Crypto Basics

What is a Hard Fork and How Does it Work?

Discover what a hard fork is and how it works in blockchain technology. Learn about its impact and implementation in this comprehensive guide
S. Vishwa
5 Minutes
MIN

In the world of blockchain technology, a hard fork refers to a significant and radical change in a network's protocol. This change results in the creating of two separate branches, one following the previous protocol and the other following the new version. 

Unlike a soft fork, which is a minor upgrade to the protocol, a hard fork requires all nodes or users to upgrade to the latest version of the protocol software.

Understanding Blockchain and Forks

Before delving into hard forks, it's important to understand the basics of blockchain technology. A blockchain is a decentralized digital ledger that records transactions and other events in a series of blocks. 

Each block contains data and a set of instructions, known as protocols, which dictate how the blockchain network functions. Because a blockchain is decentralized, any changes to its protocol need to be voted on and approved by its community of users. 

When developers propose major changes or disagreements arise regarding the development of a blockchain, a hard fork may be initiated to create a new and separate blockchain.

How Does a Hard Fork Work?

When a hard fork occurs, the new version of the blockchain is no longer compatible with older versions. This creates a permanent divergence from the previous version of the blockchain. 

The new rules and protocols implemented through the hard fork create a fork in the blockchain, with one path following the upgraded blockchain and the other path continuing along the old one.

Miners, who play a crucial role in verifying transactions and maintaining the blockchain, must choose which blockchain to continue verifying. Holders of tokens in the original blockchain will also be granted tokens in the new fork. 

However, it's important to note that the old version of the blockchain may continue to exist even after the fork, potentially with security or performance flaws that the hard fork aimed to address.

Reasons for Hard Forks

Developers may implement a hard fork for various reasons. One common motivation is to correct significant security risks found in older versions of the software. 

Hard forks can also introduce new functionality or reverse transactions, as seen in the case of the Ethereum blockchain's hard fork to address the hack on the Decentralized Autonomous Organization (DAO).

In 2016, the Ethereum community unanimously voted in favor of a hard fork to roll back transactions that resulted in the theft of millions of dollars worth of digital currency. 

The hard fork allowed DAO token holders to retrieve their funds through a newly created smart contract. While the hard fork did not undo the network's transaction history, it enabled the recovery of stolen funds and provided failsafe protection for the organization.

Examples of Hard Forks

Hard forks have occurred in various blockchain networks, not just in Bitcoin. Bitcoin itself has witnessed several notable hard forks. 

In 2014, Bitcoin XT emerged as a hard fork to increase the number of transactions per second that Bitcoin could handle. However, the project lost interest and is no longer in use.

Another significant hard fork in the Bitcoin ecosystem took place in 2017, resulting in the creation of Bitcoin Cash. 

The hard fork aimed to increase Bitcoin's block size to improve transaction capacity. Subsequently, in 2018, Bitcoin Cash experienced another hard fork, leading to the emergence of Bitcoin Cash ABC and Bitcoin Cash SV.

Ethereum, another prominent cryptocurrency, also underwent a hard fork in response to the DAO hack mentioned earlier. The fork resulted in the creation of Ethereum Classic, which maintained the original blockchain and the updated Ethereum network.

Pros and Cons of Hard Forks

Hard forks offer several benefits to blockchain networks. They can address security issues, enhance the performance of a blockchain, and introduce new features or functionalities. 

Hard forks also provide an opportunity for participants in a blockchain community to pursue different visions for their projects and potentially resolve disagreements.

However, hard forks also come with disadvantages. They can confuse investors when a new but similar cryptocurrency is created alongside the original. 

Furthermore, hard forks may expose blockchain networks to vulnerabilities, such as 51% attacks or replay attacks. Additionally, the existence of the old version of the blockchain after a hard fork may lead to security or performance flaws that the fork aimed to fix.

Hard Forks vs. Soft Forks

While hard forks create two separate blockchains, soft forks result in a single valid blockchain. In a soft fork, the blockchain's existing code is updated, but the old version remains compatible with the new one. 

This means that not all nodes or users need to upgrade to the latest version of the protocol software. The decision to implement a hard fork or a soft fork depends on a blockchain network's specific goals and requirements. 

Hard forks are often favored when significant changes are necessary, even if a soft fork could potentially achieve the same outcome.

Conclusion

Hard forks play a significant role in the evolution of blockchain technology. They allow for radical changes to a network's protocol, creating new blockchains and potential improvements in security, performance, and functionality. 

However, hard forks also come with risks and challenges, such as confusion among investors and possibly exposing blockchain networks to vulnerabilities.

As the blockchain industry continues to evolve, it's essential for investors and stakeholders to stay informed about proposed changes and forks in their cryptocurrency holdings. 

Understanding the implications of hard forks and their potential impact on the value of crypto assets is crucial for navigating this rapidly changing landscape.

Remember, investing in cryptocurrency should be cautiously approached, especially for newcomers who are still learning how blockchain works. Stay updated, do thorough research, and seek professional advice before making investment decisions.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How Application Programming Interfaces Work

Token Metrics Team
5
MIN

APIs are the invisible glue that connects modern software: they let apps talk to services, fetch data, and automate workflows. Understanding what an API is and how it operates helps developers, analysts, and product teams design integrations that are robust, secure, and scalable.

What is an API? Definition, scope, and common types

An API, or application programming interface, is a defined set of rules and contracts that allow one software component to interact with another. At a basic level an API specifies the inputs (requests), outputs (responses), and the behavior expected when an operation is invoked. APIs can be exposed within a single application, between services inside a private network, or publicly for third-party developers.

Common API types include:

  • Web APIs (HTTP/HTTPS based, using REST or GraphQL) for browser, server, and mobile communication.
  • RPC and gRPC for high-performance binary communication between microservices.
  • Library or SDK APIs that surface methods within a language runtime.
  • Hardware APIs that expose device functionalities (e.g., sensors, GPU).
  • On-chain and crypto APIs that provide blockchain data, transaction broadcasting, and wallet interactions.

How APIs work: requests, endpoints, and protocols

APIs typically operate over a transport protocol with defined endpoints and methods. In HTTP-based APIs a client sends a request to an endpoint (URL) using methods like GET, POST, PUT, DELETE. The server processes that request and returns a response, often encoded as JSON or XML.

Key components to understand:

  • Endpoint: A specific URL or route that exposes a resource or operation.
  • Method: The action type (read, create, update, delete).
  • Schema / Contract: The shape of request and response payloads, headers, and status codes.
  • Authentication: How the API verifies the caller (API keys, OAuth tokens, signed requests).
  • Rate limits: Rules that prevent abuse by limiting request volume.

Protocols and styles (REST, GraphQL, gRPC) trade off simplicity, flexibility, and performance. REST emphasizes resource-based URLs and uniform verbs. GraphQL offers flexible queries from a single endpoint. gRPC uses binary protocols for lower latency and stronger typing.

Use cases and real-world examples (web, mobile, crypto, AI)

APIs appear in nearly every digital product. Typical use cases include:

  • Web & Mobile Apps: Fetching user profiles, submitting forms, or streaming media from cloud services.
  • Third-party Integrations: Payment providers, identity, and analytics platforms expose APIs to connect services.
  • Crypto & Blockchain: Nodes, indexers, and market data providers expose APIs to read chain state, broadcast transactions, or retrieve price feeds.
  • AI & Data Pipelines: Models and data services expose inference endpoints and training data APIs to enable programmatic access.

For analysts and product teams, APIs make it possible to automate data collection and combine signals from multiple services. AI-driven research tools such as Token Metrics rely on API feeds to aggregate prices, on-chain metrics, and model outputs so users can build informed analytics workflows.

Design, security, and operational best practices

Well-designed APIs are predictable, versioned, and documented. Consider these practical guidelines:

  1. Design for clarity: Use consistent naming, predictable status codes, and clear error messages.
  2. Versioning: Provide v1/v2 in paths or headers so breaking changes don’t disrupt clients.
  3. Rate limiting and quotas: Protect backend resources and provide transparent limits.
  4. Authentication & Authorization: Use proven schemes (OAuth2, signed tokens) and enforce least privilege.
  5. Input validation and sanitization: Defend against injection and malformed payloads.
  6. Observability: Implement logging, metrics, and distributed tracing to monitor performance and troubleshoot failures.
  7. Documentation and SDKs: Publish clear docs, example requests, and client libraries to reduce integration friction.

Security in particular requires ongoing attention: rotate credentials, monitor for anomalous traffic, and apply patching for underlying platforms. For teams building systems that depend on multiple external APIs, plan for retries, exponential backoff, and graceful degradation when a provider is slow or unavailable.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

Q1: What is the difference between an API and an SDK?

An API is a contract that defines how to interact with a service. An SDK is a packaged set of tools, libraries, and helpers that implement or wrap that API for a specific language or platform.

How do REST and GraphQL differ?

REST uses multiple endpoints and standard HTTP verbs to model resources; GraphQL exposes a single endpoint where clients request exactly the fields they need. REST is simpler; GraphQL can reduce over-fetching but adds query complexity.

Can APIs return real-time data?

Yes. Real-time patterns include WebSockets, server-sent events, or streaming gRPC. Polling a REST endpoint is simpler but less efficient for high-frequency updates.

What are common API security measures?

Common measures include strong authentication (OAuth2, API keys), TLS encryption, rate limiting, input validation, signed requests, and robust monitoring for abuse or anomalies.

How should teams evaluate third-party APIs?

Assess uptime history, SLAs, documentation quality, rate limits, pricing model, security posture, and whether the API provides the required schemas and latency characteristics for your use case.

Can APIs be used with AI applications?

Yes. AI models often expose inference APIs for serving predictions, and research tools consume multiple APIs to aggregate training data, features, or market signals. Designing for reproducibility and input validation is important when feeding models with API-derived data.

Disclaimer

This article is educational and informational in nature. It does not provide investment, legal, or professional advice. Implementations and integrations described here are technical examples and should be validated in your environment before deployment.

Research

Understanding APIs: A Practical Guide

Token Metrics Team
6
MIN

APIs power modern software by letting systems communicate without sharing internal code. Whether you use a weather app, social login, or an AI assistant, APIs are the invisible glue connecting services. This guide explains what an API is, how APIs work, practical use cases (including crypto and AI), and criteria to evaluate an API for research or product use.

What is an API? A clear definition

API stands for Application Programming Interface. At its simplest, an API is a set of rules and protocols that lets one program request services or data from another. Think of an API as a restaurant menu: the menu lists dishes (endpoints) you can order (requests), the kitchen prepares the dish (service), and the waiter delivers it to your table (response). The consumer of the API doesn’t see how the kitchen is organized; it only needs to know how to order.

APIs abstract complexity, standardize interactions, and enable modular design. They exist at many layers — from operating systems and libraries to web services that return JSON or XML. For developers and researchers, APIs are indispensable for integrating external data, automating workflows, and composing distributed systems.

How APIs work: architecture, formats, and types

Most modern web APIs follow request/response patterns over HTTP. Key concepts include:

  • Endpoints: URL paths that expose specific resources or actions, e.g., /prices or /users.
  • Methods: HTTP verbs like GET (retrieve), POST (create), PUT/PATCH (update), DELETE (remove).
  • Payloads: Data sent or received, often formatted as JSON for web APIs.
  • Authentication: API keys, OAuth tokens, or signed requests to control access.

Architectural styles and protocols include REST (resource-oriented, stateless), GraphQL (client-specified queries), gRPC (binary, streaming), and WebSockets (persistent full-duplex connections). Each has trade-offs: REST is simple and cache-friendly; GraphQL reduces over-fetching but can complicate caching; gRPC excels in performance for internal microservices.

APIs in crypto and AI: data, execution, and agents

In crypto and AI ecosystems, APIs serve several roles:

  • Market data APIs: Provide price feeds, order book snapshots, historical candles, and index data used for analysis and visualization.
  • Blockchain & on-chain APIs: Expose transaction data, smart contract interactions, wallet balances, and event logs for on-chain analysis.
  • Execution/trading APIs: Let platforms submit orders, query trade status, and manage accounts. These require strict auth and latency considerations.
  • AI & model APIs: Offer inference services, embeddings, or model orchestration endpoints for tasks like NLP, classification, or agent behavior.

Combining these APIs enables product capabilities such as automated research pipelines, AI agents that react to market signals, and dashboards that mix on-chain metrics with model-driven insights. Many teams use dedicated crypto APIs to aggregate exchange and chain data, and AI-driven tools to surface patterns without exposing trading recommendations.

For example, researchers might ingest price and on-chain feeds through a market API, compute custom signals with an AI model, and expose those signals via an internal API for front-end consumption. When evaluating providers, consider freshness of data, coverage across assets/chains, and documented latency characteristics.

How to evaluate, integrate, and maintain APIs

Choosing and integrating an API is not just about endpoints. Use a checklist that covers technical, operational, and governance concerns:

  1. Documentation quality: Look for clear examples, error codes, and sandbox endpoints for testing.
  2. Authentication and security: Prefer APIs that support scoped keys, granular permissions, and strong transport security (TLS).
  3. Rate limits & pricing: Understand request quotas, burst limits, and throttling behavior to design backoff strategies.
  4. Data guarantees: Check latency, update frequency, historical depth, and whether data is normalized across sources.
  5. SLA and reliability: Uptime history, status pages, and support SLAs matter for production use.
  6. Monitoring & observability: Log requests, track error rates, and monitor latency to detect regressions or abuse.

Integration tips: start with a sandbox key, write thin adapters to isolate provider-specific formats, and implement exponential backoff with jitter for retries. For analytics workflows, cache immutable historical responses and only refresh dynamic endpoints when necessary.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: common questions about APIs

What is the difference between REST and GraphQL?

REST exposes resources through fixed endpoints and relies on HTTP methods. GraphQL lets clients specify exactly what fields they need in a single query. REST is simpler and benefits from existing HTTP caching; GraphQL reduces over-fetching but can require more complex server-side tooling.

How do API keys and OAuth differ?

API keys are simple tokens issued to clients, often for server-to-server access or basic identification. OAuth is an authorization framework that issues scoped access tokens on behalf of users, enabling delegated permissions and better control over access lifecycle.

What are common API failure modes to plan for?

Rate limiting, transient network errors, schema changes, and authentication failures are typical. Design clients to retry with exponential backoff, validate responses, and fail gracefully when dependencies are degraded.

How can I secure sensitive data when using third-party APIs?

Use encrypted transport (TLS), rotate credentials regularly, scope keys to minimum permissions, and avoid embedding secrets in client-side code. For sensitive workflows, consider a server-side proxy that enforces access policies and masking.

Can AI models be accessed via APIs and how does that affect workflows?

Yes. Many AI models expose inference and embedding endpoints. Using model APIs decouples compute from your product stack, simplifies scaling, and enables A/B testing of models. Evaluate latency, cost per request, and data retention policies when choosing a provider.

How do I test and validate an API integration?

Start in a sandbox environment, create automated integration tests covering success and failure cases, mock third-party responses for unit tests, and run load tests against rate limits. Monitor post-deployment with health checks and alerts.

What are rate limits and how should clients handle them?

Rate limits cap how many requests a client can make in a time window. Clients should respect headers that indicate remaining quota, implement exponential backoff with jitter on 429 responses, and batch requests or cache results when possible.

When should I build my own API versus using a third-party API?

Use a third-party API for non-core data or services where speed-to-market and maintenance offload matter. Build an internal API when the capability is strategic, requires proprietary processing, or when you need tight control over latency, privacy, and SLAs.

How can tools like Token Metrics help with API-driven research?

Data and model platforms can centralize feeds, normalize formats, and provide analytical signals that reduce the engineering overhead of assembling multiple APIs. Token Metrics is an example of a platform that merges model-driven insights with market and on-chain data for research workflows.

Disclaimer

This content is for educational and informational purposes only. It does not constitute financial, legal, or investment advice. Evaluate APIs and services independently and consult appropriate professionals for decisions that involve risk.

Research

APIs Explained: How They Power Apps and AI

Token Metrics Team
6
MIN

APIs are the invisible connectors that let software talk to software. Whether you book a flight, check a crypto price, or ask an AI agent to summarize a document, APIs are likely working behind the scenes. This guide breaks down what an API is, how it works, common types and use cases, and practical steps for research and integration.

What is an API?

An API, or application programming interface, is a defined set of rules and data structures that lets one software component request services or data from another. Think of an API as a contract: the provider exposes endpoints and data formats, and the consumer uses those endpoints to perform actions or retrieve information. This abstraction hides implementation details, enabling interoperability and composability across systems.

At its core, an API specifies:

  • Available operations (endpoints) and accepted parameters
  • Request and response formats (JSON, XML, etc.)
  • Authentication and rate limits
  • Error handling and status codes

APIs accelerate development by allowing teams to reuse services instead of rebuilding functionality. They also enable ecosystems: marketplaces, integrations, and data sharing across organizations.

How APIs Work: Components & Protocols

APIs are implemented over protocols and architectural styles. The most common is REST (Representational State Transfer), which uses HTTP verbs (GET, POST, PUT, DELETE) and URIs to model resources. Alternatives like GraphQL let clients request specific data shapes, which can reduce over- and under-fetching in complex applications.

Key components to understand:

  • Endpoint: A URL representing a resource or action (e.g., /api/v1/prices).
  • Method: The HTTP action to perform (GET to read, POST to create).
  • Payload: The body of a request for create/update operations, usually JSON.
  • Authentication: API keys, OAuth tokens, or other schemes control access.
  • Rate limits: Providers throttle requests to protect services.

Beyond REST and GraphQL, there are webhooks (server-to-server push notifications), gRPC for high-performance RPC-style communication, and socket-based APIs for real-time streams. The choice of protocol affects latency, throughput, and developer ergonomics.

Types of APIs and Real-World Use Cases

APIs come in several flavors depending on visibility and purpose:

  • Public APIs: Exposed to external developers for integrations and apps.
  • Private APIs: Internal to an organization, used to modularize services.
  • Partner APIs: Shared with selected partners under specific agreements.

Common use cases illustrate how APIs deliver value:

  • Payment processing APIs enable e-commerce sites to accept credit cards without storing sensitive data.
  • Mapping and location APIs power ride-hailing, logistics, and geofencing features.
  • Data APIs supply market prices, on-chain metrics, or social feeds for dashboards and trading bots.
  • AI and ML model APIs let applications delegate tasks like transcription, summarization, or image analysis to cloud services.

For example, crypto applications rely heavily on exchange and on-chain data APIs to aggregate prices, monitor wallets, and execute analytics at scale. Evaluating latency, historical coverage, and data quality is critical when selecting a provider for time-series or transactional data.

How Developers and AI Use APIs

Developers use APIs to compose microservices, integrate third-party functionality, and automate workflows. For AI systems, APIs are essential both to access model inference and to fetch context data that models use as inputs.

Practical patterns include:

  1. Chaining: Calling multiple APIs in sequence to enrich a response (e.g., fetch user profile, then fetch personalized recommendations).
  2. Caching: Store frequent responses to reduce latency and cost.
  3. Bulk vs. Stream: Use batch endpoints for historical backfills and streaming/webhooks for real-time events.

When integrating APIs for analytics or AI, consider data consistency, schema evolution, and error semantics. Tools and platforms can monitor usage, surface anomalies, and provide fallbacks for degraded endpoints.

For researchers and teams assessing providers, structured evaluations help: compare SLA terms, data freshness, query flexibility, cost per request, and developer experience. Platforms that combine market data with AI-driven signals can accelerate exploratory analysis; for example, Token Metrics provides AI-backed research and ratings that teams often use to prioritize datasets and hypothesis testing.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is an API?

Q1: What is the difference between an API and a library?

An API defines a set of rules and endpoints for interaction between systems, often over a network. A library is a local collection of functions and classes that an application links to at runtime. Libraries run in-process; APIs often run across processes or machines.

FAQ — How secure are APIs?

Q2: How should APIs be secured?

Common security measures include authentication (API keys, OAuth), encryption (TLS), input validation, rate limiting, and monitoring for anomalous patterns. Security practices should match the sensitivity of data and regulatory requirements.

FAQ — REST vs. GraphQL

Q3: When to choose REST over GraphQL?

REST is simple and well-suited to resource-based designs and caching. GraphQL is useful when clients need precise control over returned fields and want to minimize round trips. The right choice depends on client needs, caching strategy, and team expertise.

FAQ — What drives API costs?

Q4: What factors affect API pricing?

Pricing typically depends on request volume, data granularity, retention of historical data, and premium features such as websockets, SLAs, or enriched analytics. Evaluate costs under realistic usage patterns and spikes.

FAQ — How to get started with an API?

Q5: How do I evaluate and integrate a new API?

Start by reading docs, testing sandbox endpoints, and estimating request volumes. Validate data formats, authentication flows, and edge cases (rate limits, errors). Prototype with small workloads before committing to production usage.

FAQ — Are APIs regulated?

Q6: Do APIs involve legal or compliance considerations?

APIs that handle personal data, financial transactions, or regulated assets may be subject to privacy laws, financial regulations, or contractual obligations. Assess compliance requirements, data residency, and logging needs early in the design process.

Disclaimer

This article is for educational purposes only and does not constitute investment, legal, or professional advice. Information contained here is neutral and analytical; always perform independent research and consult qualified professionals for decisions involving legal or financial risk.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products