Research

FastAPI: Build High-Performance Python APIs

Learn how FastAPI leverages async Python, pydantic models, and ASGI servers to build fast, scalable APIs. Practical optimization, deployment, and security tips for production-ready services.
Token Metrics Team
4
MIN

FastAPI has become a go-to framework for teams that need production-ready, high-performance APIs in Python. It combines modern Python features, automatic type validation via pydantic, and ASGI-based async support to deliver low-latency endpoints. This post breaks down pragmatic patterns for building, testing, and scaling FastAPI services, with concrete guidance on performance tuning, deployment choices, and observability so you can design robust APIs for real-world workloads.

Overview: Why FastAPI and where it fits

FastAPI is an ASGI framework that emphasizes developer experience and runtime speed. It generates OpenAPI docs automatically, enforces request/response typing, and integrates cleanly with async workflows. Compare FastAPI to traditional WSGI stacks (Flask, Django sync endpoints): FastAPI excels when concurrency and I/O-bound tasks dominate, and when you want built-in validation and schema-driven design.

Use-case scenarios where FastAPI shines:

  • Low-latency microservices handling concurrent I/O (databases, HTTP calls, queues).
  • AI/ML inference endpoints that require fast request routing and input validation.
  • Public APIs where OpenAPI/Swagger documentation and typed schemas reduce integration friction.

Async patterns and performance considerations

FastAPI leverages async/await to let a single worker handle many concurrent requests when operations are I/O-bound. Key principles:

  1. Avoid blocking calls inside async endpoints. Use async database drivers (e.g., asyncpg, databases) or wrap blocking operations in threadpools when necessary.
  2. Choose the right server. uvicorn (with or without Gunicorn) is common: uvicorn for development and Gunicorn+uvicorn workers for production. Consider Hypercorn for HTTP/2 or advanced ASGI features.
  3. Benchmark realistic scenarios. Use tools like wrk, k6, or hey to simulate traffic patterns similar to production. Measure p95/p99 latency, not just average response time.

Performance tuning checklist:

  • Enable HTTP keep-alive and proper worker counts (CPU cores Ă— factor depending on blocking).
  • Cache expensive results (Redis, in-memory caches) and use conditional responses to reduce payloads.
  • Use streaming responses for large payloads to minimize memory spikes.

Design patterns: validation, dependency injection, and background tasks

FastAPI's dependency injection and pydantic models enable clear separation of concerns. Recommended practices:

  • Model-driven APIs: Define request and response schemas with pydantic. This enforces consistent validation and enables automatic docs.
  • Modular dependencies: Use dependency injection for DB sessions, auth, and feature flags to keep endpoints thin and testable.
  • Background processing: Use FastAPI BackgroundTasks or an external queue (Celery, RQ, or asyncio-based workers) for long-running jobs—avoid blocking the request lifecycle.

Scenario analysis: for CPU-bound workloads (e.g., heavy data processing), prefer external workers or serverless functions. For high-concurrency I/O-bound workloads, carefully tuned async endpoints perform best.

Deployment, scaling, and operational concerns

Deploying FastAPI requires choices around containers, orchestration, and observability:

  • Containerization: Create minimal Docker images (slim Python base, multi-stage builds) and expose an ASGI server like uvicorn with optimized worker settings.
  • Scaling: Horizontal scaling with Kubernetes or ECS works well. Use readiness/liveness probes and autoscaling based on p95 latency or CPU/memory metrics.
  • Security & rate limiting: Implement authentication at the edge (API gateway) and enforce rate limits (Redis-backed) to protect services. Validate inputs strictly with pydantic to avoid malformed requests.
  • Observability: Instrument metrics (Prometheus), distributed tracing (OpenTelemetry), and structured logs to diagnose latency spikes and error patterns.

CI/CD tips: include a test matrix for schema validation, contract tests against OpenAPI, and canary deploys for backward-incompatible changes.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is FastAPI and how is it different?

FastAPI is a modern, ASGI-based Python framework focused on speed and developer productivity. It differs from traditional frameworks by using type hints for validation, supporting async endpoints natively, and automatically generating OpenAPI documentation.

FAQ: When should I use async endpoints versus sync?

Prefer async endpoints for I/O-bound operations like network calls or async DB drivers. If your code is CPU-bound, spawning background workers or using synchronous workers with more processes may be better to avoid blocking the event loop.

FAQ: How many workers or instances should I run?

There is no one-size-fits-all. Start with CPU core count as a baseline and adjust based on latency and throughput measurements. For async I/O-bound workloads, fewer workers with higher concurrency can be more efficient; for blocking workloads, increase worker count or externalize tasks.

FAQ: What are key security practices for FastAPI?

Enforce strong input validation with pydantic, use HTTPS, validate and sanitize user data, implement authentication and authorization (OAuth2, JWT), and apply rate limiting and request size limits at the gateway.

FAQ: How do I test FastAPI apps effectively?

Use TestClient from FastAPI for unit and integration tests, mock external dependencies, write contract tests against OpenAPI schemas, and include load tests in CI to catch performance regressions early.

Disclaimer

This article is for educational purposes only. It provides technical and operational guidance for building APIs with FastAPI and does not constitute professional or financial advice.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

What Are Limit Orders vs. Market Orders?

Token Metrics Team
8 min
MIN

When you trade cryptocurrency, you’ll come across different types of orders—market orders and limit orders being the two most common. Understanding how they work is essential for controlling your entry and exit points, minimizing slippage, and making better trading decisions.

If you’ve ever wondered, “What’s the difference between limit orders and market orders?”, you’re in the right place. This guide will break it down in detail, explain when to use each, and show how Token Metrics helps you execute smarter trades with AI-powered insights.

What Is a Market Order?

A market order is the simplest type of trade. It tells an exchange:

“Buy or sell this cryptocurrency at the best available price right now.”

How It Works:

  • When you place a market order to buy, the system instantly matches you with sellers at the lowest available price.

  • When you place a market order to sell, it instantly matches you with buyers at the highest available price.

Advantages of Market Orders:

  1. Instant Execution: Your trade goes through immediately.

  2. Simplicity: Perfect for beginners who want fast transactions.

  3. Useful in High-Volatility Conditions: If you need to enter or exit a trade quickly, market orders are your best bet.

Disadvantages of Market Orders:

  1. Slippage: If liquidity is low or the market moves quickly, you might pay more (or receive less) than expected.

  2. No Price Control: You accept whatever price the market offers at that moment.

Example:
If Bitcoin is trading at $40,000 and you place a market order for 1 BTC, you may end up paying $40,050 if the price moves up in the milliseconds it takes to execute your trade.

What Is a Limit Order?

A limit order gives you more control. It tells an exchange:

“Buy or sell this cryptocurrency at this specific price (or better).”

How It Works:

  • When you place a buy limit order, you set the maximum price you’re willing to pay.

  • When you place a sell limit order, you set the minimum price you’re willing to accept.

  • The order stays open until the market reaches your price—or until you cancel it.

Advantages of Limit Orders:

  1. Price Control: You won’t pay more (or sell for less) than your chosen price.

  2. Better for Planning: Ideal for setting up trades without constantly watching the market.

  3. Lower Fees: Some exchanges offer lower “maker” fees for limit orders since they add liquidity.

Disadvantages of Limit Orders:

  1. No Guarantee of Execution: If the market doesn’t reach your price, your order won’t go through.

  2. Slower Execution: Not suitable for urgent trades in fast-moving markets.

Example:
If Bitcoin is trading at $40,000, you could set a buy limit order at $39,500. If the price dips to that level, your order fills. If it doesn’t, you won’t buy.

Limit Orders vs. Market Orders: Key Differences

When Should You Use Market Orders?

Market orders are best when:

  • You need speed: Entering or exiting a trade quickly.

  • The market is highly liquid: For large-cap coins like Bitcoin and Ethereum, slippage is minimal.

  • News-based trading: When reacting to breaking news or sudden price surges.

When Should You Use Limit Orders?

Limit orders are best when:

  • You want price control: Setting entries at discount levels or selling at specific profit targets.

  • You’re trading low-liquidity coins: Prevents overpaying due to slippage.

  • You’re building a strategy: Setting multiple entries and exits without active monitoring.

How Token Metrics Helps You Use Market & Limit Orders Effectively

Placing orders is one thing—placing them at the right time is what makes you profitable. That’s where Token Metrics helps.

1. AI-Powered Trading Signals

Get real-time bullish and bearish alerts based on 80+ technical indicators, helping you know when to execute market or limit orders for maximum efficiency.

2. Trader & Investor Grades

Use Trader Grades for short-term trading opportunities (perfect for market orders) and Investor Grades for long-term accumulation (ideal for limit orders).

3. Narrative Tracking

Our AI identifies emerging narratives—like AI tokens or DeFi plays—so you can strategically place limit orders before trends take off.

4. AI-Managed Indices

Don’t want to place manual orders? Token Metrics’ AI-managed portfolios automatically rebalance based on market conditions, helping you avoid constant order management.

Practical Example: Combining Both Orders

Imagine you’re trading Ethereum (ETH):

  • Step 1: Token Metrics issues a bullish signal at $2,400, projecting a potential breakout.

  • Step 2: You place a market order to enter quickly at $2,400 to catch the momentum.

  • Step 3: You set a limit sell order at $2,700 to automatically secure profits without monitoring the chart.

This combination allows you to enter fast and exit smart—with less emotional stress.

Advanced Tips for Using Limit & Market Orders

  1. Use Stop-Limit Orders: Combine stop-loss and limit functions to protect against big losses.

  2. Layer Your Limit Orders: Place multiple buy/sell limits at different price levels for better cost averaging.

  3. Avoid Market Orders on Illiquid Coins: Slippage can cost you significantly.

  4. Use AI for Timing: Token Metrics helps you time entries and exits—so you’re not just placing random orders.

Final Thoughts

So, what’s the difference between limit orders and market orders?

  • Market orders are for speed—you get the trade done instantly at the best available price.

  • Limit orders are for control—you set the exact price you want to buy or sell.

The key is knowing when to use each—and using data-driven insights to make those decisions.

That’s where Token Metrics gives you an edge. With AI-powered trading signals, narrative tracking, and automated portfolio tools, Token Metrics helps you decide when to use market vs. limit orders, so you can trade confidently and profitably.

In crypto trading, timing is everything—and Token Metrics makes timing smarter.

Research

How Do I Manage Risk in Crypto Trading?

Token Metrics Team
8 min
MIN

Cryptocurrency trading can be highly profitable—but it’s also one of the riskiest markets in the world. Prices can swing wildly in seconds, projects can collapse overnight, and emotional decisions often lead to costly mistakes.

If you want to survive (and thrive) in crypto trading, you must learn how to manage risk effectively. In this guide, we’ll break down why risk management is critical, the top strategies to protect your capital, and how Token Metrics can help you trade smarter, safer, and with more confidence using AI-driven insights.

Why Risk Management Is Non-Negotiable in Crypto

In traditional markets, a 5% price movement is big news. In crypto? Daily moves of 10–20% are normal.

  • High volatility: Crypto is more speculative than stocks or forex.
  • Unregulated space: Scams and market manipulation are more common.
  • Emotional trading: Fear and FOMO lead to poor decisions.

Without a solid risk management plan, even experienced traders can lose everything.

Top Risk Management Strategies for Crypto Trading

1. Only Invest What You Can Afford to Lose

This is rule number one.

  • Never invest rent, emergency savings, or money you can’t afford to lose.
  • Treat crypto like a high-risk asset class—because it is.

2. Diversify Your Portfolio

Don’t put all your funds into one token.

  • Spread across different coins & sectors: Bitcoin, Ethereum, AI tokens, DeFi, etc.
  • Balance risk levels: Mix large-cap coins with small-cap moonshots.

How Token Metrics Helps:
Use AI-driven indices to build a diversified, auto-rebalanced portfolio aligned with your risk tolerance.

3. Use Stop-Loss Orders

Set stop-loss levels to automatically sell if prices fall below a certain threshold.

  • Prevents small losses from becoming catastrophic.
  • Helps maintain discipline during market dips.

Pro Tip: Place stops at strategic support levels, not random round numbers.

4. Size Your Positions Properly

Don’t go “all-in” on one trade.

  • Position sizing ensures no single trade wipes out your portfolio.
  • A common rule: risk 1–2% of your capital per trade.

5. Avoid Overleveraging

Leverage amplifies gains—but also losses.

  • Start with low or no leverage until you’re experienced.
  • High leverage trading can lead to instant liquidation in volatile markets.

6. Keep Emotions in Check

Fear, greed, and FOMO (fear of missing out) destroy portfolios.

  • Stick to your strategy.
  • Don’t chase pumps or panic-sell during dips.

How Token Metrics Helps:
Our AI-powered bullish and bearish signals take emotions out of trading by giving you data-backed entry and exit points.

7. Stay Informed

Markets move on news—regulations, partnerships, or even tweets.

  • Follow credible sources for updates.
  • Use narrative tracking to spot market-shifting trends early.

How Token Metrics Helps:
Our AI tracks emerging narratives (e.g., AI tokens, DeFi, RWAs), so you can adjust positions before the crowd reacts.

8. Use Risk/Reward Ratios

Before entering a trade, ask:

  • Is the potential reward worth the risk?
  • Aim for at least a 2:1 or 3:1 reward-to-risk ratio.

9. Practice Secure Asset Storage

Risk management isn’t just about trades—it’s also about keeping your crypto safe.

  • Use hardware wallets for long-term holdings.
  • Enable 2FA on exchanges.

10. Review & Adjust Your Strategy

Markets evolve—your plan should too.

  • Track your wins and losses.
  • Optimize your strategy using performance data.

How Token Metrics Helps You Manage Risk

Token Metrics isn’t just a research platform—it’s an AI-powered risk management assistant.

1. AI-Powered Trade Insights

Get real-time bullish and bearish signals to time entries and exits more effectively—reducing impulsive trades.

2. Trader & Investor Grades

Quickly assess tokens for short-term trading potential (Trader Grade) or long-term viability (Investor Grade)—helping you avoid high-risk projects.

3. AI-Managed Indices

Use auto-rebalanced AI indices to maintain diversification and reduce risk exposure.

4. Moonshot Finder

Interested in high-risk, high-reward tokens? Our Moonshot Finder filters low-cap projects using AI, helping you avoid scams and rug pulls.

5. Narrative Detection

Our AI tracks emerging narratives so you can anticipate market movements early—reducing exposure to collapsing trends.

Example: Risk Management Using Token Metrics

Imagine you want to invest $5,000 in crypto:

  • Without Token Metrics: You randomly choose 3 coins based on hype and YouTube videos. Two collapse, and your portfolio drops 50%.

  • With Token Metrics: You build a diversified AI-managed index of large-cap and promising small-cap tokens, use stop-loss levels, and set alerts for bullish/bearish signals. Your portfolio drops only 10% in a downturn—saving thousands.

This is how data-driven trading transforms risk into opportunity.

Practical Risk Management Checklist

  1. Never invest more than you can afford to lose.

  2. Diversify across coins and sectors.

  3. Use stop-loss orders to cap losses.

  4. Avoid overleveraging at all costs.

  5. Set realistic reward-to-risk ratios (2:1 or better).

  6. Use AI-powered tools like Token Metrics for smarter trades.

  7. Stay informed about news and emerging narratives.

  8. Secure your assets with hardware wallets and 2FA.

  9. Track and adjust your trading strategy regularly.

  10. Trade with logic, not emotions.

Final Thoughts

So, how do you manage risk in crypto trading? It’s about balancing your portfolio, using smart tools, and staying disciplined.

While volatility is unavoidable, you can control how much you’re exposed to it. With Token Metrics, you gain AI-powered insights, trade signals, and portfolio tools that help you reduce risks while maximizing opportunities.

In crypto, it’s not just about making profits—it’s about keeping them.

Research

What’s the Best Time to Trade Cryptocurrency?

Token Metrics Team
8 min
MIN

Cryptocurrency trading is a 24/7 market—unlike stocks, there’s no opening or closing bell. This leads many traders to wonder: “When is the best time to trade cryptocurrency?”

The truth is, timing your trades can make a huge difference in profitability. Trading during periods of high liquidity or increased volatility can provide better opportunities, while poorly timed trades can lead to slippage and losses.

In this guide, we’ll explore the best times to trade crypto, how different time zones affect price movements, and how Token Metrics can help you identify the right moments to enter or exit trades using AI-powered insights.

Why Timing Matters in Crypto Trading

Even though the crypto market never sleeps, trading activity is not equal throughout the day.

  • High liquidity: When more traders are active, spreads are tighter, making it easier to enter and exit trades at good prices.
  • Volatility opportunities: Price swings create profit potential—but also risk.
  • Market overlaps: When multiple regions are active, volume surges.

Knowing when the market is most active can help you reduce trading fees, minimize slippage, and maximize your gains.

The Best Times to Trade Cryptocurrency

1. Overlap Between U.S. and European Markets (1:00 PM – 5:00 PM UTC)

The busiest period for crypto trading is when U.S. and European sessions overlap.

  • Why?

    • The U.S. is home to major crypto exchanges and institutional traders.
    • Europe contributes significant trading volume and liquidity.

  • Benefits:

    • Higher volatility for short-term traders.
    • Tighter spreads for efficient execution.

This overlap often sees the biggest price movements of the day—perfect for day traders and scalpers.

2. Early U.S. Trading Hours (12:00 PM – 3:00 PM UTC)

The start of the U.S. session brings increased activity from institutional investors and retail traders waking up to market news.

  • Best for:

    • News-based trades (after U.S. economic announcements).
    • Entering/exiting positions with high liquidity.

3. Weekend Volatility (Saturday & Sunday)

Crypto is unique because weekend trading can be extremely volatile due to:

  • Lower liquidity (fewer institutional players).
  • Retail-driven price movements.

  • Who benefits:

    • Swing traders looking for sharp moves.
    • Those willing to tolerate higher risk for bigger gains.

4. After Major News & Events

The “best time” isn’t always about the clock—it’s about market catalysts.

  • Regulatory updates.
  • Exchange announcements.
  • Macro events (interest rate changes, economic data).

These events can cause instant surges or drops—great for traders who react quickly.

Does the Day of the Week Matter?

Yes. Research shows:

  • Mondays & Fridays: Often more volatile as traders adjust positions before/after the weekend.
  • Midweek (Tuesday–Thursday): Tends to have steady, higher trading volumes.

For swing traders, entering positions midweek may reduce erratic weekend exposure.

How Token Metrics Helps You Trade at the Right Time

Timing trades isn’t just about watching charts—it’s about analyzing multiple data points in real time. That’s where Token Metrics gives you a powerful edge.

1. AI-Powered Trading Signals

Get real-time bullish and bearish alerts based on 80+ data points, helping you know when to enter or exit trades confidently.

2. Narrative Tracking

Our AI monitors emerging crypto narratives (AI tokens, DeFi, RWA, etc.) so you can act before the crowd—crucial for timing market moves.

3. Trader & Investor Grades

Use Trader Grades for short-term opportunities and Investor Grades for long-term positions, aligning your trades with market momentum.

4. AI-Driven Indices

Don’t want to time trades manually? Token Metrics offers auto-managed crypto indices that rebalance based on AI-identified market conditions.

Tips for Timing Crypto Trades

  1. Trade During High Liquidity Windows: Overlaps between U.S. and European sessions are best.
  2. Watch for News: Major announcements can create rapid price moves—be ready.
  3. Avoid Low-Volume Hours: Late-night trading (UTC) often has higher slippage.
  4. Use AI for Precision: Let Token Metrics guide entry and exit points with data-backed insights.
  5. Set Alerts: Use Token Metrics’ customizable alerts for price, grades, and signals so you never miss an opportunity.

Example: Using Token Metrics for Timing

Imagine you’re planning to trade Ethereum. Instead of guessing when to enter:

  • You use Token Metrics Trader Grades to spot when ETH has strong short-term potential.
  • You set AI-powered alerts for price changes and bullish signals.
  • You execute your trade during the U.S.-EU overlap when liquidity is highest—reducing slippage and maximizing efficiency.

This data-driven approach takes the guesswork out of timing.

Final Thoughts

So, what’s the best time to trade cryptocurrency?

  • Weekdays during the U.S.-EU overlap (1:00–5:00 PM UTC) offer the best liquidity and volatility.
  • Early U.S. hours and weekends can also present opportunities—but with higher risks.
  • Major news events often create the best entry/exit windows.

But the truth is, there’s no universal “perfect time.” The real key is using data-driven insights to trade at your best time—when probabilities are in your favor.

That’s why Token Metrics is essential for traders. With AI-powered trading signals, narrative tracking, and portfolio management tools, Token Metrics helps you time the market intelligently, not emotionally.

Whether you’re a day trader chasing volatility or a long-term investor, Token Metrics puts the right data at your fingertips—so you can trade with confidence, anytime.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products