Crypto Basics

Hot Wallet vs Cold Wallet - Key Differences and Similarities

Understand the key differences and similarities between hot wallets and cold wallets. Discover which wallet option suits your cryptocurrency storage needs.
Token Metrics Team
9 Minutes
MIN

In the world of cryptocurrency, wallets play a crucial role in securely storing and managing digital assets. Two popular types of wallets are hot wallets and cold wallets. 

While they serve the same purpose of storing cryptocurrencies, there are significant differences between the two. 

In this article, we will explore the key differences and similarities between hot wallets and cold wallets, helping you understand which option might be best suited for your needs.

What is a Hot Wallet?

Hot wallets are digital wallets that are connected to the internet. They're named 'hot' because of this constant online connection, much like a running engine.

Features of Hot Wallets

1. Accessibility and Convenience: Hot wallets allow for quick and convenient access to your digital assets. This is ideal for regular traders who need constant access to their cryptocurrencies for quick transactions.

2. Versatility: Most hot wallets support a wide variety of cryptocurrencies, making them an excellent option for those with diverse portfolios.

3. Cost: Hot wallets are usually free, although transaction fees may apply when sending cryptocurrencies.

However, the constant internet connection also opens hot wallets to potential online threats like hacking and phishing attacks.

Top 4 Hot Wallets

In the world of cryptocurrency, there are numerous hot wallets available. Here are the top four, notable for their features, security measures, and user reviews:

1. MetaMask: MetaMask is a browser extension wallet that supports Ethereum and ERC-20 tokens. It's user-friendly and enables users to interact directly with decentralized applications (DApps).

2. Coinbase Wallet: This wallet, distinct from the Coinbase exchange, allows users to store a variety of digital assets. It offers an easy-to-use interface and the ability to explore DApps.

3. Trust Wallet: Trust Wallet, owned by Binance, is a mobile wallet that supports a wide range of cryptocurrencies. It also provides a secure platform for DApp exploration.

4. Mycelium: A mobile-only Bitcoin wallet, Mycelium boasts robust security features and a sophisticated interface for advanced users.

What is a Cold Wallet?

On the flip side, cold wallets are digital wallets that are not connected to the internet. They're 'cold' because they are stored offline, offering a higher level of security for digital assets.

Features of Cold Wallets

1. Security: Cold wallets offer the highest level of security for your cryptocurrencies. Since they are offline, they are impervious to online threats.

2. Ownership: With cold wallets, particularly hardware wallets, you have total control over your private keys and, by extension, your digital assets.

3. Long-term storage: Cold wallets are perfect for "Hodlers," individuals who hold onto their digital assets for long periods.

The downside to cold wallets is their lack of convenience for frequent trading due to the need to transfer assets online for transactions. They can also come at a higher cost, especially hardware wallets.

Top 4 Cold Wallets

Cold wallets are essential for storing large amounts of digital assets securely. Here are four of the best cold wallets in the market:

1. Ledger Nano X/S: Ledger offers top-of-the-line hardware wallets, providing excellent security by storing your private keys offline. The Nano X and Nano S support a broad range of cryptocurrencies.

2. Trezor Model T/One: Trezor is another renowned brand in hardware wallets. Both the Model T and One offer offline storage and support for many cryptocurrencies.

3. Coldcard Wallet: Specifically designed for Bitcoin, Coldcard is an easy-to-use, ultra-secure hardware wallet that allows offline transactions.

4. KeepKey: KeepKey is a hardware wallet with a straightforward setup and user-friendly interface. It supports Bitcoin, Ethereum, and other major cryptocurrencies.

Hot Wallet vs Cold Wallet - Key Differences

Now that we have a general idea about hot and cold wallets, let's delve deeper into their key differences.

Connection to the Internet: The most significant distinction between hot and cold wallets is their connection to the internet. Hot wallets are always online, making them suitable for frequent transactions but also more vulnerable to online threats. In contrast, cold wallets are offline, significantly boosting their security but reducing their convenience for frequent trading.

Security Level: Hot wallets, due to their online nature, are more susceptible to cyber-attacks, malware, and phishing attempts. Cold wallets, however, due to their offline nature, provide a high level of security, protecting your assets from online threats.

Accessibility and Ease of Use: Hot wallets typically offer a more user-friendly interface, making them easier for beginners. They are also more accessible for quick and frequent transactions. Cold wallets, while offering superior security, are less convenient for frequent transactions.

Cost: Most hot wallets are free to use, with costs coming from transaction fees. Cold wallets, especially hardware wallets, can come with upfront costs, but they offer superior protection for your digital assets.

Hot Wallet and Cold Wallet Similarities

Despite their differences, hot and cold wallets also share some similarities.

Control Over Assets: Both types of wallets give you control over your digital assets, unlike custodial solutions offered by some exchanges.

Private Keys: Both hot and cold wallets provide users with private keys, which are secret codes that allow you to access and manage your cryptocurrencies. Safeguarding your private keys is critical, regardless of the type of wallet you choose.

Variety of Cryptocurrency Support: Many hot and cold wallets support a wide variety of cryptocurrencies, enabling users to manage diverse portfolios with a single tool.

Hot Wallet or Cold Wallet - Which is Safer?

When it comes to security, cold wallets generally have the upper hand. They store private keys on a device that is entirely offline, shielding them from online threats such as hacking, phishing, and malware. This makes cold wallets the safer choice for storing large amounts of digital assets.

However, it's important to note that the use of a hot wallet or cold wallet should not be an either/or decision. Many investors use both: a hot wallet for everyday transactions and trading, and a cold wallet for securing long-term investments.

In the end, while cold wallets offer superior security, both wallets have their own roles to play depending on the user's needs. Regardless of the choice of wallet, it's crucial to practice good security measures such as regularly updating software, using strong unique passwords, enabling two-factor authentication, and keeping backups of your wallets.

Deciding Between Hot Wallet and Cold Wallet

So, should you choose a hot wallet or a cold wallet? The answer depends on your individual needs and circumstances.

If you are a frequent trader or a beginner in the cryptocurrency space looking for convenience and ease of use, a hot wallet might serve you best. 

Hot wallets are easy to set up and use, and they provide immediate access to your assets for trading. However, remember to only store an amount you are willing to risk online.

If you are a long-term investor or if you own a significant amount of digital assets, a cold wallet would be a more secure option. 

Although it may come with some upfront costs and might not be as convenient for frequent trading, the enhanced security and peace of mind it provides are often worth the trade-off.

Frequently Asked Questions

Q1. What is a digital wallet in cryptocurrency?

A digital wallet, in the context of cryptocurrency, is a software application that allows users to safely store, send, and receive digital currencies like Bitcoin, Ethereum, and others.

Q2. What is the difference between a hot wallet and a cold wallet?

The main difference between hot and cold wallets lies in their connection to the internet. Hot wallets are connected to the internet, allowing for easy and quick transactions, but they are more susceptible to online threats. 

Cold wallets, on the other hand, are stored offline, making them more secure but less convenient for frequent transactions.

Q3. Is it safe to keep my cryptocurrencies in a hot wallet?

While hot wallets are more vulnerable to online threats due to their internet connection, they are generally safe for storing smaller amounts of cryptocurrencies or for amounts you plan to use for trading. It's advisable to use cold storage for larger holdings.

Q4. What are the best hot and cold wallets to use?

Some popular hot wallets include MetaMask, Coinbase Wallet, Trust Wallet, and Mycelium. As for cold wallets, Ledger Nano X/S, Trezor Model T/One, Coldcard Wallet, and KeepKey are often recommended for their robust security features.

Q5. Can I use both a hot wallet and a cold wallet?

Yes, many cryptocurrency users utilize both hot and cold wallets. A typical strategy is to use a hot wallet for regular trading and a cold wallet for storing larger amounts of crypto assets for long-term investment.

Q6. How do I choose between a hot wallet and a cold wallet?

The choice between a hot wallet and a cold wallet depends on your individual needs. If you frequently trade and require immediate access to your cryptocurrencies, a hot wallet would be suitable. 

However, if you're a long-term investor or hold significant crypto assets, a cold wallet would offer more security.

Q7. What are private keys and why are they important?

Private keys are secret codes that allow you to access and manage your cryptocurrencies. They are crucial because anyone with access to your private keys can manage your crypto assets. Regardless of whether you use a hot or cold wallet, it's vital to keep your private keys secure.

Q8. How can I secure my digital wallet?

There are several measures you can take to secure your digital wallet. Regularly updating your wallet software, using strong and unique passwords, enabling two-factor authentication, and keeping secure backups of your wallet are some key steps. Always remember, in crypto, security is paramount.

Final Thoughts

There is no absolute right or wrong when choosing between a hot wallet and a cold wallet—it all boils down to your individual needs, risk tolerance, and the nature of your transactions. It's also worth mentioning that many crypto users often utilize both wallets concurrently: a hot wallet for daily transactions and a cold wallet for long-term storage.

Regardless of your choice, always remember the golden rule of crypto security: your keys, your coins. Always maintain control of your private keys, never share them with anyone, and ensure you have secure backups. After all, the security of your digital assets ultimately depends on how well you can protect your private keys.

In the dynamic world of cryptocurrency, understanding these nuances of digital asset storage is a small but vital step towards a seamless and secure crypto experience. Stay informed, stay safe, and happy investing.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

API Management Essentials for Teams

Token Metrics Team
5
MIN

APIs are the connective tissue of modern software. As organizations expose more endpoints to partners, internal teams and third-party developers, effective api management becomes a competitive and operational imperative. This article breaks down practical frameworks, governance guardrails, and monitoring strategies that help teams scale APIs securely and reliably without sacrificing developer velocity.

Overview: What API management solves

API management is the set of practices, tools and processes that enable teams to design, publish, secure, monitor and monetize application programming interfaces. At its core it addresses three recurring challenges: consistent access control, predictable performance, and discoverability for developers. Well-managed APIs reduce friction for consumers, decrease operational incidents, and support governance priorities such as compliance and data protection.

Think of api management as a lifecycle discipline: from design and documentation to runtime enforcement and iterative refinement. Organizations that treat APIs as products—measuring adoption, latency, error rates, and business outcomes—are better positioned to scale integrations without accumulating technical debt.

Governance & Security: Policies that scale

Security and governance are non-negotiable for production APIs. Implement a layered approach:

  • Access control: Use token-based authentication (OAuth 2.0, JWT) and centralize identity validation at the gateway to avoid duplicating logic across services.
  • Rate limiting & quotas: Protect backend services and control cost by enforcing per-key or per-tenant limits. Different tiers can align with SLAs for partners.
  • Input validation & schema contracts: Define explicit contracts using OpenAPI/JSON Schema and validate at the edge to reduce injection and integration errors.
  • Audit & compliance: Log authentication events, data access, and configuration changes. Retain logs in a way that maps to regulatory obligations.

Combining automated policy enforcement at an API gateway with a governance framework (ownerable APIs, review gates, and versioning rules) ensures changes are controlled without slowing legitimate feature delivery.

Developer experience & the API product model

Developer experience (DX) determines adoption. Treat APIs as products by providing clear documentation, SDKs and a self-service developer portal. Key practices include:

  • Interactive docs: Publish OpenAPI-driven docs that allow developers to try endpoints in a sandbox.
  • Onboarding flows: Provide quick start guides, sample payloads and error explanations to reduce time-to-first-call.
  • Versioning strategy: Use semantic versioning and deprecation notices to minimize breaking changes.
  • Feedback loops: Instrument usage and surface developer issues to product owners so APIs evolve with consumer needs.

Metrics to track DX include signups, first successful call time, and repeat usage per key. These are leading indicators of whether an API is fulfilling its product intent.

Monitoring, observability & reliability

Operational visibility is essential for api management. Implement monitoring at multiple layers—gateway, service, and database—to triangulate causes when issues occur. Core telemetry includes:

  • Traffic metrics: requests per second, latency percentiles (p50/p95/p99), and throughput.
  • Error rates: HTTP 4xx/5xx breakdowns, client-specific failure patterns, and circuit-breaker triggers.
  • Business KPIs: API calls tied to revenue, conversions, or key workflows to prioritize fixes that have impact.

Observability practices—distributed tracing, structured logs, and context propagation—help teams move from alert fatigue to actionable incident response. Build runbooks that map common alerts to remediation steps and owners.

Implementation roadmap & tooling choices

Adopt an incremental roadmap rather than a big-bang rollout. A pragmatic sequence looks like:

  1. Inventory existing endpoints and annotate owners.
  2. Standardize contracts with OpenAPI and publish baseline docs.
  3. Introduce an API gateway for auth, rate limiting, and basic WAF rules.
  4. Instrument telemetry, set SLAs, and define retention for logs and traces.
  5. Launch a developer portal and iterate based on usage signals.

Choose tools that match team maturity: managed API platforms accelerate setup for companies lacking infra resources, while open-source gateways provide control for those with specialized needs. Evaluate vendors on extensibility, observability integrations, and policy-as-code support to avoid lock-in.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is API management and why does it matter?

API management encompasses the processes and tools required to publish, secure, monitor, and monetize APIs. It matters because it enables predictable, governed access to services while maintaining developer productivity and operational reliability.

Which components make up an API management stack?

Common components include an API gateway (auth, routing, rate limiting), developer portal (docs, keys), analytics and monitoring systems (metrics, traces), and lifecycle tooling (design, versioning, CI/CD integrations).

How should teams approach API security?

Implement defense-in-depth: centralized authentication, token validation, input schema checks, rate limits, and continuous auditing. Shift security left by validating contracts and scanning specs before deployment.

What metrics are most useful for API health?

Track latency percentiles, error rates, traffic patterns, and consumer-specific usage. Pair operational metrics with business KPIs (e.g., API-driven signups) to prioritize work that affects outcomes.

How do teams manage breaking changes?

Use explicit versioning, deprecation windows, and dual-running strategies where consumers migrate incrementally. Communicate changes via the developer portal and automated notifications tied to API keys.

When should an organization introduce an API gateway?

Introduce a gateway early when multiple consumers, partners, or internal teams rely on APIs. A gateway centralizes cross-cutting concerns and reduces duplicated security and routing logic.

Disclaimer

This article is for educational and informational purposes only. It provides neutral, analytical information about api management practices and tools and does not constitute professional or investment advice.

Research

How Modern Web APIs Power Connected Apps

Token Metrics Team
5
MIN

APIs are the connective tissue of modern software: they expose functionality, move data, and enable integrations across services, devices, and platforms. A well-designed web API shapes developer experience, system resilience, and operational cost. This article breaks down core concepts, common architectures, security and observability patterns, and practical steps to build and maintain reliable web APIs without assuming a specific platform or vendor.

What is a Web API and why it matters

A web API (Application Programming Interface) is an HTTP-accessible interface that lets clients interact with server-side functionality. APIs can return JSON, XML, or other formats and typically define a contract of endpoints, parameters, authentication requirements, and expected responses. They matter because they enable modularity: front-ends, mobile apps, third-party integrations, and automation tools can all reuse the same backend logic.

When evaluating or designing an API, consider the consumer experience: predictable endpoints, clear error messages, consistent versioning, and comprehensive documentation reduce onboarding friction for integrators. Think of an API as a public product: its usability directly impacts adoption and maintenance burden.

Design patterns and architectures

There are several architectural approaches to web APIs. RESTful (resource-based) design emphasizes nouns and predictable HTTP verbs. GraphQL centralizes query flexibility into a single endpoint and lets clients request only the fields they need. gRPC is used for low-latency, binary RPC between services.

Key design practices:

  • Model your resources to reflect domain concepts; avoid ad-hoc endpoints that duplicate behavior.
  • Keep contracts stable and use semantic versioning or evolving schema techniques (e.g., deprecation headers, feature flags) to handle changes.
  • Document thoroughly using OpenAPI/Swagger, GraphQL schemas, or similar—machine-readable specs enable client generation and automated testing.

Choose the pattern that aligns with your performance, flexibility, and developer ergonomics goals, and make that decision explicit in onboarding docs.

Security, authentication, and rate limiting

Security must be built into an API from day one. Common controls include TLS for transport, OAuth 2.0 / OpenID Connect for delegated authorization, API keys for service-to-service access, and fine-grained scopes for least-privilege access. Input validation, output encoding, and strict CORS policies guard against common injection and cross-origin attacks.

Operational protections such as rate limiting, quotas, and circuit breakers help preserve availability if a client misbehaves or a downstream dependency degrades. Design your error responses to be informative to developers but avoid leaking internal implementation details. Centralized authentication and centralized secrets management (vaults, KMS) reduce duplication and surface area for compromise.

Performance, monitoring, and testing

Performance considerations span latency, throughput, and resource efficiency. Use caching (HTTP cache headers, CDN, or in-memory caches) to reduce load on origin services. Employ pagination, partial responses, and batch endpoints to avoid overfetching. Instrumentation is essential: traces, metrics, and logs help correlate symptoms, identify bottlenecks, and measure SLAs.

Testing should be layered: unit tests for business logic, contract tests against API schemas, integration tests for end-to-end behavior, and load tests that emulate real-world usage. Observability tools and APMs provide continuous insight; AI-driven analytics platforms such as Token Metrics can help surface unusual usage patterns and prioritize performance fixes based on impact.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between REST and GraphQL?

REST exposes multiple endpoints that represent resources and rely on HTTP verbs for operations. It is simple and maps well to HTTP semantics. GraphQL exposes a single endpoint where clients request precisely the fields they need, which reduces overfetching and can simplify mobile consumption. GraphQL adds complexity in query planning and caching; choose based on client needs and team expertise.

How should I approach API versioning?

Prefer backward-compatible changes over breaking changes. Use semantic versioning for major releases, and consider header-based versioning or URI version prefixes when breaking changes are unavoidable. Maintain deprecation schedules and communicate timelines in documentation and response headers so clients can migrate predictably.

Which authentication method is best for my API?

OAuth 2.0 and OpenID Connect are standard for delegated access and single-sign-on. For machine-to-machine communication, use short-lived tokens issued by a trusted authorization server. API keys can be simple to implement but should be scoped, rotated regularly, and never embedded in public clients without additional protections.

How do I test and monitor an API in production?

Implement synthetic monitoring for critical endpoints, collect real-user metrics (latency percentiles, error rates), and instrument distributed tracing to follow requests across services. Run scheduled contract tests against staging and production-like environments, and correlate incidents with deployment timelines and dependency health.

How do I design for backward compatibility?

Make additive, non-breaking changes where possible: add new fields rather than changing existing ones, and preserve default behaviors. Document deprecated fields and provide feature flags to gate new behavior. Maintain versioned client libraries to give consumers time to upgrade.

Disclaimer

This article is educational and technical in nature. It does not provide legal, financial, or investment advice. Implementations should be evaluated with respect to security policies, compliance requirements, and operational constraints specific to your organization.

Research

API Endpoint Essentials: Design, Security & Tips

Token Metrics Team
5
MIN

APIs power modern software by exposing discrete access points called endpoints. Whether you re integrating a third-party data feed, building a microservice architecture, or wiring a WebSocket stream, understanding what an api endpoint is and how to design, secure, and monitor one is essential for robust systems.

What is an API endpoint and how it works

An api endpoint is a network-accessible URL or address that accepts requests and returns responses according to a protocol (usually HTTP/HTTPS or WebSocket). Conceptually, an endpoint maps a client intent to a server capability: retrieve a resource, submit data, or subscribe to updates. In a RESTful API, endpoints often follow noun-based paths (e.g., /users/123) combined with HTTP verbs (GET, POST, PUT, DELETE) to indicate the operation.

Key technical elements of an endpoint include:

  • URI pattern (path and optional query parameters)
  • Supported methods (verbs) and expected payloads
  • Authentication and authorization requirements
  • Response format and status codes
  • Rate limiting and throttling rules

Endpoints can be public (open to third parties) or private (internal to a service mesh). For crypto-focused data integrations, api endpoints may also expose streaming interfaces (WebSockets) or webhook callbacks for asynchronous events. For example, Token Metrics is an example of an analytics provider that exposes APIs for research workflows.

Types of endpoints and common protocols

Different application needs favor different endpoint types and protocols:

  • REST endpoints (HTTP/HTTPS): Simple, stateless, and cache-friendly, ideal for resource CRUD operations and broad compatibility.
  • GraphQL endpoints: A single endpoint that accepts queries allowing clients to request exactly the fields they need; reduces overfetching but requires careful schema design and complexity control.
  • WebSocket endpoints: Bidirectional, low-latency channels for streaming updates (market data, notifications). Useful when real-time throughput matters.
  • Webhook endpoints: Server-to-server callbacks where your service exposes a publicly accessible endpoint to receive event notifications from another system.

Choosing a protocol depends on consistency requirements, latency tolerance, and client diversity. Hybrid architectures often combine REST for configuration and GraphQL/WebSocket for dynamic data.

Design best practices for robust API endpoints

Good endpoint design improves developer experience and system resilience. Follow these practical practices:

  1. Clear and consistent naming: Use predictable URI patterns and resource-oriented paths. Avoid action-based endpoints like /getUserData in favor of /users/{id}.
  2. Versioning: Expose versioned endpoints (e.g., /v1/users) to avoid breaking changes for consumers.
  3. Input validation: Validate payloads early and return explicit error codes and messages to guide client correction.
  4. Pagination and filtering: For list-heavy endpoints, require pagination tokens or limits to protect backend resources.
  5. Documentation and examples: Provide schema samples, curl examples, and expected response bodies to accelerate integration.

API schema tools (OpenAPI/Swagger, AsyncAPI) let you define endpoints, types, and contracts programmatically, enabling automated client generation, testing, and mock servers during development.

Security, rate limits, and monitoring

Endpoints are primary attack surfaces. Security and observability are critical:

  • Authentication & Authorization: Prefer token-based schemes (OAuth2, JWT) with granular scopes. Enforce least privilege for each endpoint.
  • Transport security: Enforce TLS, HSTS, and secure ciphers to protect data in transit.
  • Rate limiting & quotas: Apply per-key and per-IP limits to mitigate abuse and preserve quality of service.
  • Input sanitization: Prevent injection attacks by whitelisting allowed fields and escaping inputs.
  • Observability: Emit structured logs, traces, and metrics per endpoint. Monitor latency percentiles, error rates, and traffic patterns to detect regressions early.

Operational tooling such as API gateways, service meshes, and managed API platforms provide built-in policy enforcement for security and rate limiting, reducing custom code complexity.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between an api endpoint and an API?

An API is the overall contract and set of capabilities a service exposes; an api endpoint is a specific network address (URI) where one of those capabilities is accessible. Think of the API as the menu and endpoints as the individual dishes.

How should I secure a public api endpoint?

Use HTTPS only, require authenticated tokens with appropriate scopes, implement rate limits and IP reputation checks, and validate all input. Employ monitoring to detect anomalous traffic patterns and rotate credentials periodically.

When should I version my endpoints?

Introduce explicit versioning when you plan to make breaking changes to request/response formats or behavior. Semantic versioning in the path (e.g., /v1/) is common and avoids forcing clients to adapt unexpectedly.

What are effective rate-limiting strategies?

Combine per-key quotas, sliding-window or token-bucket algorithms, and burst allowances. Communicate limits via response headers and provide clear error codes and retry-after values so clients can back off gracefully.

Which metrics should I monitor for endpoints?

Track request rate (RPS), error rate (4xx/5xx), latency percentiles (p50, p95, p99), and active connections for streaming endpoints. Correlate with upstream/downstream service metrics to identify root causes.

When is GraphQL preferable to REST for endpoints?

Choose GraphQL when clients require flexible field selection and you want to reduce overfetching. Prefer REST for simple resource CRUD patterns and when caching intermediaries are important. Consider team familiarity and tooling ecosystem as well.

Disclaimer

The information in this article is technical and educational in nature. It is not financial, legal, or investment advice. Implementations should be validated in your environment and reviewed for security and compliance obligations specific to your organization.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products