Crypto Basics

Cryptocurrency Mining - What It Is and How to Mine Cryptocurrencies in 2023

Learn everything about cryptocurrency mining and how it works, in this descriptive guide.
Token Metrics Team
10 Minutes
MIN

Cryptocurrency mining has become a buzzword in the world of crypto and technology, and it has become a popular way for individuals to generate new coins and earn money. 

While the concept of mining may seem intimidating to some, it's actually quite simple and accessible to anyone with a computer and internet connection. As we enter 2023, the world of crypto mining is constantly evolving and adapting to changing market conditions.

In this article, we will explore the ins and outs of crypto mining, including how it works, its types, the equipment needed for mining, and the potential benefits and drawbacks.

What is Cryptocurrency Mining?

Crypto mining is the process of adding new blocks to a blockchain by verifying transactions and solving complex mathematical equations. When a new block is added to the blockchain, the miner responsible for the block receives a reward in the form of newly minted cryptocurrency.

In order to mine cryptocurrency, you also need to have some serious computing power. This is because the mining process involves solving complex mathematical equations to validate transactions on the network. The more computing power you have, the more equations you can solve, and the more rewards you can potentially earn.

The most popular cryptocurrency to mine is Bitcoin, but there are also many other digital currencies that can be mined, such as Ethereum, Litecoin, and Dogecoin. Each cryptocurrency has its own mining algorithm and requirements, so it's important to do your research and choose the one that best suits your hardware and preferences.

How does Crypto Mining Work?

Now, let's understand how crypto mining actually works.

When a transaction is made on a cryptocurrency network, it needs to be verified by multiple nodes on the network to ensure its validity. These nodes are essentially computers that are connected to the network and are responsible for maintaining the blockchain, which is a digital ledger that records all transactions on the network.

When a node verifies a transaction, it adds it to the blockchain and broadcasts it to the rest of the network. The other nodes then verify the transaction as well, and if a majority of them agree that it is valid, the transaction is confirmed and added to the blockchain permanently.

This is where miners come in. Miners use their computers to compete with each other to solve a complex mathematical equation known as a hash. The first miner to solve the hash is rewarded with a certain number of digital tokens or coins, which is why mining is often referred to as earning cryptocurrency.

Proof of Work Method in Crypto Mining

Proof of Work (PoW) is a consensus algorithm used by many blockchain-based cryptocurrencies to validate transactions and prevent fraudulent activity on the network.

Now, you might be thinking, "What is a consensus algorithm?" Well, a consensus algorithm is a set of rules that determine how transactions are validated and added to the blockchain.

In a decentralized network, like a cryptocurrency, there is no central authority to oversee the transactions and ensure their validity. Instead, the network relies on consensus algorithms to ensure that all nodes on the network agree on the state of the ledger.

In a PoW system, nodes on the network compete with each other to solve complex mathematical equations, or "hashes," in order to validate transactions and earn rewards. The first node to solve the hash is rewarded with a certain amount of cryptocurrency, such as Bitcoin or Ethereum. This process is often referred to as "mining."

What Equipment is Needed in Crypto Mining?

To mine cryptocurrency, a miner needs specialized hardware, such as a graphics processing unit (GPU) or an application-specific integrated circuit (ASIC). These devices are designed specifically for crypto mining and are optimized for the computational power required to solve the complex equations. 

Other equipment needed for mining includes a mining pool, which is a group of miners who combine their resources to increase their chances of solving the mathematical problems and receiving the reward. A miner also needs a wallet to store their earned cryptocurrency.

Types of Cryptocurrency Mining

There are actually several different types of crypto mining. Let's saddle up and take a closer look at each one.

CPU Mining - The first type of mining is CPU mining. As the name suggests, this involves using your computer's central processing unit (CPU) to solve complex mathematical equations, or "hashes," in order to validate transactions and earn rewards.

While CPU mining was popular in the early days of cryptocurrency, it has since become less profitable due to the increasing difficulty of the hashes and the rise of more powerful mining hardware.

GPU Mining - The next type of mining is GPU mining. This involves using a graphics processing unit (GPU) to solve the hashes and validate transactions. 

GPUs are more powerful than CPUs and can perform the calculations required for mining more efficiently. As a result, GPU mining is currently one of the most popular methods of mining cryptocurrency.

ASIC Mining - ASIC mining is another popular method of mining. ASICs, or application-specific integrated circuits, are specialized mining hardware designed specifically for cryptocurrency mining. 

They are highly efficient and can perform the calculations required for mining much faster than CPUs or GPUs. However, they are also much more expensive and can be difficult to obtain.

Cloud Mining - Cloud mining is a type of mining that involves renting computing power from a third-party provider. The provider hosts the mining hardware and handles the maintenance and operation of the equipment, while the user pays a fee to access the computing power. 

While cloud mining can be convenient for those who don't have the resources or expertise to set up and maintain their own mining hardware, it can also be more expensive and less profitable than other types of mining.

Mobile Mining - Mobile mining is a relatively new type of mining that involves using your smartphone or tablet to mine cryptocurrency. While mobile devices are not as powerful as CPUs, GPUs, or ASICs, they can still contribute to the network and earn rewards. However, mobile mining is not very profitable and can also be detrimental to the device's battery life.

Hybrid Mining - Finally, there is hybrid mining, which combines two or more types of mining in order to maximize profits. For example, a miner might use ASICs for the most difficult and profitable calculations, while using GPUs or CPUs for less intensive calculations. This can help to balance the costs and benefits of different types of mining and increase overall profitability.

How to Mine Cryptocurrencies?

When you're prepared to begin mining cryptocurrency, below are the steps you should follow-

1. Choose Your Mining Hardware

The first step in mining cryptocurrencies is to choose your hardware. As we discussed in the previous article, there are several different types of mining hardware available, including CPUs, GPUs, ASICs, and even mobile devices. The type of hardware you choose will depend on your budget, resources, and goals.

2. Choose Your Mining Software

Once you have your hardware, you'll need to choose your mining software. This software is responsible for connecting your hardware to the blockchain network and managing the mining process. There are several different mining software options available, each with its own features and requirements. Some popular options include CGMiner, BFGMiner, and EasyMiner.

3. Join a Mining Pool

Mining can be a competitive and resource-intensive process, and it can be difficult for individual miners to earn rewards on their own. One solution to this problem is to join a mining pool. 

A mining pool is a group of miners who work together to solve the complex equations required for mining, and then split the rewards based on each member's contribution. Joining a mining pool can increase your chances of earning rewards and make the mining process more efficient.

4. Configure Your Hardware and Software

Once you have your hardware, software, and mining pool set up, you'll need to configure them for optimal performance. This may involve adjusting settings such as your hash rate, power consumption, and temperature control. You'll also need to ensure that your hardware and software are compatible and properly connected to the mining pool.

5. Start Mining

Once you've completed all of the previous steps, it's time to start mining! Depending on the type of cryptocurrency you're mining and the mining pool you've joined, you may need to meet certain minimum requirements in order to start earning rewards. 

6. Monitor and Maintain Your Mining Operation

Finally, it's important to monitor and maintain your mining operation in order to ensure that it remains profitable and efficient. This may involve monitoring your hardware and software for errors or malfunctions, adjusting your settings as needed, and keeping track of your earnings and expenses.

Is Crypto mining profitable in 2023?

In 2023, the profitability of crypto mining will depend largely on the price of the cryptocurrency being mined and the level of competition in the industry. Other factors that could affect mining profitability include the growth of decentralized finance, the rise of proof-of-stake, and the impact of regulatory changes.

To stay profitable, miners can focus on newer and less well-known cryptocurrencies, invest in more efficient mining hardware, and be flexible and adaptable in their mining strategies. While there are challenges facing the industry, there are also opportunities for those willing to take risks and adapt to changing market conditions.

Tax Implications on Crypto Mining

Mining cryptocurrencies can have tax implications, as it is considered a form of income. The specific tax laws and regulations vary depending on the country and jurisdiction. 

In the United States, for example, mining income is subject to self-employment tax and must be reported on tax returns. Additionally, the sale of mined cryptocurrency may trigger capital gains taxes. 

It is important for miners to understand the tax implications of their activities and to keep detailed records of their mining income and expenses to ensure compliance with tax laws. Seeking the advice of a tax professional can also be helpful in navigating the complex tax landscape of crypto mining.

Is Crypto Mining Legal?

In general, mining cryptocurrencies is legal in most countries, but some have imposed restrictions or bans on mining activities. China, for example, has banned crypto mining, citing concerns about energy consumption and financial risks. 

In other countries, such as the United States, mining is legal but may be subject to regulation and oversight. It is important for miners to research and understand the laws and regulations in their country or region to ensure they are operating legally. Failure to comply with regulations could result in fines, legal action, or other penalties.

Cryptocurrency Mining Benefits and Risks

Cryptocurrency mining can offer several benefits, such as the potential for significant profits, the ability to earn cryptocurrency without purchasing it, and the opportunity to participate in the decentralized network of blockchain technology.

However, there are also risks associated with mining, including the high cost of electricity and mining equipment, the volatility of cryptocurrency prices, and the potential for fraud or hacking. 

Additionally, as the industry becomes more competitive, it can be difficult for individual miners to remain profitable. Despite the risks, many people continue to see crypto mining as a worthwhile investment, as long as they approach it with caution and a clear understanding of the potential risks and rewards.

Closing Thoughts

Cryptocurrency mining can be a complex and rewarding process for those who are willing to put in the time and effort to learn about it. It requires a significant investment in hardware and electricity, as well as a deep understanding of the technical aspects of mining and the ethical considerations involved. 

But for those who are willing to take the plunge, it can be a lucrative and exciting way to earn digital currency and contribute

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

RESTful API Essentials: Design, Security, and Best Practices

Token Metrics Team
5
MIN

APIs are the connective tissue of modern applications; among them, RESTful APIs remain a dominant style because they map cleanly to HTTP semantics and scale well across distributed systems. This article breaks down what a RESTful API is, pragmatic design patterns, security controls, and practical monitoring and testing workflows. If you build or consume APIs, understanding these fundamentals reduces integration friction and improves reliability.

What is a RESTful API?

A RESTful API (Representational State Transfer) is an architectural style for designing networked applications. At its core, REST leverages standard HTTP verbs (GET, POST, PUT, PATCH, DELETE) and status codes to perform operations on uniquely identified resources, typically represented as URLs. Key characteristics include:

  • Statelessness: Each request contains all information the server needs to fulfill it, enabling horizontal scaling.
  • Resource orientation: APIs expose resources (users, orders, blocks, etc.) rather than remote procedure calls.
  • Uniform interface: A consistent set of conventions for requests and responses, improving discoverability and client simplicity.

REST is a pragmatic guideline rather than a strict protocol; many APIs labeled "RESTful" adopt REST principles while introducing pragmatic extensions (e.g., custom headers, versioning strategies).

Design Principles & Resource Modeling

Good REST design begins with clear resource modeling. Ask: what are the nouns in the domain, and how do they relate? Use predictable URL structures and rely on HTTP semantics:

  • /resources - list or create a resource (GET to list, POST to create)
  • /resources/{id} - operate on a single resource (GET, PUT/PATCH, DELETE)
  • /resources/{id}/subresources - nested relationships when needed

Design tips to improve usability and longevity:

  1. Use consistent naming: plural nouns, lowercase, and hyphenation for readability.
  2. Support versioning: include a version in the URL or headers to avoid breaking clients (e.g., /v1/...).
  3. Leverage hypermedia judiciously: HATEOAS can improve discoverability but adds complexity; choose when it benefits clients.
  4. Pagination, filtering, sorting: standardize query parameters for large collections to avoid performance pitfalls.
  5. Use appropriate status codes: communicate success, client errors, and server errors clearly (200, 201, 400, 401, 403, 404, 429, 500, etc.).

Security, Authentication, and Rate Limiting

Security is a primary concern for any public-facing API. Typical controls and patterns include:

  • Authentication: OAuth 2.0 (Bearer tokens) and API keys are common. Choose a mechanism that fits your risk model and client types. Avoid transporting credentials in URLs.
  • Authorization: Implement least-privilege checks server-side to ensure tokens only permit intended actions.
  • Encryption: Always use TLS (HTTPS) to protect data in transit; consider TLS 1.2+ and strict ciphers.
  • Rate limiting and throttling: Protect backends from abuse with per-key or per-IP limits and provide informative 429 responses with Retry-After headers.
  • Input validation and sanitization: Validate request bodies and query parameters to reduce injection and parsing vulnerabilities.
  • Audit and logging: Log authentication events, rate-limit triggers, and error patterns while respecting privacy and compliance requirements.

Designing for security also means operational readiness: automated certificate rotation, secrets management, and periodic security reviews reduce long-term risk.

Performance, Monitoring, and AI-Assisted Tooling

Performance tuning for RESTful APIs covers latency, throughput, and reliability. Practical strategies include caching (HTTP Cache-Control, ETags), connection pooling, and database query optimization. Use observability tools to collect metrics (error rates, latency percentiles), distributed traces, and structured logs for rapid diagnosis.

AI-assisted tools can accelerate many aspects of API development and operations: anomaly detection in request patterns, automated schema inference from traffic, and intelligent suggestions for endpoint design or documentation. While these tools improve efficiency, validate automated changes through testing and staged rollouts.

When selecting tooling, evaluate clarity of integrations, support for your API architecture, and the ability to export raw telemetry for custom analysis.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What distinguishes RESTful APIs from other API styles?

REST focuses on resources and uses HTTP semantics; GraphQL centralizes queries into a single endpoint with flexible queries, and gRPC emphasizes high-performance RPCs with binary protocols. Choose based on client needs, performance constraints, and schema evolution requirements.

How should I version a RESTful API without breaking clients?

Common approaches include URL versioning (e.g., /v1/), header-based versioning, or semantic versioning of the API contract. Regardless of method, document deprecation timelines and provide migration guides and compatibility layers where possible.

What are practical testing strategies for RESTful APIs?

Combine unit tests for business logic with integration tests that exercise endpoints and mocks for external dependencies. Use contract tests to ensure backward compatibility and end-to-end tests in staging environments. Automate tests in CI/CD to catch regressions early.

How do I design for backward compatibility?

Additive changes (new fields, endpoints) are generally safe; avoid removing fields, changing response formats, or repurposing status codes. Feature flags and content negotiation can help introduce changes progressively.

What should be included in API documentation?

Provide clear endpoint descriptions, request/response examples, authentication steps, error codes, rate limits, and code samples in multiple languages. Machine-readable specs (OpenAPI/Swagger) enable client generation and testing automation.

Disclaimer: This content is educational and informational only. It does not constitute professional, legal, security, or investment advice. Test and validate any architectural, security, or operational changes in environments that match your production constraints before rollout.

Research

Practical Guide to Claude API Integration

Token Metrics Team
4
MIN

The Claude API is increasingly used to build context-aware AI assistants, document summarizers, and conversational workflows. This guide breaks down what the API offers, integration patterns, capability trade-offs, and practical safeguards to consider when embedding Claude models into production systems.

Overview: What the Claude API Provides

The Claude API exposes access to Anthropic’s Claude family of large language models. At a high level, it lets developers send prompts and structured instructions and receive text outputs, completions, or assistant-style responses. Key delivery modes typically include synchronous completions, streaming tokens for low-latency interfaces, and tools for handling multi-turn context. Understanding input/output semantics and token accounting is essential before integrating Claude into downstream applications.

Capabilities & Feature Surface

Claude models are designed for safety-focused conversational AI and often emphasize instruction following and helpfulness while applying content filters. Typical features to assess:

  • Instruction clarity: Claude responds robustly to explicit, structured instructions and system-level guidelines embedded in prompts.
  • Context handling: Larger context windows enable multi-turn memory and long-document summarization; analyze limits for your use case.
  • Streaming vs batch: Streaming reduces perceived latency in chat apps. Batch completions suit offline generation and analytics tasks.
  • Safety layers: Built-in moderation and safety heuristics can reduce harmful outputs but should not replace application-level checks.

Integration Patterns & Best Practices

Designing a robust integration with the Claude API means balancing performance, cost, and safety. Practical guidance:

  1. Prompt engineering: Build modular prompts: system instructions, user content, and optional retrieval results. Keep system prompts explicit and version-controlled.
  2. Context management: Implement truncation or document retrieval to stay within context limits. Use semantic search to surface the most relevant chunks before calling Claude.
  3. Latency strategies: Use streaming for interactive UI and batch for background processing. Cache frequent completions when possible to reduce API calls.
  4. Safety & validation: Post-process outputs with rule-based checks, content filters, or secondary moderation models to catch hallucinations or policy violations.
  5. Monitoring: Track token usage, latency percentiles, and error rates. Instrument prompts to correlate model changes with downstream metrics.

Primary Use Cases and Risk Considerations

Claude API use cases span chat assistants, summarization, prompt-driven code generation, and domain-specific Q&A. For each area evaluate these risk vectors:

  • Hallucination risk: Models may fabricate facts; rely on provenance and retrieval augmentation when answers require accuracy.
  • Privacy: Avoid sending sensitive personal data unless contract and data processing terms explicitly permit it.
  • Regulatory exposure: For regulated domains (health, legal, finance) include human oversight and compliance review rather than treating outputs as authoritative.
  • Operational cost: Longer contexts and high throughput increase token costs; profile realistic workloads before scaling.

Tools, Libraries, and Ecosystem Fit

Tooling around Claude often mirrors other LLM APIs: HTTP/SDK clients, streaming libraries, and orchestration frameworks. Combine the Claude API with retrieval-augmented generation (RAG) systems, vector stores for semantic search, and lightweight caching layers. AI-driven research platforms such as Token Metrics can complement model outputs by providing analytics and signal overlays when integrating market or on-chain data into prompts.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is the Claude API?

The Claude API is an interface for sending prompts and receiving text-based model outputs from the Claude family. It supports completions, streaming responses, and multi-turn conversations, depending on the provider’s endpoints.

FAQ — How do I manage long documents and context?

Implement a retrieval-augmented generation (RAG) approach: index documents into a vector store, use semantic search to fetch relevant segments, and summarize or stitch results before sending a concise prompt to Claude. Also consider chunking and progressive summarization when documents exceed context limits.

FAQ — How can I control API costs?

Optimize prompts to be concise, cache common responses, batch non-interactive requests, and choose lower-capacity model variants for non-critical tasks. Monitor token usage and set alerts for unexpected spikes.

FAQ — What safety measures are recommended?

Combine Claude’s built-in safety mechanisms with application-level filters, content validation, and human review workflows. Avoid sending regulated or sensitive data without proper agreements and minimize reliance on unverified outputs.

FAQ — When should I use streaming vs batch responses?

Use streaming for interactive chat interfaces where perceived latency matters. Batch completions are suitable for offline processing, analytics, and situations where full output is required before downstream steps.

Disclaimer

This article is for educational purposes only and does not constitute professional, legal, or financial advice. It explains technical capabilities and integration considerations for the Claude API without endorsing specific implementations. Review service terms, privacy policies, and applicable regulations before deploying AI systems in production.

Research

API Keys Explained: Secure Access for Developers

Token Metrics Team
5
MIN

Every modern integration — from a simple weather widget to a crypto analytics agent — relies on API credentials to authenticate requests. An api key is one of the simplest and most widely used credentials, but simplicity invites misuse. This article explains what an api key is, how it functions, practical security patterns, and how developers can manage keys safely in production.

What an API Key Is and How It Works

An api key is a short token issued by a service to identify and authenticate an application or user making an HTTP request. Unlike full user credentials, api keys are typically static strings passed as headers, query parameters, or request bodies. On the server side, the receiving API validates the key against its database, checks permissions and rate limits, and then either serves the request or rejects it.

Technically, api keys are a form of bearer token: possession of the key is sufficient to access associated resources. Because they do not necessarily carry user-level context or scopes by default, many providers layer additional access-control mechanisms (scopes, IP allowlists, or linked user tokens) to reduce risk.

Common API Key Use Cases and Limitations

API keys are popular because they are easy to generate and integrate: you create a key in a dashboard and paste it into your application. Typical use cases include server-to-server integrations, analytics pulls, and third-party widgets. In crypto and AI applications, keys often control access to market data, trading endpoints, or model inference APIs.

Limitations: api keys alone lack strong cryptographic proof of origin (compared with signed requests), are vulnerable if embedded in client-side code, and can be compromised if not rotated. For higher-security scenarios, consider combining keys with stronger authentication approaches like OAuth 2.0, mutual TLS, or request signing.

Practical Security Best Practices for API Keys

Secure handling of api keys reduces the chance of leak and abuse. Key best practices include:

  • Least privilege: Create keys with the minimum permissions required. Use separate keys for read-only and write actions.
  • Rotate regularly: Implement scheduled rotation and automated replacement to limit exposure from undetected leaks.
  • Use environment variables and secrets managers: Never commit keys to source control. Use environment variables, vaults, or cloud KMS services to store secrets.
  • Restrict usage: Apply IP allowlists, referrer checks, or VPC restrictions where supported to limit where the key can be used.
  • Audit and monitor: Log usage, set alerts for anomalous patterns, and review dashboards for spikes or unexpected endpoints.
  • Expire and revoke: Use short-lived keys where possible; immediately revoke compromised keys and revoke unused ones.

These patterns are practical to implement: for example, many platforms offer scoped keys and rotation APIs so you can automate revocation and issuance without manual intervention.

Managing API Keys in Crypto and AI Workflows

Crypto data feeds, trading APIs, and model inference endpoints commonly require api keys. In these contexts, the attack surface often includes automated agents, cloud functions, and browser-based dashboards. Treat any key embedded in an agent as potentially discoverable and design controls accordingly.

Operational tips for crypto and AI projects:

  • Use separate keys per service and environment (dev, staging, production).
  • Scale permission granularity: allow market-data reads without trading execution permissions.
  • Encrypt keys at rest and limit human access to production secrets.
  • Integrate rate-limit and quota checks to avoid service disruption and to detect misuse quickly.

Platforms such as Token Metrics provide APIs tailored to crypto research and can be configured with scoped keys for safe consumption in analytics pipelines and AI agents.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What Is an API Key?

An api key is a token that applications send with requests to identify and authenticate themselves to a service. It is often used for simple authentication, usage tracking, and applying access controls such as rate limits.

FAQ: How should I store api keys?

Store api keys outside of code: use environment variables, container secrets, or a managed secrets store. Ensure access to those stores is role-restricted and audited. Never commit keys to public repositories or client-side bundles.

FAQ: What's the difference between an api key and an OAuth token?

API keys are static identifiers primarily for application-level authentication. OAuth tokens represent delegated user authorization and often include scopes and expiration. OAuth is generally more suitable for user-centric access control, while api keys are common for machine-to-machine interactions.

FAQ: How often should I rotate api keys?

Rotation frequency depends on risk tolerance and exposure: a common pattern is scheduled rotation every 30–90 days, with immediate rotation upon suspected compromise. Automate the rotation process to avoid service interruptions.

FAQ: What are signs an api key is compromised?

Watch for abnormal usage patterns: sudden spikes in requests, calls from unexpected IPs or geographic regions, attempts to access endpoints outside expected scopes, or errors tied to rate-limit triggers. Configure alerts for such anomalies.

FAQ: Can I restrict an api key to a single IP or domain?

Many providers allow IP allowlisting or referrer restrictions. This reduces the attack surface by ensuring keys only work from known servers or client domains. Use this in combination with short lifetimes and least-privilege scopes.

FAQ: How do api keys fit into automated AI agents?

AI agents that call external services should use securely stored keys injected at runtime. Limit their permissions to only what the agent requires, rotate keys regularly, and monitor agent activity to detect unexpected behavior.

Disclaimer

This article is educational and informational in nature. It is not investment, legal, or security advice. Evaluate any security approach against your project requirements and consult qualified professionals for sensitive implementations.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products