Crypto Basics

Cryptocurrency Mining - What It Is and How to Mine Cryptocurrencies in 2023

Learn everything about cryptocurrency mining and how it works, in this descriptive guide.
Token Metrics Team
10 Minutes
MIN

Cryptocurrency mining has become a buzzword in the world of crypto and technology, and it has become a popular way for individuals to generate new coins and earn money. 

While the concept of mining may seem intimidating to some, it's actually quite simple and accessible to anyone with a computer and internet connection. As we enter 2023, the world of crypto mining is constantly evolving and adapting to changing market conditions.

In this article, we will explore the ins and outs of crypto mining, including how it works, its types, the equipment needed for mining, and the potential benefits and drawbacks.

What is Cryptocurrency Mining?

Crypto mining is the process of adding new blocks to a blockchain by verifying transactions and solving complex mathematical equations. When a new block is added to the blockchain, the miner responsible for the block receives a reward in the form of newly minted cryptocurrency.

In order to mine cryptocurrency, you also need to have some serious computing power. This is because the mining process involves solving complex mathematical equations to validate transactions on the network. The more computing power you have, the more equations you can solve, and the more rewards you can potentially earn.

The most popular cryptocurrency to mine is Bitcoin, but there are also many other digital currencies that can be mined, such as Ethereum, Litecoin, and Dogecoin. Each cryptocurrency has its own mining algorithm and requirements, so it's important to do your research and choose the one that best suits your hardware and preferences.

How does Crypto Mining Work?

Now, let's understand how crypto mining actually works.

When a transaction is made on a cryptocurrency network, it needs to be verified by multiple nodes on the network to ensure its validity. These nodes are essentially computers that are connected to the network and are responsible for maintaining the blockchain, which is a digital ledger that records all transactions on the network.

When a node verifies a transaction, it adds it to the blockchain and broadcasts it to the rest of the network. The other nodes then verify the transaction as well, and if a majority of them agree that it is valid, the transaction is confirmed and added to the blockchain permanently.

This is where miners come in. Miners use their computers to compete with each other to solve a complex mathematical equation known as a hash. The first miner to solve the hash is rewarded with a certain number of digital tokens or coins, which is why mining is often referred to as earning cryptocurrency.

Proof of Work Method in Crypto Mining

Proof of Work (PoW) is a consensus algorithm used by many blockchain-based cryptocurrencies to validate transactions and prevent fraudulent activity on the network.

Now, you might be thinking, "What is a consensus algorithm?" Well, a consensus algorithm is a set of rules that determine how transactions are validated and added to the blockchain.

In a decentralized network, like a cryptocurrency, there is no central authority to oversee the transactions and ensure their validity. Instead, the network relies on consensus algorithms to ensure that all nodes on the network agree on the state of the ledger.

In a PoW system, nodes on the network compete with each other to solve complex mathematical equations, or "hashes," in order to validate transactions and earn rewards. The first node to solve the hash is rewarded with a certain amount of cryptocurrency, such as Bitcoin or Ethereum. This process is often referred to as "mining."

What Equipment is Needed in Crypto Mining?

To mine cryptocurrency, a miner needs specialized hardware, such as a graphics processing unit (GPU) or an application-specific integrated circuit (ASIC). These devices are designed specifically for crypto mining and are optimized for the computational power required to solve the complex equations. 

Other equipment needed for mining includes a mining pool, which is a group of miners who combine their resources to increase their chances of solving the mathematical problems and receiving the reward. A miner also needs a wallet to store their earned cryptocurrency.

Types of Cryptocurrency Mining

There are actually several different types of crypto mining. Let's saddle up and take a closer look at each one.

CPU Mining - The first type of mining is CPU mining. As the name suggests, this involves using your computer's central processing unit (CPU) to solve complex mathematical equations, or "hashes," in order to validate transactions and earn rewards.

While CPU mining was popular in the early days of cryptocurrency, it has since become less profitable due to the increasing difficulty of the hashes and the rise of more powerful mining hardware.

GPU Mining - The next type of mining is GPU mining. This involves using a graphics processing unit (GPU) to solve the hashes and validate transactions. 

GPUs are more powerful than CPUs and can perform the calculations required for mining more efficiently. As a result, GPU mining is currently one of the most popular methods of mining cryptocurrency.

ASIC Mining - ASIC mining is another popular method of mining. ASICs, or application-specific integrated circuits, are specialized mining hardware designed specifically for cryptocurrency mining. 

They are highly efficient and can perform the calculations required for mining much faster than CPUs or GPUs. However, they are also much more expensive and can be difficult to obtain.

Cloud Mining - Cloud mining is a type of mining that involves renting computing power from a third-party provider. The provider hosts the mining hardware and handles the maintenance and operation of the equipment, while the user pays a fee to access the computing power. 

While cloud mining can be convenient for those who don't have the resources or expertise to set up and maintain their own mining hardware, it can also be more expensive and less profitable than other types of mining.

Mobile Mining - Mobile mining is a relatively new type of mining that involves using your smartphone or tablet to mine cryptocurrency. While mobile devices are not as powerful as CPUs, GPUs, or ASICs, they can still contribute to the network and earn rewards. However, mobile mining is not very profitable and can also be detrimental to the device's battery life.

Hybrid Mining - Finally, there is hybrid mining, which combines two or more types of mining in order to maximize profits. For example, a miner might use ASICs for the most difficult and profitable calculations, while using GPUs or CPUs for less intensive calculations. This can help to balance the costs and benefits of different types of mining and increase overall profitability.

How to Mine Cryptocurrencies?

When you're prepared to begin mining cryptocurrency, below are the steps you should follow-

1. Choose Your Mining Hardware

The first step in mining cryptocurrencies is to choose your hardware. As we discussed in the previous article, there are several different types of mining hardware available, including CPUs, GPUs, ASICs, and even mobile devices. The type of hardware you choose will depend on your budget, resources, and goals.

2. Choose Your Mining Software

Once you have your hardware, you'll need to choose your mining software. This software is responsible for connecting your hardware to the blockchain network and managing the mining process. There are several different mining software options available, each with its own features and requirements. Some popular options include CGMiner, BFGMiner, and EasyMiner.

3. Join a Mining Pool

Mining can be a competitive and resource-intensive process, and it can be difficult for individual miners to earn rewards on their own. One solution to this problem is to join a mining pool. 

A mining pool is a group of miners who work together to solve the complex equations required for mining, and then split the rewards based on each member's contribution. Joining a mining pool can increase your chances of earning rewards and make the mining process more efficient.

4. Configure Your Hardware and Software

Once you have your hardware, software, and mining pool set up, you'll need to configure them for optimal performance. This may involve adjusting settings such as your hash rate, power consumption, and temperature control. You'll also need to ensure that your hardware and software are compatible and properly connected to the mining pool.

5. Start Mining

Once you've completed all of the previous steps, it's time to start mining! Depending on the type of cryptocurrency you're mining and the mining pool you've joined, you may need to meet certain minimum requirements in order to start earning rewards. 

6. Monitor and Maintain Your Mining Operation

Finally, it's important to monitor and maintain your mining operation in order to ensure that it remains profitable and efficient. This may involve monitoring your hardware and software for errors or malfunctions, adjusting your settings as needed, and keeping track of your earnings and expenses.

Is Crypto mining profitable in 2023?

In 2023, the profitability of crypto mining will depend largely on the price of the cryptocurrency being mined and the level of competition in the industry. Other factors that could affect mining profitability include the growth of decentralized finance, the rise of proof-of-stake, and the impact of regulatory changes.

To stay profitable, miners can focus on newer and less well-known cryptocurrencies, invest in more efficient mining hardware, and be flexible and adaptable in their mining strategies. While there are challenges facing the industry, there are also opportunities for those willing to take risks and adapt to changing market conditions.

Tax Implications on Crypto Mining

Mining cryptocurrencies can have tax implications, as it is considered a form of income. The specific tax laws and regulations vary depending on the country and jurisdiction. 

In the United States, for example, mining income is subject to self-employment tax and must be reported on tax returns. Additionally, the sale of mined cryptocurrency may trigger capital gains taxes. 

It is important for miners to understand the tax implications of their activities and to keep detailed records of their mining income and expenses to ensure compliance with tax laws. Seeking the advice of a tax professional can also be helpful in navigating the complex tax landscape of crypto mining.

Is Crypto Mining Legal?

In general, mining cryptocurrencies is legal in most countries, but some have imposed restrictions or bans on mining activities. China, for example, has banned crypto mining, citing concerns about energy consumption and financial risks. 

In other countries, such as the United States, mining is legal but may be subject to regulation and oversight. It is important for miners to research and understand the laws and regulations in their country or region to ensure they are operating legally. Failure to comply with regulations could result in fines, legal action, or other penalties.

Cryptocurrency Mining Benefits and Risks

Cryptocurrency mining can offer several benefits, such as the potential for significant profits, the ability to earn cryptocurrency without purchasing it, and the opportunity to participate in the decentralized network of blockchain technology.

However, there are also risks associated with mining, including the high cost of electricity and mining equipment, the volatility of cryptocurrency prices, and the potential for fraud or hacking. 

Additionally, as the industry becomes more competitive, it can be difficult for individual miners to remain profitable. Despite the risks, many people continue to see crypto mining as a worthwhile investment, as long as they approach it with caution and a clear understanding of the potential risks and rewards.

Closing Thoughts

Cryptocurrency mining can be a complex and rewarding process for those who are willing to put in the time and effort to learn about it. It requires a significant investment in hardware and electricity, as well as a deep understanding of the technical aspects of mining and the ethical considerations involved. 

But for those who are willing to take the plunge, it can be a lucrative and exciting way to earn digital currency and contribute

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Exploring Investments in Crypto and Web3 Companies: An Analytical Overview

Token Metrics Team
4
MIN

Introduction

The landscape of digital assets and blockchain technology has expanded rapidly over recent years, bringing forth a new realm known as Web3 alongside the burgeoning crypto ecosystem. For individuals curious about allocating resources into this sphere, questions often arise: should the focus be on cryptocurrencies or Web3 companies? This article aims to provide an educational and analytical perspective on these options, highlighting considerations without providing direct investment advice.

Understanding Crypto and Web3

Before exploring the nuances between investing in crypto assets and Web3 companies, it's important to clarify what each represents.

  • Cryptocurrencies are digital currencies that operate on blockchain technology, enabling peer-to-peer transactions with varying protocols and use cases.
  • Web3 broadly refers to a decentralized internet infrastructure leveraging blockchain technologies to create applications, platforms, and services that prioritize user control, privacy, and decentralization.

Web3 companies often develop decentralized applications (dApps), offer blockchain-based services, or build infrastructure layers for the decentralized web.

Key Considerations When Evaluating Investment Options

Deciding between crypto assets or Web3 companies involves analyzing different dynamics:

  1. Market Maturity and Volatility
    Cryptocurrencies generally exhibit higher price volatility influenced by market sentiment, regulatory news, and technology updates. Web3 companies, often in startup or growth phases, carry inherent business risk but may relate more to traditional company valuation metrics.
  2. Fundamental Drivers
    Crypto assets derive value from network utility, adoption, scarcity mechanisms, and consensus protocols. Web3 firms generate value through product innovation, user engagement, revenue models, and ability to scale decentralized solutions.
  3. Regulatory Environment
    Both realms face evolving regulatory landscapes globally, with different degrees of scrutiny around cryptocurrencies and blockchain enterprises. Awareness of legal considerations is essential for educational understanding.
  4. Technological Innovation
    Web3 companies typically focus on developing novel decentralized infrastructures and applications. Crypto projects may emphasize improvements in consensus algorithms, interoperability, or token economics.

Analytical Frameworks for Assessment

To approach these complex investment types thoughtfully, frameworks can assist in structuring analysis:

  • Scenario Analysis: Evaluate various future scenarios for cryptocurrency adoption and Web3 technology evolution to understand possible outcomes and risks.
  • Fundamental Analysis: For crypto, analyze network activity, token utility, and supply models. For Web3 companies, consider business plans, technological edge, leadership quality, and market positioning.
  • Technology Evaluation: Examine the underlying blockchain protocols and development communities supporting both crypto projects and Web3 startups, assessing innovation and sustainability.

Leveraging AI-Driven Tools for Research

Due to the rapidly evolving and data-intensive nature of crypto and Web3 industries, AI-powered platforms can enhance analysis by processing vast datasets and providing insights.

For instance, Token Metrics utilizes machine learning to rate crypto assets by analyzing market trends, project fundamentals, and sentiment data. Such tools support an educational and neutral perspective by offering data-driven research support rather than speculative advice.

When assessing Web3 companies, AI tools can assist with identifying emerging technologies, tracking developmental progress, and monitoring regulatory developments relevant to the decentralized ecosystem.

Practical Tips for Conducting Due Diligence

To gain a well-rounded understanding, consider the following steps:

  • Research Whitepapers and Roadmaps: For crypto tokens and Web3 startups, review technical documentation and strategic plans.
  • Evaluate Team Credentials: Analyze the experience and transparency of project founders and teams.
  • Monitor Community Engagement: Observe activity levels in forums, GitHub repositories, and social media to gauge project vitality.
  • Use Analytical Tools: Incorporate platforms like Token Metrics for data-supported insights on token metrics and project evaluations.
  • Consider Regulatory Developments: Stay informed about jurisdictional policies impacting blockchain projects and cryptocurrencies.

Understanding Risk Factors

Both crypto assets and Web3 companies involve unique risks that warrant careful consideration:

  • Market Risk: Price volatility and market sentiment swings can impact crypto tokens significantly.
  • Technological Risk: Innovative technologies may have bugs or scalability challenges affecting project viability.
  • Regulatory Risk: Changes in legal frameworks can alter operational capacities or market access for Web3 entities and crypto tokens.
  • Business Model Risk: Web3 startups may face competitive pressures, funding challenges, or adoption hurdles.

Conclusion

Deciding between crypto assets and Web3 companies involves analyzing different dimensions including technological fundamentals, market dynamics, and risk profiles. Employing structured evaluation frameworks along with AI-enhanced research platforms such as Token Metrics can provide clarity in this complex landscape.

It is essential to approach this domain with an educational mindset focused on understanding rather than speculative intentions. Staying informed and leveraging analytical tools supports sound comprehension of the evolving world of blockchain-based digital assets and enterprises.

Disclaimer

This article is intended for educational purposes only and does not constitute financial, investment, or legal advice. Readers should conduct their own research and consult with professional advisors before making any decisions related to cryptocurrencies or Web3 companies.

Research

Why Is Web3 User Experience Still Lagging Behind Web2?

Token Metrics Team
4
MIN

Introduction to Web3 UX

The evolution from Web2 to Web3 marks a significant paradigm shift in how we interact with digital services. While Web2 platforms have delivered intuitive and seamless user experiences, Web3—the decentralized internet leveraging blockchain technology—still faces considerable user experience (UX) challenges. This article explores the reasons behind the comparatively poor UX in Web3 and the technical, design, and infrastructural hurdles contributing to this gap.

Contextual Understanding: Web2 vs Web3

Web2 represents the current mainstream internet experience characterized by centralized servers, interactive social platforms, and streamlined services. Its UX benefits from consistent standards, mature design patterns, and direct control over data.

In contrast, Web3 aims at decentralization, enabling peer-to-peer interactions through blockchain protocols, decentralized applications (dApps), and user-owned data ecosystems. While promising increased privacy and autonomy, Web3 inherently introduces complexity in UX design.

Technical Complexities Affecting Web3 UX

Several intrinsic technical barriers impact the Web3 user experience:

  • Decentralization and Interoperability: Decentralized networks operate without centralized control, making transaction speed and reliability variable compared to Web2's central servers.
  • Blockchain Transaction Latency: Block confirmation times, network congestion, and gas fees create delays and unpredictability in user interactions.
  • Wallet and Key Management: Users must manage private keys and wallets, which can be confusing and risky for non-technical audiences.
  • User Onboarding Frictions: Requirements like acquiring cryptocurrency tokens for transaction fees create an additional barrier unique to Web3.

Design and Usability Issues in Web3

The nascent nature of Web3 results in inconsistent and sometimes opaque design standards:

  • Complex Terminology and Concepts: Terms like gas, smart contracts, staking, and cryptographic signatures are unfamiliar to average users.
  • Poorly Standardized UI Components: Unlike Web2, where UI/UX libraries and guidelines are well-established, Web3 lacks uniform design principles, leading to fragmented experiences.
  • Minimal User Feedback: Web3 apps sometimes provide limited real-time feedback during transactions, causing uncertainty.
  • Security and Trust Indicators: The responsibility to confirm transaction legitimacy often falls on users, which can be overwhelming.

Ecosystem Maturity and Resource Constraints

Web2 giants have invested billions over decades fostering developer communities, design systems, and customer support infrastructure. In contrast, Web3 is still an emerging ecosystem characterized by:

  • Smaller Development Teams: Many dApps are developed by startups or hobbyists with limited UX expertise or resources.
  • Rapidly Evolving Protocols: Frequent changes impact stability and user familiarity.
  • Limited Educational Resources: Users often lack accessible tutorials and support channels.

Such factors contribute to a user experience that feels fragmented and inaccessible to mainstream audiences.

Leveraging AI and Analytics to Improve Web3 UX

Emerging tools powered by artificial intelligence and data analytics can help mitigate some UX challenges in Web3 by:

  • Analyzing User Interaction Data: Identifying pain points and optimizing workflows in dApps.
  • Automated Risk Assessment: Platforms like Token Metrics offer AI-driven analysis to help users understand token metrics and project fundamentals, supporting better-informed user decisions without direct financial advice.
  • Personalized User Guidance: Contextual prompts and chatbot assistants could help users navigate complex steps.

Integrating such AI-driven research and analytic tools enables developers and users to progressively enhance Web3 usability.

Practical Tips for Users and Developers

For users trying to adapt to Web3 environments, the following tips may help:

  • Engage with Educational Content: Prioritize learning foundational blockchain concepts to reduce confusion.
  • Use Trusted Tools: Platforms providing in-depth analytics and ratings, such as Token Metrics, can offer valuable insights into projects.
  • Start with Simple dApps: Experiment with established, user-friendly applications before engaging in more complex services.

For developers, focusing on the following can improve UX outcomes:

  • Adopt Consistent UI/UX Patterns: Align interfaces with familiar Web2 standards where possible to flatten the learning curve.
  • Enhance Feedback and Transparency: Clearly communicate transaction statuses and risks.
  • Streamline Onboarding: Reduce or abstract away wallet configurations and gas fee complexities.
  • Prioritize Accessibility: Make interfaces usable for non-technical and diverse user groups.

Conclusion: Web3 UX Future Outlook

The current disparity between Web3 and Web2 user experience primarily stems from decentralization complexities, immature design ecosystems, and educational gaps. However, ongoing innovation in AI-driven analytics, comprehensive rating platforms like Token Metrics, and community-driven UX improvements are promising. Over time, these efforts could bridge the UX divide to make Web3 more accessible and user-friendly for mainstream adoption.

Disclaimer

This article is for educational and informational purposes only and does not constitute financial advice or an endorsement. Users should conduct their own research and consider risks before engaging in any blockchain or cryptocurrency activities.

Research

Exploring the Languages Used for Smart Contract Development

Token Metrics Team
5
MIN

Introduction

Smart contracts have become an integral part of blockchain technology, enabling automated, trustless agreements across various platforms. Understanding what languages are used for smart contract development is essential for developers entering this dynamic field, as well as for analysts and enthusiasts who want to deepen their grasp of blockchain ecosystems. This article offers an analytical and educational overview of popular programming languages for smart contract development, discusses their characteristics, and provides insights on how analytical tools like Token Metrics can assist in evaluating smart contract projects.

Smart contract languages are specialized programming languages designed to create logic that runs on blockchains. The most prominent blockchain for smart contracts currently is Ethereum, but other blockchains have their languages as well. The following section outlines some of the most widely-used smart contract languages.

  • Solidity: Often considered the standard language for Ethereum smart contracts, Solidity is a high-level, contract-oriented language similar in syntax to JavaScript and influenced by C++ and Python. It is statically typed and supports inheritance, libraries, and complex user-defined types. Solidity is compiled into EVM (Ethereum Virtual Machine) bytecode executable on Ethereum and compatible blockchains.
  • Vyper: Developed as an alternative to Solidity, Vyper emphasizes simplicity, auditability, and security. With a syntax inspired by Python, it is designed to be more readable and to reduce the potential for errors in contract code, though it currently has fewer features than Solidity.
  • Rust: Rust is gaining popularity especially on blockchains like Solana, Near, and Polkadot. It is a systems programming language known for safety and performance. Rust smart contracts tend to be compiled to WebAssembly (Wasm) bytecode, enabling cross-chain compatibility and faster execution on supported platforms.
  • Michelson: Michelson is a low-level stack-based language used to write smart contracts on Tezos blockchain. It is designed for formal verification, allowing high-security guarantees which is important for mission-critical applications.
  • Move: Move is a language developed by Facebook's Diem project and adapted by blockchains like Aptos and Sui. It offers resource-oriented programming to handle digital assets safely and efficiently.
  • Clarity: Used primarily on the Stacks blockchain, Clarity is a decidable language, which means actions of the contract can be predicted and verified before execution. It favors safety and transparency.

Criteria for Language Selection

Developers evaluate smart contract languages based on various factors such as security, expressiveness, ease of use, and compatibility with blockchain platforms. Below are some important criteria:

  1. Security Features: Languages like Vyper and Michelson prioritize simplicity and formal verification to minimize vulnerabilities.
  2. Community and Ecosystem: Solidity benefits from a large developer community, extensive documentation, and extensive tooling which facilitates easier development and auditing.
  3. Performance Efficiency: Languages compiled to Wasm such as Rust-based smart contracts can offer superior speed and reduced resource consumption.
  4. Formal Verification and Auditing: Languages that support rigorous mathematical verification methods help ensure contract correctness and prevent exploits.
  5. Interoperability: The ability of a smart contract to work across multiple blockchains enhances its utility and adoption.

Overview of Leading Smart Contract Languages

Solidity remains the dominant language due to Ethereum's market position and is well-suited for developers familiar with JavaScript or object-oriented paradigms. It continuously evolves with community input and protocol upgrades.

Vyper has a smaller user base but appeals to projects requiring stricter security standards, as its design deliberately omits complex features that increase vulnerabilities.

Rust is leveraged by newer chains that aim to combine blockchain decentralization with high throughput and low latency. Developers familiar with systems programming find Rust a robust choice.

Michelson’s niche is in formal verification-heavy projects where security is paramount, such as financial contracts and governance mechanisms on Tezos.

Move and Clarity represent innovative approaches to contract safety and complexity management, focusing on deterministic execution and resource constraints.

How AI Research Tools Support Smart Contract Analysis

Artificial Intelligence (AI) and machine learning have become increasingly valuable in analyzing and researching blockchain projects, including smart contracts. Platforms such as Token Metrics provide AI-driven ratings and insights by analyzing codebases, developer activity, and on-chain data.

Such tools facilitate the identification of patterns that might indicate strong development practices or potential security risks. While they do not replace manual code audits or thorough research, they support investors and developers by presenting data-driven evaluations that help in filtering through numerous projects.

Practical Considerations for Developers and Analysts

Developers choosing a smart contract language should consider the blockchain platform’s restrictions and the nature of the application. Those focused on DeFi might prefer Solidity or Vyper for Ethereum, while teams aiming for cross-chain applications might lean toward Rust or Move.

Analysts seeking to understand a project’s robustness can utilize resources like Token Metrics for AI-powered insights combined with manual research, including code reviews and community engagement.

Security should remain a priority as vulnerabilities in smart contract code can lead to significant issues. Therefore, familiarizing oneself with languages that encourage safer programming paradigms contributes to better outcomes.

Conclusion

Understanding what languages are used for smart contract development is key to grasping the broader blockchain ecosystem. Solidity leads the field due to Ethereum’s prominence, but alternative languages like Vyper, Rust, Michelson, Move, and Clarity offer different trade-offs in security, performance, and usability. Advances in AI-driven research platforms such as Token Metrics play a supportive role in evaluating the quality and safety of smart contract projects.

Disclaimer

This article is intended for educational purposes only and does not constitute financial or investment advice. Readers should conduct their own research and consult professionals before making decisions related to blockchain technologies and smart contract development.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products