factors that can affect the cryptocurrency market.

In fundamental analysis, traders look at a cryptocurrency's fundamentals, such as its whitepaper, development team, partnerships, adoption rate, and market share, to determine its long-term value and potential for growth.

One of the key advantages of fundamental analysis is that it can provide insights into the long-term value and potential of a cryptocurrency, beyond just short-term price movements. It can also help traders identify undervalued or overvalued cryptocurrencies and make informed investment decisions based on their analysis.

6. Arbitrage Trading Strategy

Arbitrage is a trading strategy that involves taking advantage of price differences between different cryptocurrency exchanges or markets to make a profit. In the context of cryptocurrency, arbitrage involves buying a cryptocurrency on one exchange where it is priced lower and simultaneously selling it on another exchange where it is priced higher, thereby profiting from the price difference.

To successfully execute an arbitrage trade, traders need to be able to identify price discrepancies quickly and act fast. This often involves using trading bots or automated algorithms to scan multiple exchanges simultaneously and identify potential arbitrage opportunities.

7. News Based Trading Strategy

News-based trading is a trading strategy that involves using news events and announcements to make trading decisions. This strategy involves monitoring news sources, such as financial news outlets, social media, and official announcements, to identify events or news that could potentially impact the cryptocurrency market.

When a news event is announced, traders will analyze the information and try to predict how it will affect the price of a particular cryptocurrency. Based on their analysis, traders may enter or exit positions in anticipation of the market's reaction to the news.

News-based trading can be a profitable strategy if done correctly, as news events can have a significant impact on the cryptocurrency market.

For example, a positive announcement from a major company about adopting a cryptocurrency can lead to an increase in demand and drive up prices. Conversely, negative news such as a security breach or regulatory crackdown can lead to a decrease in demand and drive down prices.

8. Market Making Strategy

Market making is a trading strategy used by professional traders to provide liquidity to the market. In the context of cryptocurrency, market makers buy and sell cryptocurrencies with the goal of making a profit by buying at a lower price and selling at a higher price, while also providing liquidity to the market.

Market makers do this by placing limit orders on both sides of the order book, buying at a lower price and selling at a higher price than the current market price. By doing so, they provide liquidity to the market, ensuring that buyers and sellers can easily execute their trades without significant slippage.

Market making can be yielding profits as market makers earn a profit from the bid-ask spread, which is the difference between the highest price that a buyer is willing to pay for a cryptocurrency (the bid) and the lowest price that a seller is willing to sell for (the ask).

9. Position Trading Strategy

Position trading involves holding a position in a cryptocurrency for an extended period of time, typically weeks, months, or even years. Position traders aim to profit from long-term trends and market movements by taking a position in a cryptocurrency and holding it for an extended period, regardless of short-term fluctuations in price. 

Position traders typically use fundamental analysis to identify cryptocurrencies with strong long-term potential and then hold the position for an extended period of time, waiting for the market to move in their favor.

This strategy can be used to capture long-term trends and take advantage of long-term market movements, potentially resulting in significant profits. In addition to this, traders can monetize from reinvesting their profits to increase the size of the position. 

10. Algorithmic Trading Strategy

This is one analytical trading strategy that uses computer programs to execute trades based on pre-programmed instructions, also known as algorithms. In the context of cryptocurrency, algorithmic trading can be used to buy and sell cryptocurrencies based on market conditions, technical indicators, or other factors.

Algorithmic trading programs can be customized to suit a trader's specific needs and can be used to automate the trading process, allowing traders to execute trades more quickly and efficiently. These programs can analyze market data in real-time, making trading decisions based on predefined rules and criteria.

When done correctly, it can help traders to react quickly to changing market conditions and take advantage of short-term opportunities. Also, algorithmic trading programs can help to remove emotions from the trading process, allowing traders to stick to their trading plan and avoid making impulsive decisions.

How Token Metrics Can Help Strategize Your Trading?

Strategizing your crypto investments can now get easier with the Token Metrics TradingView Indicator.

Head over here to explore → www.tokenmetrics.com/trading-view-indicator

Start analyzing your assets by getting hold of the right metrics such as:

  • Identifying bullish/bearish trends
  • Adaptive trend line indicator
  • Short term support and resistance range
  • Clear long/short signals
  • Market movements

And so much more…

The Bottom Line

Remember that trading cryptocurrencies can be risky, and it's important to do your research, understand the risks involved, and develop a sound trading strategy that suits your goals and risk tolerance.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Practical REST API Guide for Developers

Token Metrics Team
5
MIN

REST APIs power much of the web and modern applications by providing a simple, scalable contract between clients and servers. Whether you're building microservices, mobile backends, or integrations, understanding REST principles, security trade-offs, and operational practices helps you design reliable interfaces that scale. This guide walks through core concepts, design patterns, security essentials, and practical steps to evaluate and implement REST APIs effectively.

What is a REST API and why it matters

REST (Representational State Transfer) is an architectural style for distributed systems. Rather than a strict protocol, REST prescribes patterns: stateless interactions, resource-oriented URIs, and use of standard HTTP methods (GET, POST, PUT, DELETE, PATCH). The result is a predictable API surface that is easy to cache, route, and evolve.

Key benefits include:

  • Interoperability: Clients and servers can evolve independently when contracts are clear.
  • Scalability: Statelessness facilitates horizontal scaling and load balancing.
  • Tooling: Wide ecosystem for testing, documentation, and client generation.

Design principles and best practices

Good REST design balances simplicity, clarity, and forward compatibility. Use the following framework when designing endpoints and contracts:

  1. Resource modeling: Identify nouns (resources) first, then actions. Prefer /users/123/orders over /getUserOrders?id=123.
  2. HTTP methods & status codes: Map CRUD operations to HTTP verbs and return meaningful status codes (200, 201, 204, 400, 404, 422, 500).
  3. Pagination & filtering: Standardize pagination (limit/offset or cursor) and provide filtering query parameters to avoid large payloads.
  4. Versioning strategy: Favor versioning in the path (e.g., /v1/) or via headers. Keep deprecation timelines and migration guides clear to consumers.
  5. HATEOAS (optional): Hypermedia can add discoverability, but many practical APIs use simple documented links instead.

Document expected request/response schemas and examples. Tools like OpenAPI (Swagger) make it easier to generate client libraries and validate contracts.

Security, authentication, and common patterns

Security is a non-functional requirement that must be addressed from day one. Common authentication and authorization patterns include:

  • OAuth 2.0: Widely used for delegated access and third-party integrations.
  • API keys: Simple for service-to-service or internal integrations, but should be scoped and rotated.
  • JWT (JSON Web Tokens): Stateless tokens carrying claims; be mindful of token expiration and revocation strategies.

Practical security measures:

  • Always use TLS (HTTPS) to protect data in transit.
  • Validate and sanitize inputs to prevent injection attacks and resource exhaustion.
  • Rate limit and apply quota controls to reduce abuse and manage capacity.
  • Monitor authentication failures and anomalous patterns; implement alerting and incident playbooks.

Testing, performance, and observability

APIs must be reliable in production. Build a test matrix that covers unit tests, contract tests, and end-to-end scenarios. Useful practices include:

  • Contract testing: Use OpenAPI-based validation to ensure client and server expectations remain aligned.
  • Load testing: Simulate realistic traffic to identify bottlenecks and capacity limits.
  • Caching: Use HTTP cache headers (ETag, Cache-Control) and edge caching for read-heavy endpoints.
  • Observability: Instrument APIs with structured logs, distributed traces, and metrics (latency, error rates, throughput).

Operationally, design for graceful degradation: return useful error payloads, implement retries with exponential backoff on clients, and provide clear SLAs. AI-driven research and API analytics can help prioritize which endpoints to optimize; for example, Token Metrics illustrates how product data combined with analytics surfaces high-impact areas for improvement.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Frequently Asked Questions

What exactly does "REST" mean?

REST stands for Representational State Transfer. It describes a set of constraints—stateless interactions, resource-oriented URIs, and uniform interfaces—rather than a wire protocol. Implementations typically use HTTP and JSON.

How is REST different from SOAP and GraphQL?

SOAP is a strict protocol with XML envelopes, formal contracts (WSDL), and built-in features like WS-Security. REST is more flexible and lightweight. GraphQL exposes a single endpoint that allows clients to request specific fields, reducing over-fetching but adding complexity on the server side. Choose based on client needs, tooling, and team expertise.

What are common authentication methods for REST APIs?

Common methods include OAuth 2.0 for delegated access, API keys for simple service access, and JWTs for stateless sessions. Each has trade-offs around revocation, token size, and complexity—consider lifecycle and threat models when selecting an approach.

How should I manage API versioning?

Versioning strategies include path-based (/v1/resource), header-based, or content negotiation. Path-based versioning is the most explicit and easiest for clients. Maintain backward compatibility where possible and provide clear deprecation timelines and migration guides.

Which tools help with designing and testing REST APIs?

OpenAPI (Swagger) for specification and client generation, Postman for exploratory testing, and contract-testing tools like Pact for ensuring compatibility. Load testing tools (k6, JMeter) and observability platforms complete the pipeline for production readiness.

Disclaimer

This article is educational and technical in nature. It provides general information about REST API design, security, and operations, not financial, legal, or investment advice. Assess your own requirements and consult appropriate specialists when implementing systems in production.

Research

REST API Guide: Design, Security & Best Practices

Token Metrics Team
5
MIN

REST APIs remain the backbone of modern web and mobile integrations. Whether you are building a public data service, an internal microservice, or an AI agent that consumes remote endpoints, understanding REST architecture, trade-offs, and operational considerations helps you design reliable, maintainable services. This guide outlines core principles, security patterns, performance levers, and practical steps to take a REST API from prototype to production-ready.

Overview: What REST Means and When to Use It

REST (Representational State Transfer) is an architectural style that emphasizes stateless interactions, resource-oriented URLs, and a uniform interface over HTTP. REST excels when you need:

  • Clear resource models (users, orders, assets) that map to endpoints.
  • Interoperability across heterogeneous clients (web, mobile, bots).
  • Simple caching and scalability using standard HTTP semantics.

It is less ideal for tightly-coupled RPC-style workflows or highly transactional systems where more specialized protocols (gRPC, WebSockets) may be better. Use scenario analysis: list the primary operations, expected throughput, latency requirements, and client types before committing to REST.

Design Principles: Modeling Resources, Endpoints & Versioning

Good REST design begins with resource modeling. Convert nouns into endpoints (e.g., /users, /orders/{id}) and use HTTP verbs for actions (GET, POST, PUT, PATCH, DELETE). Key practices include:

  • Consistent URI structure: predictable paths reduce client complexity and documentation friction.
  • Use of status codes: return standard HTTP codes (200, 201, 400, 401, 403, 404, 429, 500) and embed machine-readable error payloads.
  • Pagination and filtering: design scalable list endpoints with limit/offset or cursor approaches and clear sort/filter parameters.
  • API versioning: prefer versioning via headers or a version segment (e.g., /v1/) and adopt deprecation policies to manage breaking changes.

Document the contract using OpenAPI/Swagger to enable client generation and automated testing. Maintain a change log and semantic versioning conventions to help consumers plan migrations.

Security & Authentication Patterns

Security must be baked into API design. Core controls include transport security, authentication, authorization, and abuse prevention:

  • TLS everywhere: require HTTPS and disallow insecure endpoints.
  • Authentication: use OAuth2 for delegated access, API keys for service-to-service calls, or JWTs for stateless sessions. Rotate and scope keys to limit blast radius.
  • Authorization: implement least-privilege ACLs and role-based checks at the resource layer.
  • Rate limiting and throttling: protect against spikes and abuse with client-tiered rate limits and graceful 429 responses.
  • Input validation and sanitization: validate payloads, enforce size limits, and apply schema checks to avoid injection and denial-of-service vectors.

Audit logs and monitoring provide visibility into suspicious patterns. Use a layered approach: perimeter controls, application checks, and runtime protections.

Performance, Scaling & Reliability

Design for performance from the start. Profile expected workloads and adopt strategies appropriate to scale:

  • Caching: leverage HTTP caching headers (ETag, Cache-Control) and CDN caching for public resources.
  • Asynchronous workflows: move long-running tasks to background jobs and expose status endpoints rather than blocking request threads.
  • Connection and payload optimization: support gzip/brotli compression and consider payload minimization or field selection to reduce bandwidth.
  • Horizontal scaling: design services to be stateless so they can scale behind load balancers; externalize state to databases or caches.
  • Observability: collect structured logs, distributed traces, and metrics (latency, error rates, saturations) to detect regressions early.

Test performance with realistic load patterns and failure injection. A resilient API recovers gracefully from partial outages and provides useful error information to clients.

Practical Integration: Tooling, SDKs & AI Agents

Operationalizing a REST API includes client SDKs, developer portals, and automation. Use OpenAPI to generate SDKs in common languages and provide interactive documentation (Swagger UI, Redoc). For AI-driven applications, consider these steps:

  1. Expose well-documented endpoints for the data models AI agents will consume.
  2. Provide schema and example payloads so model prompts can be constructed deterministically.
  3. Rate-limit and sandbox agent access to prevent excessive usage and protect sensitive data fields.

AI-driven research and analytics tools can augment API design and monitoring by surfacing anomalies and suggesting schema changes. For example, platforms that combine on-chain and market data help teams design endpoints that better serve analytics workloads—see Token Metrics for an example of an AI-powered crypto research tool that demonstrates how combining signals and APIs supports data-driven product design.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a REST API?

A REST API is an interface that uses HTTP methods and resource-oriented URLs to enable stateless communication between clients and servers. It emphasizes a uniform interface and uses standard HTTP semantics.

FAQ: How do I version a REST API safely?

Version by URI segment (/v1/) or headers, publish changelogs, and use semantic versioning to communicate compatibility. Provide backward-compatible migrations and deprecation timelines for breaking changes.

FAQ: What authentication methods are common for REST APIs?

Common approaches include OAuth2 for delegated access, API keys for service access, and JWTs for stateless sessions. Choose based on client types and security requirements, and always use TLS.

FAQ: How can I optimize REST API performance?

Apply caching headers, use CDNs, compress payloads, paginate large lists, and move long-running tasks to asynchronous queues. Monitor metrics and load-test using representative traffic.

FAQ: When should I choose gRPC or GraphQL instead of REST?

Choose gRPC for low-latency, high-throughput RPC between services and GraphQL when clients need flexible queries over a complex graph of resources. REST is often best for simple resource-based services and broad interoperability.

Disclaimer

This article is for educational and informational purposes only. It does not constitute professional advice. Evaluate technical choices in the context of your own project requirements and constraints.

Research

Mastering Modern REST APIs: Design, Security & Tools

Token Metrics Team
5
MIN

REST APIs power much of the web: mobile apps, SPAs, microservices, and integrations all rely on predictable HTTP-based interfaces. This guide breaks down modern REST API concepts into practical frameworks, security patterns, testing workflows, and tooling recommendations so engineers can build resilient, maintainable services.

Overview: What a REST API Really Is

A REST API (Representational State Transfer) is an architectural style for networked applications that uses stateless HTTP requests to perform operations on resources. Rather than prescribing specific technologies, REST emphasizes constraints—uniform interface, statelessness, cacheability, layered system—to enable scalable, evolvable services.

Key concepts:

  • Resources: nouns exposed by the API (e.g., /users, /orders).
  • HTTP verbs: GET, POST, PUT/PATCH, DELETE map to read/create/update/delete operations.
  • Representations: payload formats such as JSON or XML; JSON is ubiquitous today.
  • Statelessness: each request contains all necessary context (authentication tokens, parameters).

Design Principles & Patterns for Scalable APIs

Good design balances clarity, consistency, and forward compatibility. Apply these patterns when designing endpoints and payloads:

  • Resource modeling: structure endpoints around logical resources and their relationships. Favor plural nouns: /invoices, /invoices/{id}/lines.
  • Versioning: use a clear strategy such as Accept header versioning or a version prefix (/v1/) when breaking changes are necessary.
  • Pagination & filtering: implement cursor-based pagination for large datasets and offer consistent filter/query parameter semantics.
  • Hypermedia (HATEOAS) where useful: include links to related resources to aid discoverability in complex domains.
  • Error handling: return standardized error objects with HTTP status codes, machine-readable error codes, and human-friendly messages.

Designing APIs with clear contracts helps teams iterate without surprises and enables client developers to integrate reliably.

Security, Rate Limiting, and Operational Concerns

Security and reliability are core to production APIs. Focus on layered defenses and operational guardrails:

  • Authentication & authorization: adopt proven standards such as OAuth 2.0 for delegated access and use JSON Web Tokens (JWT) or opaque tokens as appropriate. Validate scopes and permissions server-side.
  • Transport security: enforce HTTPS everywhere and use HSTS to prevent downgrade attacks.
  • Input validation and sanitization: validate payloads at the boundary, apply schema checks, and reject unexpected fields to reduce attack surface.
  • Rate limiting & quotas: protect resources with per-key throttling, burst policies, and graceful 429 responses to communicate limits to clients.
  • Observability: implement structured logging, distributed tracing, and metrics (latency, error rate, throughput) to detect anomalies early.

Security is not a single control but a set of practices that evolve with threats. Regular reviews and attack surface assessments are essential.

Tools, Testing, and AI-Assisted Analysis

Reliable APIs require automated testing, simulation, and monitoring. Common tools and workflows include:

  • Design-first: use OpenAPI/Swagger to define contracts, generate client/server stubs, and validate conformance.
  • Testing: employ unit tests for business logic, integration tests for end-to-end behavior, and contract tests (Pact) between services.
  • Load testing: use tools like k6 or JMeter to simulate traffic patterns and surface scaling limits.
  • Security testing: perform automated vulnerability scanning, dependency analysis, and routine penetration testing.
  • AI and analytics: modern workflows increasingly incorporate AI assistants for anomaly detection, schema drift alerts, and traffic classification. For AI-assisted API monitoring and analytics, Token Metrics offers capabilities that can augment diagnostics without replacing engineering judgment.

Combining contract-first development with continuous testing and observability reduces regressions and improves reliability.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What protocols and formats do REST APIs use?

REST APIs typically use HTTP/HTTPS as the transport protocol and JSON as the dominant payload format. XML and other formats are supported but less common. HTTP status codes convey high-level outcome (200 OK, 201 Created, 400 Bad Request, 401 Unauthorized, 429 Too Many Requests, 500 Server Error).

FAQ: How should I version a public REST API?

Versioning strategies vary. A pragmatic approach is to keep backward-compatible changes unversioned and introduce a new version (e.g., /v2/) for breaking changes. Consider header-based versioning for greater flexibility, but ensure clients can discover supported versions.

FAQ: When should I use PUT vs PATCH?

Use PUT for full resource replacement and PATCH for partial updates. PUT should accept the complete resource representation; PATCH applies a partial modification (often using JSON Patch or a custom partial payload). Document semantics clearly so clients know expectations.

FAQ: How do I design for backward compatibility?

Prefer additive changes (new fields, new endpoints) and avoid removing fields or changing response types. Feature flags, deprecation headers, and sunset timelines help coordinated migration. Provide clear changelogs and client SDK updates when breaking changes are unavoidable.

FAQ: What are common performance optimizations for REST APIs?

Common techniques include caching responses with appropriate cache-control headers, using content compression (gzip/ Brotli), database query optimization, connection pooling, and applying CDN edge caching for static or infrequently changing data. Profiling and tracing will point to the highest-return optimizations.

FAQ: How do REST and GraphQL compare for API design?

REST emphasizes resource-centric endpoints and predictable HTTP semantics, while GraphQL provides flexible query composition and single-endpoint operation. Choose based on client needs: REST often maps naturally to CRUD operations and caching; GraphQL excels when clients need tailored queries and minimized round trips.

Disclaimer: This article is educational and informational only. It does not constitute investment, legal, or professional advice. Implementations, security practices, and platform choices should be evaluated against your project requirements and in consultation with qualified professionals.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products