Crypto Basics

The Ultimate Guide to Initial Exchange Offerings (IEOs)

Learn everything about Initial exchange offerings with our ultimate IEO guide. Get expert tips on participating, launching, and profiting from IEOs.
Marcus K
8 Minutes
MIN

In the world of cryptocurrency fundraising, Initial Exchange Offerings (IEOs) have emerged as a popular alternative to Initial Coin Offerings (ICOs).  IEOs provide a more secure and trustworthy platform for startups to raise capital and for investors to participate in token sales. 

This comprehensive guide will walk you through everything you need to know about IEOs, including their definition, how they work, their advantages and disadvantages, and tips for a successful IEO fundraising event.

What is an IEO?

An Initial Exchange Offering, or IEO, is a fundraising event where the sale of tokens is conducted through an established cryptocurrency exchange platform.

Unlike ICOs, which a holding company organizes on its own platform, IEOs are conducted by exchange platforms on behalf of the project raising funds. This shift from ICOs to IEOs has occurred due to the loss of trust and confidence in ICOs caused by numerous cases of fraud and scams.

IEOs provide a more secure and regulated environment for both investors and projects. They require a thorough verification process and the submission of a white paper to ensure the legitimacy and viability of the project.

IEOs often implement Know Your Customer (KYC) and Anti-Money Laundering (AML) measures to protect investors and prevent fraud. Overall, IEOs aim to restore trust and credibility in the cryptocurrency fundraising landscape.

How does an IEO work?

The process of conducting an IEO involves several steps to ensure the project's legitimacy and investors' safety. 

Firstly, the exchange platform verifies the project, which includes checks to ensure the project's claims are valid. This verification process is crucial to maintain the reputation of the exchange platform and protect investors from scams.

Next, the project must submit a white paper, which serves as an informative document detailing the technical aspects of the product, its architecture, and the problem it aims to solve. 

The white paper also includes information about the team behind the project, tokenomics, and the reasons why investors should be interested in the project. After the project passes the verification process and the white paper is approved, the exchange platform sets a date for the token sale. 

Investors are required to follow KYC and AML procedures to participate in the IEO. This ensures that only legitimate investors are involved and helps prevent money laundering and other illegal activities.

Once the IEO begins, investors can purchase the project's tokens directly from their exchange wallets. The exchange platform facilitates the token sale and ensures transparency by providing updates on the project's progress to investors. After the IEO is completed, the tokens are listed on the exchange platform for trading.

Advantages of IEO

IEOs offer several advantages over ICOs and other fundraising methods. Here are some key benefits of participating in an IEO:

  1. Increased Trust and Credibility: IEOs are conducted through established cryptocurrency exchange platforms, adding trust and credibility to the fundraising process. Investors have more confidence in participating in an IEO due to the due diligence performed by the exchange platform.
  2. Improved Investor Protection: IEOs often implement KYC and AML measures to verify the identity of investors and prevent fraudulent activities. This ensures that only legitimate investors can participate in the token sale and reduces the risk of scams and fraud.
  3. Better User Experience: Compared to ICOs, IEOs provide investors a smoother and more user-friendly experience. The token sale is conducted directly through the exchange platform, eliminating the need for investors to navigate multiple websites or wallets.
  4. Regulated Environment: IEOs are regulated according to the rules and guidelines set by the exchange platform. This reduces the risk of fraudulent projects and provides investors with a safer investment environment.
  5. Access to Established Investor Base: Projects gain access to a large and established investor base by conducting an IEO on a reputable exchange platform. This increases the visibility and reach of the project, attracting more potential investors.

Disadvantages of IEO

While IEOs offer several advantages, there are also some disadvantages to consider. Here are a few potential drawbacks of participating in an IEO:

  1. Varying Exchange Platform Standards: Not all cryptocurrency exchange platforms have the same level of diligence and regulation when it comes to conducting IEOs. It's important to research and choose an exchange platform that has a good reputation and implements strict standards.
  2. Listing Fees and Commissions: Listing fees on reputable exchange platforms can be high, and startups may be required to give a commission from token sales to the exchange. These costs can impact the budget and profitability of the project.
  3. Risk of Pump and Dump Scams: While IEOs are generally more regulated than ICOs, they are not immune to pump and dump scams. It is important for investors to conduct thorough research and due diligence before participating in an IEO to avoid falling victim to such scams.

Other Fundraising Methods in the Crypto Space

While IEOs have gained popularity in recent years, other fundraising methods are also available in the crypto space. Here are a few alternatives to IEOs:

Initial Coin Offerings (ICOs)

ICOs were the dominant fundraising method before IEOs emerged. They involve the sale of tokens directly from the project's own platform. However, ICOs have faced criticism due to the lack of regulation and numerous cases of fraud.

Security Token Offerings (STOs)

STOs involve the sale of security tokens, which are regulated financial securities. These tokens represent ownership in an underlying asset, such as shares in a company or real estate. STOs offer more regulatory compliance and investor protection compared to ICOs and IEOs.

Initial DEX Offerings (IDOs)

IDOs are similar to ICOs and IEOs but are conducted on decentralized exchanges (DEXs). These offerings provide a more decentralized fundraising option, allowing projects to launch tokens on DEXs without needing a centralized exchange platform.

Tips for a Successful IEO Fundraising Event

Launching a successful IEO requires careful planning and execution. Here are some tips to help you navigate the IEO process and maximize your chances of success:

1. Analyze your market scenario and idea

Before launching an IEO, it is crucial to analyze your project and the current market scenario. Understand the market needs and identify any gaps or problems your project aims to solve. This will help you position your project effectively and attract investors.

2. Develop a Minimum Viable Product (MVP)

Established exchange platforms typically list projects that have made significant progress. Having a functional MVP or demonstrating ongoing development is important to gain credibility and increase your chances of being listed on a reputable exchange platform.

3. Choose the right exchange platform

Selecting the right exchange platform is key to the success of your IEO. Consider factors such as the platform's reputation, user base, security measures, and listing requirements. Research and choose a platform that aligns with your project's goals and values.

4. Draft a comprehensive white paper

A well-written and informative white paper is essential for attracting investors and exchange platforms. Clearly articulate your project's vision, technical aspects, tokenomics, and the benefits it offers to investors. Use diagrams and flowcharts to illustrate complex concepts and make the white paper more engaging.

5. Design a professional website

Your project's website is important for providing information to potential investors. Ensure that your website is well-designed, user-friendly, and secure. Highlight the unique selling points of your project and keep the website updated with the latest developments.

6. Develop tokens and set a clear funding goal

Create tokens that will be sold during the IEO and determine the maximum amount of funds you aim to raise. Setting a clear funding goal demonstrates transparency and helps investors understand the purpose of the token sale.

7. Market your project effectively

Utilize various marketing channels, such as social media, press releases, and blogging, to create awareness and generate interest in your project. 

Engage with the crypto community, participate in forums, and collaborate with influencers to expand your reach and attract potential investors.

8. Maximize post-IEO promotion

After the IEO, continue to promote your project to maintain momentum and attract more investors. Leverage social media platforms, distribute press releases, and provide regular updates on your project's progress. Engage with your community and address any questions or concerns promptly.

9. Build a strong community

A strong and supportive community can greatly contribute to the success of your IEO. Focus on building a community of genuine supporters who are passionate about your project. Engage with them through social media, forums, and community events to foster loyalty and advocacy.

10. Diversify your investor base

Don't limit your investor base to a single geographical region or language. Consider expanding your reach and targeting diverse communities to attract a wider range of investors. Hire community managers who understand the specific needs and preferences of different regions.

By following these tips, you can increase your chances of launching a successful IEO and attracting the support and investment your project needs.

Conclusion

Initial Exchange Offerings (IEOs) have emerged as a more secure and regulated alternative to Initial Coin Offerings (ICOs) in the cryptocurrency fundraising landscape. 

Conducted through established exchange platforms, IEOs provide a trustworthy platform for startups to raise capital and for investors to participate in token sales. 

By following the tips and understanding the advantages and disadvantages of IEOs, you can navigate the IEO process effectively and increase your chances of success. 

With proper planning, a solid project, and effective marketing, an IEO can be a valuable fundraising tool for blockchain projects.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Understanding APIs: What They Are and How They Work

Token Metrics Team
5
MIN

APIs (Application Programming Interfaces) are the invisible wiring that lets modern software communicate. From mobile apps fetching data to AI agents orchestrating workflows, APIs enable systems to request services, exchange structured data, and extend functionality without exposing internal implementation. This article unpacks what an API is, how different API styles operate, where they’re used (including crypto and AI contexts), and practical approaches to evaluate, integrate, and secure them.

What an API Is: core concepts and terminology

An API is a set of rules and conventions that allows one software component to interact with another. At its simplest, an API defines:

  • Endpoints: Named access points that accept requests (for example, /users or /price).
  • Methods: Actions supported at an endpoint (common HTTP verbs: GET, POST, PUT, DELETE).
  • Request/Response formats: Structured payloads, typically JSON or XML, that describe inputs and outputs.
  • Authentication and authorization: How clients prove identity and gain access to resources (API keys, OAuth, JWT).
  • Rate limits and quotas: Constraints that protect services from abuse and manage capacity.

Think of an API as a contract: the provider promises certain behaviors and data shapes, and the consumer agrees to use the API according to those rules. That contract enables modular design, reusability, and language-agnostic integration.

How APIs work: protocols, formats, and architectural styles

APIs use protocols and conventions to carry requests and responses. The most common patterns include:

  • REST (Representational State Transfer): Uses standard HTTP methods and resource-oriented URLs. REST favors stateless interactions and JSON payloads.
  • GraphQL: Lets clients request exactly the fields they need in a single query, reducing over- and under-fetching.
  • gRPC: A high-performance RPC framework that uses protocol buffers for compact binary messages—often used for internal microservices.
  • Webhooks: A push model where the API provider sends events to a client URL when something changes.

Choosing an architecture depends on latency needs, payload sizes, versioning strategy, and developer ergonomics. For instance, GraphQL can simplify complex frontend queries, while REST remains straightforward for simple resource CRUD operations.

Common API types and real-world use cases (including crypto and AI)

APIs power an enormous variety of use cases across industries. Representative examples include:

  • Data APIs: Provide access to datasets or market data (weather, financial prices, on-chain metrics).
  • Service APIs: Offer functionality like payments, authentication, or messaging.
  • Platform APIs: Enable third-party apps to extend a core product—social platforms, cloud providers, and exchanges expose platform APIs.
  • AI and ML APIs: Expose model inference endpoints for tasks such as text generation, image recognition, or embeddings.

In the crypto ecosystem, APIs are fundamental: explorers, node providers, exchanges, and analytics platforms expose endpoints for price feeds, order books, trade history, wallet balances, and on-chain events. AI-driven research tools use APIs to combine market data, on-chain signals, and model outputs into research workflows and agents.

How to evaluate and integrate an API: practical steps

Adopting an API requires both technical and operational considerations. A pragmatic evaluation process includes:

  1. Define needs: Identify required data, latency tolerance, throughput, and allowable costs.
  2. Review documentation: Clear docs, example requests, schema definitions, and SDKs accelerate integration.
  3. Test endpoints: Use sandbox keys or Postman to validate payloads, error handling, and edge cases.
  4. Assess SLAs and rate limits: Understand uptime guarantees and throttling behavior; build retry/backoff strategies.
  5. Security and compliance: Check authentication methods, encryption, and data retention policies.
  6. Monitoring and observability: Plan logging, latency monitoring, and alerting to detect regressions post-integration.

When integrating multiple APIs—such as combining market data with model inference—consider a middleware layer that normalizes data shapes, caches frequent responses, and orchestrates calls to minimize latency and cost.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API — common questions

What is the difference between an API and a web service?

An API is a broader concept that defines interfaces for software interaction. A web service is a type of API that operates over network protocols such as HTTP. In practice, REST and GraphQL are web service styles used to implement APIs.

Are public APIs safe to use?

Public APIs can be safe if they follow security best practices: HTTPS everywhere, proper authentication, input validation, and rate limiting. Consumers should validate responses, handle errors, and avoid exposing credentials in client-side code.

How do API keys differ from OAuth?

API keys are simple tokens that identify a client application and are often used for server-to-server interactions. OAuth is a delegated authorization framework that allows users to grant limited access to their accounts without sharing credentials—common for user-facing integrations.

What is API rate limiting and why does it matter?

Rate limiting constrains how many requests a client can make in a time window. It prevents abuse, protects backend resources, and ensures fair usage. Clients should implement retries with exponential backoff and caching to stay within limits.

When should I use GraphQL instead of REST?

Choose GraphQL when clients need flexible, precise queries that fetch nested or disparate fields in a single request. REST can be simpler for straightforward resource CRUD and when predictable caching semantics are required.

Can APIs be used for real-time data?

Yes. Real-time patterns include WebSockets, Server-Sent Events (SSE), and streaming APIs. Some platforms also provide push notifications or webhooks to deliver near-instant updates to subscribers.

How do I handle versioning in APIs?

Common strategies include using version numbers in the URL (e.g., /v1/) or via headers. Maintain backward compatibility, communicate deprecation timelines, and provide migration guides to minimize friction for integrators.

What monitoring should I implement after integrating an API?

Track uptime, latency percentiles, error rates, and throughput. Instrument retries, logging of failed requests, and alerts for sustained degradation. Observability helps diagnose issues and communicate with API providers when needed.

Disclaimer: This article is for educational and informational purposes only. It explains technical concepts related to APIs and integration practices and does not provide financial, investment, or regulatory advice. Always evaluate tools and services according to your own requirements and compliance needs.

Research

APIs Explained: How They Connect Software and Data

Token Metrics Team
5
MIN

APIs — application programming interfaces — are the invisible glue that lets software talk to software. Whether you're building a dashboard, feeding data into an AI model, or fetching market prices for analytics, understanding what an API is and how it works is essential to designing reliable systems. This guide explains APIs in plain language, shows how they’re used in crypto and AI, and outlines practical steps for safe, scalable integration.

What is an API? Core definition and common types

An API (application programming interface) is a defined set of rules and endpoints that lets one software program request and exchange data or functionality with another. Think of it as a contract: the provider defines what inputs it accepts and what output it returns, and the consumer follows that contract to integrate services reliably.

Common API types:

  • REST APIs: Use HTTP verbs (GET, POST, PUT, DELETE) and structured URLs. They are stateless and often return JSON.
  • GraphQL: Allows clients to request exactly the data they need via a single endpoint, improving efficiency for complex queries.
  • WebSocket / Streaming APIs: Provide persistent connections for real-time data flows, useful for live feeds like price updates or chat.
  • RPC & gRPC: Remote procedure calls optimized for low-latency, typed interactions, often used in microservices.

How APIs work: requests, endpoints, and authentication

At a technical level, using an API involves sending a request to an endpoint and interpreting the response. Key components include:

  • Endpoint: A URL representing a resource or action (e.g., /v1/prices/bitcoin).
  • Method: The HTTP verb that signals the intent (GET to read, POST to create, etc.).
  • Headers & Body: Metadata (like authentication tokens) and payloads for requests that change state.
  • Response codes: Numeric codes (200 OK, 404 Not Found, 429 Too Many Requests) that indicate success or error types.
  • Authentication: API keys, OAuth tokens, JWTs, or mutual TLS are common ways to authenticate and authorize consumers.

Understanding these elements helps teams design error handling, retry logic, and monitoring so integrations behave predictably in production.

APIs in crypto and AI: practical use cases

APIs enable many building blocks in crypto and AI ecosystems. Examples include:

  • Market data & price feeds: REST or websocket APIs provide real-time and historical prices, order book snapshots, and trade events.
  • On-chain data: Indexing services expose transactions, balances, and contract events via APIs for analytics and compliance workflows.
  • Model serving: AI inference APIs let applications call trained models to generate predictions, embeddings, or natural language outputs.
  • Wallet & transaction APIs: Abstract common wallet operations like address generation, signing, and broadcasting transactions.

When integrating APIs for data-driven systems, consider latency, data provenance, and consistency. For research and model inputs, services that combine price data with on-chain metrics and signals can reduce the time it takes to assemble reliable datasets. For teams exploring such aggregations, Token Metrics provides an example of an AI-driven analytics platform that synthesizes multiple data sources for research workflows.

Best practices and security considerations for API integration

Secure, maintainable APIs follow established practices that protect data and reduce operational risk:

  1. Authentication & least privilege: Use scoped API keys or OAuth to limit access, rotate credentials regularly, and avoid embedding secrets in client code.
  2. Rate limiting and retries: Respect provider rate limits, implement exponential backoff, and design idempotent operations to avoid duplication.
  3. Input validation and sanitization: Validate incoming data and sanitize outputs to prevent injection and misuse.
  4. Versioning: Use semantic versioning in endpoint paths (e.g., /v1/) and deprecate old versions with clear timelines.
  5. Monitoring and observability: Log requests, latency, errors, and usage patterns. Set alerts for anomalies and integrate telemetry into incident response playbooks.
  6. Data integrity and provenance: When using third-party feeds, capture timestamps, unique identifiers, and proof-of-origin where available so downstream analysis can trace sources.

Following these practices helps teams scale API usage without sacrificing reliability or security.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is an API and why is it useful?

An API is a set of rules that enables software components to interact. It’s useful because it abstracts complexity, standardizes data exchange, and enables modular development across systems and teams.

Which API type should I choose: REST, GraphQL, or streaming?

Choose based on access patterns: REST is simple and widely supported; GraphQL excels when clients need flexible queries and fewer round trips; streaming (WebSocket) is best for low-latency, continuous updates. Consider caching, complexity, and tooling support.

How do I secure API keys and credentials?

Store secrets in secure vaults or environment variables, avoid hardcoding them in source code, rotate keys periodically, and apply principle of least privilege to limit access scopes.

What are rate limits and how should I handle them?

Rate limits restrict how many requests a client can make in a time window. Handle them by respecting limits, implementing exponential backoff for retries, caching responses, and batching requests where possible.

How do I evaluate an API provider?

Assess documentation quality, uptime SLAs, authentication methods, data freshness, cost model, and community or support channels. Test with realistic workloads and review security practices and versioning policies.

Can APIs be used to power AI agents?

Yes. AI agents often call APIs for data ingestion, model inference, or action execution. Reliable APIs for feature data, model serving, and orchestration are key to building robust AI workflows.

Disclaimer

This article is for educational and informational purposes only. It does not constitute financial, investment, legal, or professional advice. Evaluate APIs and data sources independently and consider security and compliance requirements specific to your use case.

Research

APIs Explained: How Application Interfaces Work

Token Metrics Team
6
MIN

APIs power modern software by acting as intermediaries that let different programs communicate. Whether you use a weather app, sign in with a social account, or combine data sources for analysis, APIs are the plumbing behind those interactions. This guide breaks down what an API is, how it works, common types and use cases, plus practical steps to evaluate and use APIs responsibly.

What an API Is and Why It Matters

An application programming interface (API) is a contract between two software components. It specifies the methods, inputs, outputs, and error handling that allow one service to use another’s functionality or data without needing to know its internal implementation. Think of an API as a well-documented door: the requester knocks with a specific format, and the server replies according to agreed rules.

APIs matter because they:

  • Enable modular development and reuse of functionality across teams and products.
  • Abstract complexity so consumers focus on features rather than implementation details.
  • Drive ecosystems: public APIs can enable third-party innovation and integrations.

How APIs Work: Key Components

At a technical level, an API involves several elements that define reliable communication:

  • Endpoint: A URL or address where a service accepts requests.
  • Methods/Operations: Actions permitted by the API (e.g., read, create, update, delete).
  • Payload and Format: Data exchange format—JSON and XML are common—and schemas that describe expected fields.
  • Authentication & Authorization: Mechanisms like API keys, OAuth, or JWTs that control access.
  • Rate Limits and Quotas: Controls on request volume to protect stability and fairness.
  • Versioning: Strategies (URI versioning, header-based) for evolving an API without breaking clients.

Most web APIs use HTTP as a transport; RESTful APIs map CRUD operations to HTTP verbs, while alternatives like GraphQL let clients request exactly the data they need. The right style depends on use cases and performance trade-offs.

Common API Use Cases and Types

APIs appear across many layers of software and business models. Common categories include:

  • Public (Open) APIs: Exposed to external developers to grow an ecosystem—examples include mapping, social, and payment APIs.
  • Private/Internal APIs: Power internal systems and microservices within an organization for modularity.
  • Partner APIs: Shared with specific business partners under contract for integrated services.
  • Data APIs: Provide structured data feeds (market data, telemetry, or on-chain metrics) used by analytics and AI systems.

Practical examples: a mobile app calling a backend to fetch user profiles, an analytics pipeline ingesting a third-party data API, or a serverless function invoking a payment API to process transactions.

Design, Security, and Best Practices

Designing and consuming APIs effectively requires both technical and governance considerations:

  1. Design for clarity: Use consistent naming, clear error codes, and robust documentation to reduce friction for integrators.
  2. Plan for versioning: Avoid breaking changes by providing backward compatibility or clear migration paths.
  3. Secure your interfaces: Enforce authentication, use TLS, validate inputs, and implement least-privilege authorization.
  4. Observe and throttle: Monitor latency, error rates, and apply rate limits to protect availability.
  5. Test and simulate: Provide sandbox environments and thorough API tests for both functional and load scenarios.

When evaluating an API to integrate, consider documentation quality, SLAs, data freshness, error handling patterns, and cost model. For data-driven workflows and AI systems, consistency of schemas and latency characteristics are critical.

APIs for Data, AI, and Research Workflows

APIs are foundational for AI and data research because they provide structured, automatable access to data and models. Teams often combine multiple APIs—data feeds, enrichment services, feature stores—to assemble training datasets or live inference pipelines. Important considerations include freshness, normalization, rate limits, and licensing of data.

AI-driven research platforms can simplify integration by aggregating multiple sources and offering standardized endpoints. For example, Token Metrics provides AI-powered analysis that ingests diverse signals via APIs to support research workflows and model inputs.

Discover Crypto Gems with Token Metrics AI

Token Metrics uses AI-powered analysis to help you uncover profitable opportunities in the crypto market. Get Started For Free

What is an API? (FAQ)

1. What does API stand for and mean?

API stands for Application Programming Interface. It is a set of rules and definitions that lets software components communicate by exposing specific operations and data formats.

2. How is a web API different from a library or SDK?

A web API is accessed over a network (typically HTTP) and provides remote functionality or data. A library or SDK is code included directly in an application. APIs enable decoupled services and cross-platform access; libraries are local dependencies.

3. What are REST, GraphQL, and gRPC?

REST is an architectural style using HTTP verbs and resource URIs. GraphQL lets clients specify exactly which fields they need in a single query. gRPC is a high-performance RPC framework using protocol buffers and is suited for internal microservice communication with strict performance needs.

4. How do I authenticate to an API?

Common methods include API keys, OAuth 2.0 for delegated access, and JWTs for stateless tokens. Choose an approach that matches security requirements and user interaction patterns; always use TLS to protect credentials in transit.

5. What are typical failure modes and how should I handle them?

Failures include rate-limit rejections, transient network errors, schema changes, and authentication failures. Implement retries with exponential backoff for transient errors, validate responses, and monitor for schema or semantic changes.

6. Can APIs be used for real-time data?

Yes. Polling HTTP APIs at short intervals can approximate near-real-time, but push-based models (webhooks, streaming APIs, WebSockets, or event streams) are often more efficient and lower latency for real-time needs.

7. How do I choose an API provider?

Evaluate documentation, uptime history, data freshness, pricing, rate limits, privacy and licensing, and community support. For data or AI integrations, prioritize consistent schemas, sandbox access, and clear SLAs.

8. How can I learn to design APIs?

Start with principles like consistent resource naming, strong documentation (OpenAPI/Swagger), automated testing, and security by design. Study public APIs from major platforms and use tools that validate contracts and simulate client behavior.

Disclaimer

This article is for educational and informational purposes only. It does not constitute investment advice, financial recommendations, or endorsements. Readers should perform independent research and consult qualified professionals where appropriate.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products