Research

FastAPI: Build High-Performance Python APIs

Learn how FastAPI leverages async Python, pydantic models, and ASGI servers to build fast, scalable APIs. Practical optimization, deployment, and security tips for production-ready services.
Token Metrics Team
4
MIN

FastAPI has become a go-to framework for teams that need production-ready, high-performance APIs in Python. It combines modern Python features, automatic type validation via pydantic, and ASGI-based async support to deliver low-latency endpoints. This post breaks down pragmatic patterns for building, testing, and scaling FastAPI services, with concrete guidance on performance tuning, deployment choices, and observability so you can design robust APIs for real-world workloads.

Overview: Why FastAPI and where it fits

FastAPI is an ASGI framework that emphasizes developer experience and runtime speed. It generates OpenAPI docs automatically, enforces request/response typing, and integrates cleanly with async workflows. Compare FastAPI to traditional WSGI stacks (Flask, Django sync endpoints): FastAPI excels when concurrency and I/O-bound tasks dominate, and when you want built-in validation and schema-driven design.

Use-case scenarios where FastAPI shines:

  • Low-latency microservices handling concurrent I/O (databases, HTTP calls, queues).
  • AI/ML inference endpoints that require fast request routing and input validation.
  • Public APIs where OpenAPI/Swagger documentation and typed schemas reduce integration friction.

Async patterns and performance considerations

FastAPI leverages async/await to let a single worker handle many concurrent requests when operations are I/O-bound. Key principles:

  1. Avoid blocking calls inside async endpoints. Use async database drivers (e.g., asyncpg, databases) or wrap blocking operations in threadpools when necessary.
  2. Choose the right server. uvicorn (with or without Gunicorn) is common: uvicorn for development and Gunicorn+uvicorn workers for production. Consider Hypercorn for HTTP/2 or advanced ASGI features.
  3. Benchmark realistic scenarios. Use tools like wrk, k6, or hey to simulate traffic patterns similar to production. Measure p95/p99 latency, not just average response time.

Performance tuning checklist:

  • Enable HTTP keep-alive and proper worker counts (CPU cores × factor depending on blocking).
  • Cache expensive results (Redis, in-memory caches) and use conditional responses to reduce payloads.
  • Use streaming responses for large payloads to minimize memory spikes.

Design patterns: validation, dependency injection, and background tasks

FastAPI's dependency injection and pydantic models enable clear separation of concerns. Recommended practices:

  • Model-driven APIs: Define request and response schemas with pydantic. This enforces consistent validation and enables automatic docs.
  • Modular dependencies: Use dependency injection for DB sessions, auth, and feature flags to keep endpoints thin and testable.
  • Background processing: Use FastAPI BackgroundTasks or an external queue (Celery, RQ, or asyncio-based workers) for long-running jobs—avoid blocking the request lifecycle.

Scenario analysis: for CPU-bound workloads (e.g., heavy data processing), prefer external workers or serverless functions. For high-concurrency I/O-bound workloads, carefully tuned async endpoints perform best.

Deployment, scaling, and operational concerns

Deploying FastAPI requires choices around containers, orchestration, and observability:

  • Containerization: Create minimal Docker images (slim Python base, multi-stage builds) and expose an ASGI server like uvicorn with optimized worker settings.
  • Scaling: Horizontal scaling with Kubernetes or ECS works well. Use readiness/liveness probes and autoscaling based on p95 latency or CPU/memory metrics.
  • Security & rate limiting: Implement authentication at the edge (API gateway) and enforce rate limits (Redis-backed) to protect services. Validate inputs strictly with pydantic to avoid malformed requests.
  • Observability: Instrument metrics (Prometheus), distributed tracing (OpenTelemetry), and structured logs to diagnose latency spikes and error patterns.

CI/CD tips: include a test matrix for schema validation, contract tests against OpenAPI, and canary deploys for backward-incompatible changes.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is FastAPI and how is it different?

FastAPI is a modern, ASGI-based Python framework focused on speed and developer productivity. It differs from traditional frameworks by using type hints for validation, supporting async endpoints natively, and automatically generating OpenAPI documentation.

FAQ: When should I use async endpoints versus sync?

Prefer async endpoints for I/O-bound operations like network calls or async DB drivers. If your code is CPU-bound, spawning background workers or using synchronous workers with more processes may be better to avoid blocking the event loop.

FAQ: How many workers or instances should I run?

There is no one-size-fits-all. Start with CPU core count as a baseline and adjust based on latency and throughput measurements. For async I/O-bound workloads, fewer workers with higher concurrency can be more efficient; for blocking workloads, increase worker count or externalize tasks.

FAQ: What are key security practices for FastAPI?

Enforce strong input validation with pydantic, use HTTPS, validate and sanitize user data, implement authentication and authorization (OAuth2, JWT), and apply rate limiting and request size limits at the gateway.

FAQ: How do I test FastAPI apps effectively?

Use TestClient from FastAPI for unit and integration tests, mock external dependencies, write contract tests against OpenAPI schemas, and include load tests in CI to catch performance regressions early.

Disclaimer

This article is for educational purposes only. It provides technical and operational guidance for building APIs with FastAPI and does not constitute professional or financial advice.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Announcements

AI Crypto Trading with Token Metrics Crypto API and OpenAI Agents SDK: The Future of Autonomous Crypto Intelligence

Token Metrics Team
8 min
MIN

Why This Integration Matters

Developer demand for high-fidelity market data has never been higher, and so has the need for agentic AI that can act on that data. Token Metrics delivers one of the best crypto API experiences on the market, streaming tick-level prices, on-chain metrics, and proprietary AI grades across 6,000+ assets. Meanwhile, OpenAI’s new Agents SDK gives engineers a lightweight way to orchestrate autonomous AI workflows—without the overhead of a full UI—by chaining model calls, tools, and memory under a single, developer-friendly abstraction. Together they form a plug-and-play stack for building real-time trading bots, research copilots, and portfolio dashboards that think and act for themselves.

A Quick Primer on the Token Metrics Crypto API & SDK

  • Comprehensive Coverage: Tick-level pricing, liquidity snapshots, and on-chain activity for thousands of tokens.
  • Actionable AI: Trader and Investor Grades fuse technical, on-chain, social, and venture-funding signals into a single score that beats raw price feeds for alpha generation.
  • Ready-Made Signals: Long/short entries and back-tested model outputs arrive via one endpoint—perfect for time-critical agents.
  • Instant Integration: Official Python and TypeScript SDKs handle auth, retries, and pandas helpers so you can prototype in minutes.

Because the service unifies raw market data with higher-level AI insight, many builders call it the token metrics crypto API of choice for agentic applications.

What Sets the OpenAI Agents SDK Apart

Unlike prior frameworks that mixed business logic with UI layers, the Agents SDK is headless by design. You write plain TypeScript (or JavaScript) that:

  1. Defines tools (functions, web-search, file search, or external APIs).
  2. Describes an agent goal and supplies the tools it can call.
  3. Streams back structured steps & final answers so you can trace, test, and fine-tune.

Under the hood, the SDK coordinates multiple model calls, routes arguments to tools, and maintains short-term memory—freeing you to focus on domain logic.

Bridging the Two with the Crypto MCP Server

Token Metrics recently shipped its Crypto MCP Server, a lightweight gateway that normalises every client—OpenAI, Claude, Cursor, VS Code, Windsurf, and more—around a single schema and API key. One paste of your key and the OpenAI Agents SDK can query real-time grades, prices, and signals through the same endpoint used in your IDE or CLI.

Why MCP?
Consistency—every tool sees the same value for “Trader Grade.”
One-time auth—store one key, let the server handle headers.
Faster prototyping—copy code between Cursor and Windsurf without rewriting requests.
Lower cost—shared quota plus TMAI staking discounts.

In fewer than 30 lines you’ve built a self-orchestrating research assistant that pulls live data from the best crypto API and reasons with GPT-4o.

Architecture Under the Hood

  1. Agent Layer – OpenAI Agents SDK manages state, reasoning, and tool routing.
  2. Tool Layer – Each Token Metrics endpoint (prices, grades, signals) is wrapped as an Agents SDK tool.
  3. Data Layer – The MCP Server proxies calls to the Token Metrics REST API, unifying auth and schemas.
  4. Execution Layer – Agents call the tools; tools call MCP; MCP returns JSON; the agent responds.

Because every piece is modular, you can swap GPT-4o for GPT-4.1, add a DEX trading function, or stream outputs to a React dashboard—no core rewrites required.

Performance & Pricing Highlights

  • Free Tier: 5 000 calls/month—ideal for proof-of-concept agents.
  • Premium Tier: 100 000 calls/month and three-year history, unlocking AI Agent endpoints for production workloads.
  • VIP: 500 000 calls/month and unlimited history for institutional desks.

OpenAI usage is metered per token, but the Agents SDK optimises context windows and tool invocations, often yielding lower compute cost than bespoke chains.

Roadmap & Next Steps

Token Metrics is rolling out first-party TypeScript helpers that auto-generate tool schemas from the OpenAPI spec, making tool wrapping a one-liner. On the OpenAI side, Responses API is slated to replace the Assistants API by mid-2026, and the Agents SDK will track that upgrade.

Ready to build your own autonomous finance stack?

  1. Grab a free Token Metrics key → app.tokenmetrics.com
  2. Clone the Agents SDK starter repo → npx degit openai/agents-sdk-starter
  3. Ship something your traders will love.
  4. Watch demo here

The synergy between the Token Metrics crypto API and OpenAI’s Agents SDK isn’t just another integration; it’s the missing link between raw blockchain data and actionable, self-operating intelligence. Tap in today and start letting your agents do the heavy lifting.

Announcements

Token Metrics Crypto API and Windsurf Integration: Unlock Hidden Crypto Signals for Smarter Trading

Token Metrics Team
8 min
MIN

In today’s crypto market, raw data isn’t enough. Speed isn’t enough. What you need is insight.

That’s why we’re excited to unveil a game-changing integration: Token Metrics Crypto API now powers an ultra-fast, AI-driven crypto analytics platform—supercharged by Windsurf Coding Agent automation. This isn’t just another crypto dashboard. It’s a real-time intelligence engine designed for traders, funds, and crypto builders who demand an edge.

The Problem with Most Crypto Dashboards

Most crypto dashboards simply pull price data and display it. But serious traders know that price alone doesn’t tell the full story. You need context. You need predictive signals. You need advanced analytics that go beyond surface-level charts.

The Token Metrics Crypto API changes that.

By combining cutting-edge AI models with deep on-chain and market data, the Token Metrics API delivers the kind of actionable intelligence that traditional platforms can’t match.

The Power of Token Metrics API

At the heart of this new platform lies the Token Metrics API — widely regarded by traders and funds as the best crypto API available today.

Here’s why:

✅ Real-Time AI Insights

The Token Metrics API delivers real-time valuations, grades, risk metrics, and momentum signals—powered by sophisticated AI and machine learning models analyzing thousands of crypto assets.

✅ Predictive Token Ratings

Leverage Investor Grade and Trader Grade rankings to see which tokens are gaining momentum — before the market fully reacts.

✅ Quant Metrics & Risk Analysis

Access volatility scores, Sharpe ratios, value-at-risk metrics, and drawdown analysis to manage risk with precision.

✅ Clustering & Sentiment Analysis

Identify hidden relationships between tokens using real-time clustering and on-chain sentiment analysis.

✅ Full Market Coverage

Whether you trade altcoins, L1 ecosystems, DeFi, or memecoins — the Token Metrics Crypto API covers thousands of assets across multiple chains.

This depth of data allows the platform to do far more than just monitor prices — it discovers patterns, clusters, momentum shifts, and early market signals in real-time.

How Windsurf Coding Agent Unlocks New Possibilities

To build a truly responsive and adaptive crypto intelligence platform, we leveraged Windsurf Coding Agent automation. Windsurf allows us to ship new dashboards, signals, and features in hours—not weeks.

As crypto markets evolve rapidly, speed to insight becomes critical. With Windsurf’s agent-driven automation, we can prototype, iterate, and deploy new AI models and data visualizations faster than any traditional development cycle allows.

  • 🔄 New momentum indicators can be developed overnight
  • 🔄 Cluster algorithms can be recalibrated instantly
  • 🔄 Dashboards respond live to market shifts

This makes the entire system fluid, adaptive, and always tuned to the latest market behavior.

Not Just Another Dashboard — A Real-Time AI Engine

This isn’t your average crypto dashboard.

Every data point is analyzed, filtered, and rendered within milliseconds. As soon as the Token Metrics API delivers updated data, the platform processes it through real-time clustering, momentum scoring, and risk analysis.

The result? A blazingly fast, AI-powered crypto dashboard that gives you insights while your competition is still refreshing price feeds.

Platform Highlights:

  • Real-Time Market Trends:
    See market shifts as they happen, not minutes later.

  • Hidden Cluster Discovery:
    Identify which tokens are moving together before major narratives emerge.

  • Smart Momentum Signals:
    Detect early breakout signals across DeFi, AI, RWA, Memes, and other sectors.

  • Token Ratings & Sentiment:
    Get automated Investor Grades, Trader Grades, and community sentiment scoring.

  • Built-in AI Analysis Engine:
    Summary insights are auto-generated by AI to make complex data immediately actionable.

Turning Complexity Into Clarity

Crypto markets generate overwhelming amounts of data — price swings, liquidity changes, on-chain flows, funding rates, sentiment shifts, and more.

The Token Metrics + Windsurf integration filters that noise into clear, actionable signals. Whether you’re:

  • A crypto fund manager seeking alpha
  • An algorithmic trader hunting momentum
  • A community builder wanting to inform your Discord or Telegram group
  • A developer creating your own crypto trading bots or dashboards

... this platform turns complexity into clarity.

The signal is out there. We help you find it.

Why Token Metrics API is the Best Crypto API for Builders

When evaluating crypto APIs, most traders and developers face the same issues: incomplete data, poor documentation, limited endpoints, or stale updates. The Token Metrics API stands apart as the best crypto API for several key reasons:

1️⃣ Comprehensive Data Coverage

The Token Metrics API covers over 6,000 crypto assets across major chains, sectors, and narratives.

2️⃣ AI-Driven Metrics

Unlike other crypto APIs that only provide raw market data, Token Metrics delivers pre-calculated AI insights including:

  • Trader & Investor Grades
  • Bullish/Bearish Signals
  • Quantitative Rsk Metrics
  • Sentiment Scores
  • Support & Resistance Levels

3️⃣ Developer Friendly

The API is fully documented, REST-based, and easily integrates with platforms like Windsurf, Zapier, and custom trading systems.

4️⃣ Instant Updates

Data is refreshed continuously to ensure you’re always working with the latest available insights.

This makes the Token Metrics crypto API ideal for:

  • Building automated trading agents
  • Developing AI-powered dashboards
  • Running quant research pipelines
  • Powering Discord/Telegram trading bots
  • Creating crypto advisory tools for funds or DAOs

Example Use Case: Proactive Cluster Monitoring

Imagine this:

You’re managing a portfolio with exposure to several DeFi tokens. The platform detects that several mid-cap DeFi projects are clustering together with rising momentum scores and improving Investor Grades. Within seconds, your dashboard flashes an early “sector breakout” signal.

By the time social media narratives catch on hours or days later — you’re already positioned.

This is the edge that real-time AI-driven analytics delivers.

What You Can Build With Token Metrics API + Windsurf

The possibilities are nearly endless:

  • Fully autonomous AI trading agents
  • Real-time risk management dashboards
  • Community-facing Discord or Telegram bots
  • Investor-grade weekly market reports
  • Live streaming momentum monitors
  • Institutional quant analysis tools

And because Windsurf Coding Agent automates development, these solutions can evolve rapidly as new narratives, tokens, and market behaviors emerge.

Start Building Your Edge Today

If you’re serious about staying ahead in crypto, you need more than just prices—you need intelligence.

The combination of Token Metrics API and Windsurf’s automation delivers the fastest, smartest way to build your own crypto intelligence systems.

➤ Sign up for Token Metrics

➤ Get API access

➤ Start building with Windsurf
‍
Turn data into insights. Turn insights into profits.

Click here to view the demo!

Conclusion: The Future of Crypto Analytics Is Here

The days of static dashboards and delayed signals are over. The future belongs to platforms that deliver real-time, AI-powered, adaptive crypto intelligence.

With Token Metrics Crypto API and Windsurf Coding Agent, you have the tools to build that future—today.

Announcements

Build AI-Powered Crypto Trading Bots in Minutes: Token Metrics Partners with Cline for Seamless Crypto API Integration

Token Metrics Team
8 min
MIN

Combine the Best Crypto API with Cline’s AI Coding Environment to Automate Smarter Trades—Faster

The world of crypto development just leveled up.

We're excited to announce a powerful new integration between Token Metrics and Cline (via the Roo Code extension)—bringing together the most advanced crypto API on the market and an AI-native coding environment purpose-built for building and testing crypto trading bots.

This partnership unlocks the ability to rapidly prototype, test, and launch intelligent trading strategies using real-time data from Token Metrics directly inside Cline, making it easier than ever for developers and traders to build in the crypto economy.

In this post, we’ll show you exactly how this works, walk through a working example using the Hyperliquid token, and explain why Token Metrics is the best crypto API to use with Cline for next-gen trading automation.

What Is Cline (Roo Code)?

Cline is an AI-first coding assistant designed to turn ideas into code through conversational prompts. With the Roo Code extension in Visual Studio Code, Cline transforms your IDE into an AI-native environment, allowing you to:

  • Write and debug code using natural language
  • Chain tools and APIs together with zero setup
  • Backtest and optimize strategies within a single flow

By integrating Token Metrics’ cryptocurrency API through its MCP (Multi-Client Protocol) server, developers can access real-time grades, trading signals, quant metrics, and risk insights—all through AI-driven prompts.

This combo of live crypto data and AI-native coding makes Cline one of the fastest ways to build trading bots today.

What Is Token Metrics MCP & API?

The Token Metrics API is the ultimate toolkit for crypto developers. It's a high-performance, developer-focused crypto API that gives you:

  • AI-powered Trader & Investor Grades
  • Buy/Sell Signals for bull/bear market detection
  • Support & Resistance Levels
  • Sentiment Analysis
  • Quantitative Metrics including ROI, performance vs. BTC, and more
  • Full Token Reports & Rankings

These features are now accessible via the MCP server—a gateway that standardizes access to Token Metrics data for AI agents, bots, dashboards, and more.

Whether you’re building a Telegram bot, a trading terminal, or a portfolio optimizer, the Token Metrics MCP setup with Cline makes it seamless.

Step-by-Step: Build a Trading Bot in Cline Using Token Metrics

Here’s a walkthrough of how you can build a complete AI-powered trading bot using Cline and the Token Metrics API.

1. Set Up Your Project in Visual Studio Code

Open VS Code and click “Open Folder.” Name your project something fun—like “Hype Bot.”
Then go to the Extensions tab, search for “Roo Code” (the advanced version of Cline), and install it.

2. Connect to the Token Metrics MCP Server

Once installed:

  • Click the MCP icon in the sidebar.
  • Choose “Edit Global MCP.”
  • Visit the official Token Metrics MCP Instructions and copy the full configuration block.
  • Paste it into your global MCP settings in Cline.

🎉 Now your environment is live, and you’re connected to the best crypto API on the market.

3. Explore the API with a Prompt

Inside Cline, simply prompt:

“Explore the Token Metrics API and analyze the Hyperliquid token.”

In seconds, the agent fetches and returns detailed insights—including investor grade, sentiment shifts, trading volume, and support/resistance levels for Hyperliquid. It even detects patterns not visible on typical trading platforms.

4. Generate a Trading Strategy

Next prompt:

“Create a trading strategy using this data.”

The agent responds with a full Python trading script based on AI signals from the API—complete with buy/sell logic, thresholds, and data pipelines.

5. Run Backtests and Analyze Performance

Cline automatically generates a backtest file and plots a performance chart.

For example:

  • Portfolio grew from $10,000 to $10,600
  • 27 trades, with an 18.5% win rate
  • Maximum drawdown of 14%
  • Realistic insights into risk-adjusted returns

This is real-time data, real code, real results—all built through a few smart prompts.

Why This Partnership Matters

🔗 Natural-Language-Powered Crypto Development

No more hours spent reading docs or integrating messy SDKs. With Cline + Token Metrics, you talk to your agent, and it builds the bot, fetches the data, and runs the strategy.

⚙️ Best-in-Class Crypto Market Intelligence

Token Metrics provides professional-grade market signals used by hedge funds, traders, and analysts. With 80+ metrics per token, it’s the most detailed cryptocurrency API available—now accessible to indie devs and builders via Cline.

⚡ Build, Test, Iterate—Fast

Backtesting, strategy generation, and data access happen within seconds. This drastically cuts time-to-market for MVPs, AI assistants, and algo bots.

Use Cases You Can Build

  • Hype Token Trading Bots – Surf emerging narratives like Memecoins, RWA, or AI.
  • Risk-Managed Portfolios – Adjust exposure based on grades and market phases.
  • Discord/Telegram Bots – Stream top-performing tokens with real-time buy alerts.
  • CEX/DEX Strategy Automation – Monitor performance across centralized and decentralized exchanges.
  • Quant Research Dashboards – Power internal tools with Token Metrics data for investment committees or research teams.

Why Token Metrics Is the Best Crypto API for Cline Developers

  • ✅ Built for AI Workflows – Easy to use via prompts, structured for agent consumption.
  • ✅ Real-Time Coverage – Stay updated on narrative-driven tokens before they pump.
  • ✅ Secure & Scalable – Use API keys, MCP servers, and secure backtest environments.
  • ✅ Free to Start – Includes 5,000 free API calls so you can build before committing.

Final Thoughts

The future of building in crypto is agent-driven, data-rich, and fast.

This integration between Token Metrics and Cline proves that with the right tools, anyone can turn an idea into a trading bot in under 10 minutes—using real-time market data, AI-grade analysis, and seamless backtesting in one workflow.

No manual coding. No noise. Just results.

Start building smarter bots today:
👉 Get your API Key on Token Metrics
👉 Install Roo Code and connect Cline

Watch demo here!

Let’s build the next generation of crypto trading together.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products