Crypto Basics

ISO 20022 Coins - Are These Coins Good to Invest?

Learn everything about ISO 20022 coins and how it works. Explore the potential of ISO 20022 coins as an investment option in 2023.
S. Vishwa
8 Minutes
MIN

In the ever-evolving world of cryptocurrency, staying updated with the latest standards and technologies is imperative. One such development that has gained traction is the adoption of the ISO 20022 messaging standard. 

In this comprehensive guide, we'll dive deep into what ISO 20022 coins are, their significance, and how they're revolutionizing crypto space.

What is ISO 20022?

Definition - ISO 20022 is a global messaging standard adopted by the financial world. It's not just limited to crypto but extends to other financial transactions, including payments, securities, trade services, cards, and foreign exchange. Its goal is to create a universal standard for exchanging financial messages.

Importance in the Financial Ecosystem - By promoting a singular messaging standard, ISO 20022 simplifies global business communication. It reduces errors, lowers operational costs, and promotes seamless integration among different financial systems worldwide.

ISO 20022 and Cryptocurrency

Bridging the Traditional and Digital Worlds - ISO 20022 acts as a bridge between traditional banking and the digital currency world. By integrating this standard, cryptocurrencies can be more widely recognized and accepted by mainstream financial institutions, fostering mutual growth.

Ensuring Data Richness - The messaging standard carries detailed information about transactions, ensuring more transparency and facilitating better compliance with regulations. This is especially critical in the crypto space, often viewed as a 'wild west' of finance.

How Do ISO 20022 Coins Work?

The intricate world of ISO 20022 coins stems from their integration of the ISO 20022 messaging standard, a globally accepted protocol for transmitting financial information. 

But how does this integration manifest itself in the operation of these coins? At its core, ISO 20022 is a comprehensive and versatile framework that uses structured and descriptive messages. 

When cryptocurrencies incorporate this standard, they essentially remodel their transactional messaging to be in sync with this universally recognized protocol. 

This means that every transaction carried out with an ISO 20022 compliant coin is embedded with rich data, encompassing not just the fundamental details like sender, receiver, and amount, but also metadata about the transaction itself. 

The structured nature of these messages significantly minimizes ambiguities and errors. In practical terms, when you're transacting with an ISO 20022 coin, whether you're sending, receiving, or just verifying a transaction, the underlying technology ensures a clearer, more standardized, and detail-rich information flow. 

This doesn't just make the transaction more transparent; it also facilitates easier integration and communication with traditional financial systems that already employ the ISO 20022 standard. 

Hence, these coins act as a bridge, melding the innovative realm of cryptocurrencies with the established world of mainstream finance, making cross-border transactions, trade finance, and global payments more seamless and efficient than ever before.

List of ISO 20022 compliant cryptocurrencies

As of 2023, several cryptocurrencies have notably aligned themselves with the ISO 20022 standard, marking a significant step towards bridging traditional financial operations with the revolutionary world of digital assets:

XRP (XRP): Spearheading the ISO 20022 adoption, XRP, backed by the Ripple company, offers a digital payment protocol more than just a cryptocurrency. 

It specializes in faster, cost-effective cross-border transactions, with its infrastructure designed to facilitate direct transfers between two parties in any form of currency, including other cryptos.

Quant (QNT): Quant's Overledger is renowned for its capability to interlink various blockchains, enabling them to operate harmoniously. By embracing ISO 20022, Quant further amplifies its commitment to connect diverse financial systems seamlessly and efficiently.

Algorand (ALGO): A public blockchain and cryptocurrency project, Algorand focuses on ensuring decentralized agreements and constructing new financial tools. Its adoption of ISO 20022 underscores its mission to maintain a transparent, secure, and speedy transaction system.

Stellar (XLM): Stellar's mission to connect banks, payment systems, and consumers seamlessly finds further strength with its ISO 20022 integration. It's optimized for quick transactions, making cross-border transfers affordable and straightforward.

Hedera HashGraph (HBAR): Distinct from a traditional blockchain, Hedera Hashgraph offers a distributed ledger technology, boasting high-grade security and speed. Their commitment to the ISO 20022 standard highlights their aim for broader financial collaboration and streamlined transactions.

IOTA (MIOTA): Rather than a blockchain, IOTA employs a directed acyclic graph called Tangle to manage its transactions. The ISO 20022 compliance attests to IOTA's dedication to evolve and sync with the globally accepted financial standards, amplifying its suitability for microtransactions and IoT implementations.

XDC Network (XDC): This enterprise-ready hybrid blockchain solution, specifically designed for Trade and Finance, optimally aligns with the ISO 20022 standard. XDC stands out in terms of interoperability, efficiency, and ease of integration into legacy systems, making it a prime choice for global finance operations.

Are ISO 20022 Compliant Coins Good to Invest?

Navigating the vast cryptocurrency market for sound investments often hinges on spotting trends anchored in real-world utility. ISO 20022 compliant coins, given their alignment with a global financial messaging standard, inherently possess a competitive edge.

Their integration with this standard signifies a commitment to transparency, interoperability, and regulatory compliance. For investors, this can translate to a higher degree of trust and potential for mainstream adoption. 

While all investments come with risks, the strategic position of ISO 20022 coins in bridging traditional finance with digital assets makes them a compelling consideration for a diversified crypto portfolio.

Future Outlook and Possibilities

As we move further into the digital age, the adoption of universal standards like ISO 20022 becomes increasingly important. This trend suggests a brighter future for compliant coins, with the potential for wider mainstream acceptance and more robust investment opportunities. 

Already, we're seeing financial institutions, payment providers, and regulatory bodies taking interest in these coins, signaling their growing relevance. 

As more sectors of the financial world adopt the ISO 20022 standard, these cryptocurrencies could become the go-to options for transactions that require speed, transparency, and a high degree of compatibility with existing financial systems.

Benefits of ISO 20022 Coins

Enhanced Interoperability - These coins can communicate effortlessly with banks and other financial entities using the same standard, eliminating potential barriers.

Advanced Compliance - With detailed transaction information, it becomes easier for these coins to adhere to regulatory standards, instilling more trust among investors and institutions.

Cost-Efficiency - A universal standard cuts down on transaction discrepancies, reducing the cost of resolving such issues and ensuring smooth operations.

Challenges and Considerations

Integration Overhead - Adapting to ISO 20022 can be cumbersome for some projects, given the need to overhaul existing systems.

Rapidly Evolving Crypto Landscape - While ISO 20022 is a robust standard, the world of crypto is ever-changing. Coins must ensure that this adoption doesn't stifle innovation or flexibility.

Frequently Asked Questions

Q1. What triggered the need for a standard like ISO 20022 in cryptocurrencies?

While cryptocurrencies are revolutionary, their acceptance and integration into the broader financial system require standardized communication. ISO 20022 provides this standard, ensuring smooth, error-free transactions with traditional financial entities.

Q2. How does ISO 20022 impact cross-border transactions?

ISO 20022 streamlines and simplifies cross-border transactions, ensuring they're faster, more transparent, and compatible with varying regional financial systems.

Q3. Does ISO 20022 compliance mean a cryptocurrency is more secure?

While ISO 20022 enhances transaction clarity and standardization, it doesn't necessarily correlate with heightened security. Each cryptocurrency's security is based on its underlying technology and protocol.

Q4. How does ISO 20022 influence transaction fees?

By standardizing transaction messaging, ISO 20022 can potentially reduce errors and discrepancies, which might lead to reduced costs. However, transaction fees are also influenced by other factors, such as network congestion.

Q5. Will more cryptocurrencies adopt ISO 20022 in the future?

Given the standard's growing importance in the financial world, it's likely that more cryptocurrencies will consider ISO 20022 adoption to increase interoperability and acceptance among traditional financial institutions.

Q6. How can I check if a cryptocurrency is ISO 20022 compliant?

Usually, cryptocurrency projects that adopt ISO 20022 will announce it through their official channels. Investors can check the project's whitepaper, official website, or community forums for such information.

Q7. Are there any drawbacks for cryptocurrencies adopting ISO 20022?

While the standard brings many benefits, adoption might mean a significant overhaul of existing systems for some cryptocurrencies. This can be resource-intensive and may temporarily divert focus from other developmental priorities.

Q8. Can ISO 20022 adoption influence a cryptocurrency's price?

Market sentiment is influenced by various factors, including adoption of global standards. While ISO 20022 compliance might be seen as a positive development, it's just one of many factors that can impact a coin's price.

The Bottom Line

In an ecosystem as dynamic as cryptocurrency, the adoption of ISO 20022 presents a seismic shift, setting a new benchmark for financial messaging standards. 

By integrating this globally recognized standard, these coins are not just pioneering a new frontier of transparency and efficiency but are also forging a stronger alliance with the mainstream financial world. 

Whether you're an investor or simply interested in the future of digital assets, ISO 20022 compliant coins warrant your attention. 

Also remember, Cryptocurrencies exhibit significant volatility. Before committing to any investment decisions, it's crucial to conduct thorough research or seek guidance from a financial advisor.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

The Great Crypto Rotation - Why Smart Money is Moving from Bitcoin to Ethereum

Talha Ahmad
8 min
MIN

The cryptocurrency market is experiencing a seismic shift that most investors are missing. While Bitcoin has long been the undisputed king of digital assets, institutional money is quietly rotating into Ethereum at an unprecedented pace, signaling a potential altcoin season that could reshape the entire market landscape.

The Numbers Don't Lie: Ethereum's Institutional Takeover

Recent data reveals a striking trend that should have every crypto investor's attention. In August alone, Ethereum ETFs attracted a staggering $3.69 billion in inflows, marking the fourth consecutive month of positive institutional investment. This stands in stark contrast to Bitcoin, which saw $800 million in outflows during the same period.

This isn't just a minor adjustment in portfolio allocation—it's a fundamental shift in how institutional investors view the crypto ecosystem. The rotation from Bitcoin to Ethereum represents more than just diversification; it's a bet on the future of decentralized finance, smart contracts, and blockchain utility beyond simple store-of-value propositions.

The Stablecoin Revolution: Ethereum's Secret Weapon

Behind Ethereum's surge lies a powerful but often overlooked driver: the stablecoin economy. Currently, 3.4% of Ethereum's total circulating supply is held by treasury companies, with this percentage accelerating rapidly since July. This trend reflects a broader recognition that stablecoins represent crypto's "ChatGPT moment"—the application that finally demonstrates blockchain's real-world utility to mainstream users.

The stablecoin narrative extends far beyond simple transfers. New Layer 1 blockchains like Plasma are emerging specifically to facilitate zero-fee USDT transfers, directly challenging Tron's dominance in this space. With over $1 billion in USDT deposits on its testnet alone, Plasma demonstrates the massive demand for efficient stablecoin infrastructure.

Technical Indicators Point to Altcoin Season

Market technicals support the institutional flow narrative. The Bitcoin versus Altcoin season chart shows that 58% of returns are currently coming from altcoins—a surprising figure considering the market's neutral-to-bearish sentiment. Historically, true altcoin season occurs when nearly 90% of returns flow to alternatives, as seen in August 2022 and May 2021.

This data suggests the market hasn't yet experienced the full-blown altcoin euphoria typical of cycle peaks. The implication? The current cycle may extend well into 2026, providing extended opportunities for strategic investors willing to look beyond Bitcoin's dominance.

The Political Crypto Play: World Liberty Financial's Market Impact

The launch of World Liberty Financial (WLFI) adds another layer to the evolving crypto landscape. Amid the ongoing selling pressure, the token's ability to hold above $0.20 will determine its strength in the coming days. The same level where treasury companies accumulated positions indicates underlying institutional support. With the Trump family reportedly owning a third of the supply and generating approximately $3 billion in value at launch, WLFI represents the intersection of politics and crypto in unprecedented ways.

This political backing could provide regulatory tailwinds for the broader crypto market, particularly as other politicians consider similar token launches. California Governor Gavin Newsom's rumored meme coin plans suggest that cryptocurrency fundraising may become a standard tool for political campaigns, bringing mainstream legitimacy to digital assets.

Strategic Implications for Investors

The Ethereum rotation story isn't just about ETH itself—it's about the entire ecosystem of projects built on Ethereum's infrastructure. Base-layer tokens, DeFi protocols, and Ethereum-native projects have already begun showing strength, with tokens like Aerodrome and Zora experiencing significant runs during Ethereum's rally from $2,300 to nearly $5,000.

However, this market requires a different investment approach than previous cycles. The old "buy and hold" strategy shows diminishing returns in today's narrative-driven environment. Instead, successful investors are adapting to shorter holding periods, focusing on trending tokens with strong fundamentals and clear catalysts.

The key insight? We're witnessing the maturation of cryptocurrency from a speculative asset class to a functional financial infrastructure. Ethereum's institutional adoption, stablecoin integration, and smart contract capabilities position it as the backbone of this new financial system. Investors who recognize this transition early stand to benefit from one of the most significant shifts in crypto market dynamics since Bitcoin's inception.

Research

APIs Explained: How Applications Talk to Each Other

Token Metrics Team
5
MIN

APIs power modern software by enabling different programs, services, and devices to exchange data and trigger actions. Whether you use a weather app, log in with a social account, or connect a trading bot to a price feed, an API is usually working behind the scenes. This guide breaks down what an API is, how it functions technically, common types and use cases, and practical steps to evaluate and use APIs safely and efficiently.

What Is an API? A Clear Definition

An API — short for Application Programming Interface — is a formal set of rules and endpoints that lets one software component request data or services from another. Rather than a single piece of software, think of an API as a contract: it defines the methods, parameters, and expected responses so developers can integrate components without sharing internal implementation details.

Key elements in that contract include:

  • Endpoints: Named access points (URLs or URIs) where requests are sent.
  • Methods: Actions such as GET, POST, PUT, DELETE that indicate intent.
  • Payloads: Structured data sent with requests or responses, often JSON or XML.
  • Authentication & Authorization: Mechanisms that control who can call the API and what actions are allowed.

How APIs Work: A Technical Overview

At a technical level, APIs follow client-server interactions. A client application composes a request and sends it to an API endpoint over a transport layer like HTTP(S). The API server validates the request, performs the requested operation (e.g., fetch data, initiate a transaction), and returns a response. Responses include status codes and structured data that the client can parse and handle.

Important architectural patterns and protocols include:

  • REST: Resource-oriented architecture using standard HTTP verbs and stateless requests.
  • GraphQL: Query language that lets clients request precisely the fields they need.
  • WebSockets / gRPC: For real-time or high-performance RPC-style communication.

Security and reliability are intrinsic: rate limits, API keys, OAuth flows, TLS encryption, and schema validation help maintain integrity and availability. Observability — logs, metrics, and tracing — allows teams to debug integrations and measure performance.

API Types and Practical Use Cases

APIs power many familiar scenarios across industries. Common types and examples:

  • Public APIs: Openly available endpoints for developers (e.g., maps, weather, social feeds).
  • Private/Internal APIs: Used within an organization to modularize services and speed development.
  • Partner APIs: Shared selectively with business partners for integrations.
  • Data & Financial APIs: Provide market data, price feeds, or on-chain metrics used by analytics and trading systems.

Typical use cases include:

  1. Integrating third-party services (payments, authentication, notifications).
  2. Feeding data into dashboards, analytics, or machine learning pipelines.
  3. Automating workflows (CI/CD, orchestration) across tools and platforms.
  4. Building AI agents that chain multiple APIs for retrieval, reasoning, and action.

In domains like crypto and AI research, APIs let developers access price histories, on-chain data, and model outputs programmatically. AI-driven research tools such as Token Metrics combine signals and historical analysis through APIs to support systematic investigation of datasets.

How to Evaluate and Use an API: Practical Checklist

When choosing or integrating an API, apply a structured evaluation to reduce technical and operational risk:

  • Documentation Quality: Clear examples, error codes, and SDKs reduce implementation time.
  • Rate Limits & Pricing: Check throughput constraints and cost model to avoid unexpected bills.
  • Data Freshness & Coverage: For time-sensitive systems, confirm update frequency and historical depth.
  • Authentication & Permissions: Prefer APIs that support token-based auth and role-restricted access.
  • SLAs & Uptime: Review availability guarantees and incident history if reliability matters.
  • Security Practices: Ensure TLS, input validation, and secure key handling are in place.

Integration steps:

  1. Sandbox: Start with a sandbox environment or test key to validate behavior safely.
  2. Schema Validation: Use contract tests to detect breaking changes early.
  3. Monitoring: Instrument calls with retries, metrics, and alerting on error rates.
  4. Governance: Rotate keys regularly and enforce least-privilege on production secrets.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common Questions About APIs

What is the difference between an API and a web service?

An API is a broader concept describing an interface for software interaction. A web service is a specific kind of API that uses web protocols (usually HTTP) to exchange data. Not all APIs are web services (some use binary RPC), but most public APIs today are web-based.

How do I authenticate with an API?

Common methods include API keys, OAuth 2.0 flows, JWT tokens, and mutual TLS. The choice depends on security needs: OAuth is suitable for delegated access, while API keys are simple for server-to-server integrations.

What is rate limiting and why does it matter?

Rate limiting restricts the number of requests a client can make in a time window. It protects the API provider from abuse and ensures fair usage. Clients should implement exponential backoff and respect provided retry headers.

Can APIs change without notice?

APIs can evolve, which is why versioning matters. Good providers document deprecation schedules and maintain backward-compatible versions. Contract testing and version pinning help clients avoid disruptions.

How do I secure API keys and secrets?

Never hard-code secrets in client-side code. Store keys in secure vaults, use environment variables for servers, restrict keys by origin/IP, and rotate keys on a regular schedule.

What formats do APIs typically use for data?

JSON is the dominant format due to readability and language support. XML remains in some legacy systems. Binary formats like Protocol Buffers are used where performance and compact size are priorities.

How do APIs enable AI and automation?

APIs expose data and model capabilities that AI agents can call for retrieval, scoring, and orchestration. Combining data APIs with model APIs allows automated workflows that augment research and decision-support processes.

Disclaimer

This article is for informational and educational purposes only. It does not constitute professional, legal, or financial advice. Evaluate APIs and tools based on your own technical, legal, and operational requirements before integrating them into production systems.

Research

APIs Explained: A Practical Guide for Developers

Token Metrics Team
5
MIN

APIs power much of the digital world but the term can feel abstract to newcomers. Whether you are building a web app, integrating an AI model, or pulling market data for research, understanding what an API is and how to evaluate one speeds development and improves reliability. This guide breaks down core concepts, common patterns, and practical steps to choose and use APIs effectively—without assuming prior expertise.

How an API Works: The Basics

An API (Application Programming Interface) is a defined set of rules and protocols that lets one software program request services or data from another. At a high level, an API specifies:

  • Endpoints: named URLs or addresses where requests are sent.
  • Methods: actions you can perform (for web APIs, common HTTP methods are GET, POST, PUT, DELETE).
  • Parameters and payloads: the inputs required or optional for a request.
  • Responses and status codes: how the server returns data and signals success or error.

Think of an API as a waitstaff in a restaurant: you (the client) place an order (request) using a menu (API documentation), and the kitchen (server) returns a dish (response). The menu defines what is possible and how to order it.

Key API Architectures and Types

APIs come in different styles depending on design goals and constraints:

  • REST (Representational State Transfer): The most common web API pattern, using HTTP verbs and resource-oriented URLs. REST emphasizes stateless communication and cacheable responses.
  • GraphQL: A query language that allows clients to request exactly the data they need in a single request, reducing over- and under-fetching.
  • gRPC: A high-performance RPC framework using Protocol Buffers, suited for low-latency service-to-service calls.
  • Webhooks: Server-to-client callbacks that push data to a consumer when events happen, rather than requiring constant polling.
  • Library/SDK APIs: Language-specific interfaces bundled as packages that abstract network details for developers.

Each type has trade-offs: REST is simple and widely compatible, GraphQL is flexible for variable payloads, and gRPC is optimized for performance between services.

Real-World Uses: Crypto, AI, and Beyond

APIs are central to modern crypto and AI stacks. In crypto, APIs provide access to market prices, on-chain data, wallet balances, and transaction histories. In AI, APIs expose model inference endpoints, allowing applications to send prompts and receive processed outputs without hosting models locally.

When connecting these domains—such as feeding on-chain data into an AI research pipeline—developers use layered APIs: one service to fetch reliable market or chain data, another to run models or scoring logic. For example, research platforms and data providers expose standardized endpoints so teams can automate backtesting, signal generation, and analytics workflows.

For neutral examples of an analytics provider in the crypto space, see Token Metrics, which demonstrates how specialized APIs and models can structure insights for research use cases.

How to Evaluate and Use an API: Practical Checklist

Choosing and integrating an API is a mix of technical evaluation and operational planning. Use this checklist:

  1. Documentation quality: Clear, example-driven docs accelerate integration and reduce errors.
  2. Rate limits and pricing: Understand throughput limits, cost per request, and billing models to avoid surprises.
  3. Data consistency and latency: For real-time needs, measure update frequency and response times.
  4. Authentication and security: Prefer APIs that use robust auth (OAuth, API keys with scoped permissions) and TLS encryption.
  5. Error handling and retries: Check how errors are communicated and design idempotent requests or backoff strategies.
  6. SDKs and language support: Availability of client libraries can shorten development time, but inspect their maintenance status.
  7. Operational SLAs and reliability: For production systems, review uptime guarantees and incident history if available.

Applying this framework helps teams decide between alternatives (self-hosting vs managed, REST vs GraphQL) based on their latency, cost, and control needs.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common Questions About APIs

What is the difference between an API and an SDK?

An API is a set of rules for interacting with a service, typically over a network. An SDK (Software Development Kit) is a package that may include APIs, helper libraries, and tools to make integrating those APIs easier in a specific programming language.

How do REST and GraphQL compare for client apps?

REST maps resources to endpoints and is simple to cache and reason about. GraphQL lets clients request only needed fields and combine multiple resources in one query, which can reduce round trips but may add server-side complexity.

Are public APIs safe to use for sensitive data?

Public APIs can be secure if they implement proper authentication, encryption, and access controls. Avoid sending sensitive secrets through unencrypted channels and use scoped credentials and least-privilege principles.

How do rate limits affect application design?

Rate limits cap how many requests a client can make in a time window. Design strategies include batching requests, caching responses, exponential backoff on errors, and choosing higher-tier plans if sustained throughput is required.

Can I combine multiple APIs in a single workflow?

Yes. Orchestration patterns let you fetch data from one API, transform it, and pass it to another (for example, pulling market data into an AI inference pipeline). Maintain clear error handling and data validation between steps.

How should I test an API integration?

Use sandbox or staging environments when possible, write automated tests for expected responses and error states, monitor real-world requests, and include assertions for schema and performance thresholds.

What are the typical authentication methods?

Common methods include API keys, OAuth 2.0 tokens, and mutual TLS. Select a method that balances ease of use and security for your application's context.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or professional advice. Evaluate APIs and tools independently, review provider terms, and consider operational and security requirements before integration.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products