Crypto Basics

What are ERC20 Tokens and How Does it Work?

Discover the inner workings of ERC20 tokens in this comprehensive guide. Uncover how these tokens power the world of decentralized finance.
Marcus K
10 Minutes
MIN

Cryptocurrencies have revolutionized the way we think about digital assets and transactions. Among the many innovations in the blockchain space, ERC20 tokens have emerged as a prominent standard for creating and managing tokens on the Ethereum blockchain. 

In this comprehensive guide, we will explore what ERC20 tokens are, their history, how they work, their importance and impact, advantages and disadvantages, and provide a list of top ERC20 tokens. So, let's dive in and unravel the fascinating world of ERC20 tokens.

What is ERC20?

ERC20 stands for Ethereum Request for Comment 20 and is the technical standard for creating fungible tokens on the Ethereum blockchain. 

Unlike non-fungible tokens (NFTs), which are unique and not interchangeable, ERC20 tokens are fungible, meaning they can be exchanged on a one-to-one basis with other tokens of the same type. 

These tokens represent assets, rights, ownership, access, or even cryptocurrencies that are not unique in themselves but can be transferred.

The ERC20 standard enables developers to create smart-contract-enabled tokens that can be used with various products and services. 

Since its implementation, most tokens in the Ethereum ecosystem have been created using the ERC20 standard, making it a crucial part of the Ethereum blockchain's functionality.

History of ERC20

To understand the significance of ERC20 tokens, let's look at their history. In 2015, as smart contracts gained popularity, developers realized the need for a standardized token methodology within the Ethereum ecosystem. 

Each application would require its own token without a standard, leading to interoperability issues and difficulties in exchanging tokens between different applications.

To address this problem, developer Fabian Vogelsteller proposed the ERC20 standard 2015 through the Ethereum Request for Comment (ERC) process on the project's Github page. 

The proposal, initially known as ERC-20 due to its designation as the twentieth comment, was later approved and implemented as Ethereum Improvement Proposal 20 (EIP-20) in 2017.

The approval and implementation of the ERC20 standard ensured that all smart contract tokens implemented on the Ethereum blockchain would adhere to the same set of rules, making them compatible and easily exchangeable.

How Does ERC20 Work?

To understand how ERC20 tokens work, let's delve into their underlying structure and functionality. ERC20 tokens consist of a list of functions and events that must be implemented in a token's smart contract to be considered ERC20 compliant.

ERC20 Functions

The ERC20 standard defines six mandatory functions that a token must have:

  • TotalSupply: This function returns the total number of tokens ever issued.
  • BalanceOf: The BalanceOf function allows users to check the balance of a specific token owner's account.
  • Transfer: The Transfer function automatically transfers a specified number of tokens to a designated address.
  • TransferFrom: This function allows the automatic transfer of a specified number of tokens from one address to another.
  • Approve: The Approve function grants permission to a designated address to withdraw a specific number of tokens from the token owner's account.
  • Allowance: The Allowance function returns the number of tokens approved for withdrawal by a spender from the token owner's account.

These functions provide a standard interface for ERC20 tokens, allowing them to be easily accessed, recognized, and used within the Ethereum ecosystem.

ERC20 Events

In addition to functions, ERC20 tokens also include two mandatory events:

  • Transfer: The Transfer event is triggered when a transfer of tokens is successfully executed.
  • Approval: The Approval event logs the approval of a specific address to spend a certain number of tokens.

These events help keep track of token transfers and approvals within the blockchain.

Optional ERC20 Features

Although the six functions and two events mentioned above are mandatory for ERC20 compliance, token developers can include additional features to enhance the token's usability. These optional features include:

  • Token Name: Tokens can have a name that represents their identity.
  • Token Symbol: Tokens can have a symbol as a shorthand representation of their name.
  • Decimal Points: Tokens can have decimal points to allow for fractional values.

Including these optional features provides more information and clarity about the token, making it easier for users to understand and interact.

The Importance and Impact of ERC20

The ERC20 standard has profoundly impacted the blockchain and cryptocurrency industry. Its importance lies in the fact that it introduced a standardized framework for creating tokens on the Ethereum blockchain, fostering interoperability and compatibility among different tokens and applications. Let's explore some key reasons why ERC20 is significant.

Interoperability and Compatibility

By adhering to the ERC20 standard, tokens built on the Ethereum blockchain can seamlessly interact with other tokens and smart contracts within the ecosystem. 

This interoperability allows for the creating of decentralized applications (DApps) and services that can leverage a wide range of tokens without the need for custom integrations.

Token Creation Simplification

The ERC20 standard simplifies creating tokens by providing well-defined rules and functions. Developers can focus on implementing their tokens' specific features and functionalities without worrying about compatibility issues. 

This simplification has contributed to the rapid growth of the Ethereum ecosystem and the proliferation of ERC20 tokens.

Increased Liquidity and Market Access

ERC20 tokens' compatibility and interchangeability have significantly increased their liquidity and market access. Token holders can easily trade ERC20 tokens on decentralized exchanges (DEXs) and various cryptocurrency platforms, providing them with a broader range of investment and trading opportunities.

Crowdfunding and Initial Coin Offerings (ICOs)

The ERC20 standard has played a crucial role in the rise of ICOs and token crowdfunding. By providing a standardized token creation framework, ERC20 empowered startups and projects to efficiently launch their own tokens and raise funds from a global audience. 

This democratization of fundraising has opened up new avenues for innovation and entrepreneurship.

The impact of ERC20 can be seen in the broad adoption of tokens built on the Ethereum blockchain. Let's explore some of the top ERC20 tokens that have gained prominence in the market.

List of Top ERC20 Tokens

ERC20 tokens have gained significant traction in the cryptocurrency market. Here are some of the top ERC20 tokens by market capitalization:

Tether (USDT): Tether is a stablecoin that aims to maintain a 1:1 ratio with the US dollar, providing stability in the volatile cryptocurrency market.

USD Coin (USDC): USD Coin is another stablecoin pegged to the US dollar, offering stability and liquidity for digital asset transactions.

Shiba Inu (SHIB): Shiba Inu is an experimental cryptocurrency inspired by the meme culture surrounding the Shiba Inu dog breed.

Binance USD (BUSD): Binance USD is a stablecoin created by Binance, one of the largest cryptocurrency exchanges globally, providing stability and convenience for trading.

Binance Coin (BNB): Binance Coin is the native cryptocurrency of the Binance exchange and is widely used for trading fee discounts and participation in token sales.

DAI Stablecoin (DAI): DAI is a decentralized stablecoin that aims to maintain a 1:1 ratio with the US dollar through an algorithmic stabilization mechanism.

HEX (HEX): HEX is a blockchain-based certificate of deposit (CD) designed to reward token holders with interest for holding their tokens for a specific period.

Bitfinex LEO (LEO): Bitfinex LEO is the native utility token of the Bitfinex exchange, providing various benefits and discounts to its holders.

Maker (MKR): Maker is a governance token used in the MakerDAO protocol, which enables users to create and manage the stablecoin DAI.

These are just a few examples of the many ERC20 tokens that have gained popularity and utility in the blockchain ecosystem. The diverse range of use cases and functionalities offered by ERC20 tokens highlight their versatility and potential.

Advantages of ERC20 Tokens

ERC20 tokens offer several advantages that have contributed to their widespread adoption. Let's explore some of the key advantages:

  • Standardization: The ERC20 standard provides a uniform set of rules and functions, ensuring that all tokens built on the Ethereum blockchain adhere to the same standards. This standardization simplifies token development and improves user experience.
  • Smart Contract Functionality: ERC20 tokens can leverage the power of smart contracts to automate and execute complex transactions, enabling features such as automatic transfers, approvals, and more.
  • Crowdfunding and Fundraising: The ERC20 standard has facilitated the rise of token crowdfunding and ICOs, allowing startups and projects to raise funds globally in a decentralized manner.
  • Ecosystem Integration: ERC20 tokens can seamlessly integrate with other Ethereum-based services, such as decentralized finance (DeFi) protocols, lending platforms, and prediction markets, expanding their utility and potential use cases.

These advantages have made ERC20 tokens a preferred choice for token creation and have paved the way for growth and innovation within the Ethereum ecosystem.

Disadvantages of ERC20 Tokens

While ERC20 tokens offer numerous advantages, it's essential to consider their limitations and potential drawbacks. Here are some disadvantages associated with ERC20 tokens:

  • Scalability Challenges: The Ethereum blockchain's scalability limitations can affect the performance of ERC20 tokens during periods of high network congestion, leading to slower transactions and higher fees.
  • Smart Contract Vulnerabilities: Smart contracts powering ERC20 tokens are susceptible to hacks and vulnerabilities. Any bugs or vulnerabilities in the smart contract code can result in the loss of funds or token theft.
  • Limited Token Functionality: ERC20 tokens have predefined functions and events, which might not cover all possible token functionalities. Tokens with complex functionalities require custom token standards or modifications to the ERC20 standard.
  • Lack of Regulatory Compliance: ERC20 tokens, like other cryptocurrencies, operate in a regulatory gray area in many jurisdictions. Compliance with evolving regulations can be challenging for token issuers and holders.

It's crucial for token developers and users to be aware of these limitations and take appropriate measures to mitigate associated risks.

Frequently Asked Questions

Q1. What is the difference between ERC20 and ETH? 

Ether (ETH) is the native cryptocurrency of the Ethereum blockchain and network, used as a payment system for verifying transactions. ERC20 refers to the standard for creating smart contract-enabled fungible tokens on the Ethereum blockchain.

Q2. What is an ERC20 wallet? 

An ERC20 wallet is a digital wallet that allows users to store, manage, and interact with ERC20 tokens. It provides an interface for users to view token balances, send and receive tokens, and interact with decentralized applications.

Q3. Can ERC20 tokens be exchanged for other cryptocurrencies? 

ERC20 tokens can be exchanged for other cryptocurrencies on various exchanges and trading platforms supporting ERC20 tokens.

Q4. Are all cryptocurrencies ERC20 tokens?

No, not all cryptocurrencies are ERC20 tokens. While ERC20 tokens are cryptocurrencies, not all cryptocurrencies follow the ERC20 standard. ERC20 tokens specifically pertain to tokens built on the Ethereum blockchain.

Q5. Can ERC20 tokens be used for crowdfunding or raising funds?

The ERC20 standard has been widely used for initial coin offerings (ICOs) and token crowdfunding campaigns. It provides a standardized framework for token creation, making it easier for projects to raise funds globally.

Conclusion

ERC20 tokens have revolutionized the cryptocurrency industry by providing a standardized framework for creating and managing tokens on the Ethereum blockchain. 

These tokens offer interoperability, liquidity, and smart contract functionality, empowering developers and users to leverage the vast potential of the Ethereum ecosystem. 

Although ERC20 tokens have their limitations, their advantages and widespread adoption demonstrate their significance in the evolving blockchain landscape. 

As the crypto industry grows, ERC20 tokens will remain a crucial component, enabling innovation and decentralized applications on the Ethereum platform.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

What Is an API? A Practical Guide

Token Metrics Team
4
MIN

APIs power modern software, enabling apps to share data, automate workflows, and connect services. Whether you use a weather feed, social login, or a crypto data stream, understanding what an API is helps you design, evaluate, and integrate digital products more effectively.

What is an API?

An API, or application programming interface, is a defined set of rules that lets one software system communicate with another. At its simplest, an API specifies how requests are structured, which methods are available, and how responses are returned. Developers use APIs to access functionality or data without needing to know internal implementation details.

Think of an API as a contract: it tells you the inputs required, the outputs to expect, and any constraints or error cases. This separation of concerns enables modular development, third-party integrations, and scalable ecosystems.

How APIs work: components and protocols

Most modern APIs expose endpoints—URLs or functions—that accept requests and return responses. Key components include:

  • Endpoints: Specific URLs or methods that provide a capability or data set.
  • Methods: Actions such as GET, POST, PUT, DELETE in HTTP-based APIs.
  • Payloads: Structured request and response bodies (commonly JSON).
  • Authentication: Keys, tokens, or OAuth flows that control access.
  • Rate limits: Constraints on usage to protect service availability.

Different protocols influence API behavior. REST uses resource-oriented URLs and standard HTTP verbs; GraphQL offers flexible queries over a single endpoint; gRPC supports high-performance, binary-protocol calls suitable for microservices. Choosing a protocol depends on latency requirements, payload complexity, and developer experience.

Common API use cases: web, mobile, and crypto

APIs underpin many real-world scenarios:

  • Web and mobile apps: Fetching user data, processing payments, or embedding maps.
  • Microservices: Internal APIs let services communicate within distributed systems.
  • Third-party integrations: Social logins, analytics platforms, and CRM synchronization.
  • Data feeds and analytics: Market prices, news, and on-chain metrics delivered via APIs enable automated research pipelines.

In the crypto space, APIs expose on-chain data, aggregated price feeds, and derived indicators. Developers can combine multiple APIs to build dashboards, bots, or AI research agents. When evaluating crypto APIs, consider latency, historical coverage, and data provenance.

For example, research teams often use AI-driven platforms to enrich raw feeds with signals and insights. One such platform, Token Metrics, integrates data and models to support comparative analysis and idea generation.

Choosing and evaluating APIs: practical criteria

When selecting an API, use a structured evaluation framework:

  1. Functionality — Does the API provide required endpoints and historical coverage?
  2. Reliability — Look at uptime SLAs, error rates, and redundancy.
  3. Data quality — Verify schemas, sample payloads, and provenance.
  4. Performance — Measure latency and throughput relevant to your use case.
  5. Security and access control — Inspect auth models, encryption, and rate limits.
  6. Costs and licensing — Understand pricing tiers and any usage restrictions.
  7. Documentation and SDKs — Clear docs and client libraries speed integration.

Combine quantitative tests (latency, success rate) with qualitative checks (docs clarity, community support). For complex builds, sandbox environments and trial keys help validate assumptions before full integration.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API (application programming interface) is a specification that allows software systems to request and exchange data or trigger actions without exposing internal code. It defines endpoints, parameters, and response formats.

FAQ: How is a REST API different from GraphQL?

REST organizes interactions around resources and uses multiple endpoints; clients request predefined payloads. GraphQL exposes a single endpoint where clients define the shape of the response, reducing over- or under-fetching in many scenarios.

FAQ: What security measures should APIs use?

Common measures include HTTPS/TLS, API keys or OAuth tokens, rate limiting, input validation, and monitoring for unusual patterns. Secure defaults and least-privilege access reduce attack surface.

FAQ: Can I use public APIs for production applications?

Many public APIs are production-ready if they provide SLAs, reliable documentation, and appropriate rate limits. Validate through trials and consider failover strategies and caching for resilience.

FAQ: How do APIs support automation and AI?

APIs provide structured, machine-readable data and endpoints that automation tools and AI agents can call programmatically. Combining APIs with model inference enables workflows like signal generation, backtesting, and report automation.

FAQ: What are rate limits and why do they matter?

Rate limits control how many requests a client can make in a time window to ensure fair usage and protect service availability. Exceeding limits typically leads to temporary blocking or throttled responses.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or investment advice. Readers should perform their own research and consult appropriate professionals before making decisions.

Research

APIs Explained: What They Are and How They Work

Token Metrics Team
5
MIN

APIs power much of the software you use daily — from fetching weather data in a mobile app to connecting decentralized exchanges to analytics dashboards. If youve ever wondered what an API is, why developers rely on them, and how they shape the modern web and crypto ecosystems, this guide breaks down the core concepts, common patterns, and practical steps to evaluate and use APIs effectively.

What is an API?

An API (Application Programming Interface) is a set of rules and protocols that lets different software components communicate. At a high level, an API defines how a caller requests data or functionality and how the provider responds. APIs abstract implementation details so developers can use capabilities — like retrieving market prices or sending messages — without needing to understand the providers internals.

Think of an API as a contract: a client sends a request in a specified format, and the service returns structured responses. Contracts can include endpoints, expected parameters, authentication methods, rate limits, error codes, and data schemas.

How APIs Work — a Technical Overview

Most modern APIs use web protocols (HTTP/HTTPS) and standard formats such as JSON. A typical request cycle looks like this:

  1. Client constructs a request URL or payload, optionally including authentication credentials (API key, OAuth token).
  2. Client sends the request to an API endpoint using a method like GET, POST, PUT, or DELETE.
  3. Server validates the request, applies business logic, and returns a response with data or an error code.
  4. Client parses the response and integrates it into the application.

APIs can enforce rate limits, usage quotas, and schema validation. In production systems, observability (logging, traces, metrics) and secure transport (TLS) are standard to ensure reliability and confidentiality.

Types of APIs & Common Patterns

APIs come in several styles, each with trade-offs:

  • REST (Representational State Transfer): Resource-oriented, uses HTTP verbs and status codes; widely adopted and easy to cache.
  • GraphQL: Lets clients request exactly the fields they need; reduces over-fetching but increases server complexity.
  • gRPC / RPC: Binary protocol for high-performance communication, often used for internal microservices.
  • Webhooks: Server-initiated callbacks to notify clients of events, useful for real-time notifications.

In crypto and finance, youll see specialized APIs that provide order book data, historical trades, on-chain events, and wallet actions. Public APIs are accessible with minimal barriers, while private APIs require credentials and stricter access controls.

How to Evaluate and Use an API (Practical Steps)

Choosing and integrating an API involves technical, operational, and security considerations. A concise evaluation framework:

  1. Functionality: Does the API provide the endpoints and data formats you need? Review sample responses and SDKs.
  2. Performance & Reliability: Check latency, uptime SLA, and historical performance metrics if available.
  3. Security: Verify authentication schemes, encryption, data retention policies, and whether the provider supports IP allowlists or role-based access.
  4. Costs & Rate Limits: Understand free tier limits, pricing per request, and billing granularity to budget accordingly.
  5. Documentation & Support: High-quality docs, examples, and community support accelerate integration and troubleshooting.

When prototyping, use tools like Postman or curl to explore endpoints. Automate tests to validate responses and simulate rate limits. For production, incorporate retries with exponential backoff, circuit breakers, and monitoring to handle transient failures gracefully.

AI-driven research tools can speed analysis of API datasets by surfacing patterns and summarizing changes. For instance, applications that combine market or on-chain APIs with AI models can transform raw feeds into signals or structured insights. An example of a research platform often used for crypto analysis is Token Metrics, which demonstrates how analytics layers can complement API outputs without replacing rigorous technical validation.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API (Application Programming Interface) is a documented way for software components to request services or data from one another. In web contexts, APIs typically expose endpoints over HTTP that return structured data formats such as JSON.

FAQ: How do APIs stay secure?

Common security practices include using HTTPS/TLS, API keys or OAuth for authentication, rate limiting, input validation to prevent injection attacks, and strong access control policies. Regular audits and logging help detect anomalies.

FAQ: Should I use REST or GraphQL?

REST is simple and cache-friendly; GraphQL is flexible for clients that need selective fields. Choose based on client requirements, caching needs, and team familiarity. Both can coexist in larger systems.

FAQ: How do I test an API integration?

Start with manual exploration (Postman, curl), then write automated tests for schema, error handling, rate limit behavior, and performance. Mock external APIs during unit testing and run contract tests during CI/CD.

FAQ: How are APIs used in crypto applications?

Crypto apps use APIs to fetch market prices, execute orders, read on-chain data, and stream events. Reliable APIs reduce complexity for developers but require careful handling of latency, consistency, and security.

Disclaimer

This article is for educational and informational purposes only and does not constitute investment, legal, or professional advice. Content describes technical concepts and practical evaluation steps for APIs; readers should perform independent research and consult qualified professionals when needed.

Research

APIs Explained: How They Power Software and Crypto

Token Metrics Team
5
MIN

APIs are the invisible connectors that let apps talk to each other. Whether you’re loading a weather widget, pulling crypto prices into a dashboard, or integrating an AI model, understanding how APIs work helps you design, evaluate, and secure systems that depend on reliable data.

What is an API?

An API—Application Programming Interface—is a clearly defined set of rules and contracts that lets one software program request services or data from another. At its core an API specifies how to format requests, what endpoints are available, what parameters are accepted, and how the provider will respond. Think of it as a menu at a restaurant: you pick dishes (requests), the kitchen prepares them (the service), and the waiter returns your order (the response) without exposing internal cooking processes.

APIs exist at many levels: operating system APIs expose filesystem and device operations, library APIs expose functions and classes, and web APIs expose remote services across networks. In modern web and mobile development, "API" often refers to HTTP-based interfaces that return structured data like JSON or XML.

How APIs Work: Requests, Responses, and Data Formats

Most web APIs operate on a request–response model. A client issues a request to a defined endpoint using a method (GET, POST, PUT, DELETE), optionally supplying parameters or a payload. The server processes the request and returns a response with a status code and body.

Key technical elements to understand:

  • Endpoints: URLs that map to resources or actions (e.g., /v1/prices).
  • HTTP Methods: Semantic actions (GET = read, POST = create, etc.).
  • Status Codes: 2xx successes, 4xx client errors, 5xx server errors.
  • Data Formats: JSON is ubiquitous for APIs due to its simplicity; XML and protobufs appear in legacy or high-performance systems.
  • Authentication & Authorization: API keys, OAuth tokens, JWTs, and mTLS govern who can access which endpoints.
  • Rate Limits & Quotas: Providers throttle requests to protect infrastructure and ensure fair use.

Real-time APIs may use WebSockets or server-sent events for streaming data rather than repeated HTTP polling. Designing for observability—clear logs, metrics, and error messages—improves operational resilience.

Common API Types and Protocols

Different projects require different API styles. Choosing a style depends on latency, flexibility, compatibility, and developer experience needs.

  • REST: Representational State Transfer emphasizes resources and standard HTTP verbs. RESTful APIs are easy to cache and widely supported.
  • GraphQL: Clients request exactly the fields they need in a single query, reducing over-fetching. GraphQL adds flexibility but requires careful performance tooling.
  • SOAP: An XML-heavy protocol that offers strict contracts and built-in standards for security and transactions; common in enterprise systems.
  • gRPC / Protobuf: High-performance RPC frameworks for microservices with compact binary payloads and strict typing.
  • Webhooks: Reverse-style APIs where a service pushes events to your endpoint, useful for near-real-time notifications without polling.

APIs are often packaged with SDKs for languages like Python, JavaScript, or Go to simplify integration. Documentation, example requests, and interactive consoles dramatically improve adoption.

APIs in Crypto and AI: Use Cases and Considerations

APIs are central to crypto and AI ecosystems. In crypto, APIs provide market data (prices, order books), on-chain insights (transaction history, token balances), and node RPC endpoints for smart contract interaction. AI systems use APIs to host inference endpoints, orchestrate models, and integrate external data sources for context.

Key considerations when selecting or building APIs for these domains:

  • Data Accuracy: In finance and blockchain, stale or inconsistent data can lead to incorrect analysis. Verify timestamps, aggregation logic, and reconciliation methods.
  • Latency and Throughput: Trading or real-time analytics may require low-latency streaming or websocket feeds instead of periodic REST calls.
  • Security: Protect API keys, enforce least privilege, use encrypted transport (HTTPS/TLS), and monitor for anomalous request patterns.
  • Reliability: Redundancy, caching strategies, and graceful degradation help maintain service if a provider faces outages.
  • Compliance & Privacy: Understand data retention, user privacy, and jurisdictional constraints when handling labeled or personal data.

Tools like Token Metrics combine market and on-chain data with AI to support research workflows that depend on reliable API feeds and model-driven signals.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between REST and GraphQL?

REST exposes multiple endpoints representing resources; clients may need several calls to assemble data. GraphQL exposes a single query endpoint where clients request precisely the fields they need. REST is simpler to cache; GraphQL offers flexibility but can require extra server-side tooling to manage complex queries and performance.

How do I secure an API key?

Never embed keys in client-side code. Store keys in secure server environments or secrets managers, rotate keys periodically, apply scope and rate limits, and monitor usage. Implementing short-lived tokens and IP whitelisting adds protection for sensitive endpoints.

When should I use webhooks instead of polling?

Use webhooks when you need event-driven, near-real-time notifications and want to avoid the overhead of frequent polling. Webhooks push updates to your endpoint, but require you to handle retries, verify payload signatures, and secure the receiving endpoint.

Can I build an API for my blockchain node?

Yes. Many projects wrap node RPCs with REST or GraphQL layers to standardize queries and add caching, rate limiting, and enrichment (e.g., token metadata). Be mindful of node sync status, resource consumption, and privacy considerations when exposing node endpoints.

How do I evaluate an API provider?

Assess API documentation quality, uptime/SLAs, latency, data freshness, authentication options, and support channels. Request sample data, test in sandbox environments, and compare pricing with expected usage. For crypto use cases, verify on-chain data coverage and reconciliation methods.

Disclaimer

This article is for educational purposes and does not constitute investment advice or recommendations. Evaluate APIs, platforms, and tools against your own requirements and compliance obligations before use.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products