Crypto Basics

Kraken Review 2023 - Features, Fees and Top Alternatives

Get insights into Kraken's features, fees, and find top alternatives in this detailed review. Discover how it works and assess its reliability.
Sumit Meghani
8 Minutes
MIN

As the crypto world continues to evolve, it's crucial for investors and enthusiasts to stay updated on the best platforms available. In this detailed review post, we'll delve into an in-depth review of one of the leading crypto exchanges, Kraken, in 2023.

By the end of this post, you'll have a comprehensive understanding of Kraken's features, fees, and possible alternatives, enabling you to make informed decisions.

Kraken Overview

Kraken is one of the veteran names in the cryptocurrency exchange space, having been launched way back in 2011. Founded by Jesse Powell, this U.S.-based exchange has made a name for itself by focusing on high security, regulatory compliance, and a wide range of cryptocurrency assets. 

Over the years, it has built a strong reputation for reliability and integrity, attracting millions of users globally. In today's fast-paced crypto market, Kraken continues to evolve, offering a blend of old-school trustworthiness and cutting-edge features. 

Whether you're a casual investor or a seasoned trader, Kraken's platform aims to cater to your needs with its extensive services, from basic spot trading to complex futures contracts.

Key Features of Kraken

Robust Security - Kraken invests heavily in state-of-the-art security measures, making it one of the safest exchanges. It employs measures like two-factor authentication (2FA), cold storage, and encrypted data storage.

Broad Cryptocurrency Selection - In 2023, Kraken supports over 200+ cryptocurrencies, from major players like Bitcoin and Ethereum to emerging gems. This wide variety offers versatility for investors.

User-friendly Interface - For beginners and professionals alike, Kraken's platform is intuitive and easy to navigate. It also offers a mobile application for trading on-the-go.

Advanced Trading Options - For more seasoned traders, Kraken offers features like futures trading, margin trading, and over-the-counter (OTC) options.

Fee Structure on Kraken

Trading Fees - Kraken operates on a maker-taker model. The fee varies depending on the volume, starting at 0.16% for makers and 0.26% for takers. As your monthly trading volume increases, these fees decrease.

Fee Structure on Kraken

Deposit and Withdrawal Fees - While deposit fees are minimal or non-existent for most cryptocurrencies, withdrawal fees depend on the specific coin and network congestion.

Margin Trading Fees - For those leveraging Kraken's margin trading, expect a fee that varies depending on the cryptocurrency pair being traded.

How to Create Account in Kraken?

Opening an account with Kraken is a straightforward process, designed to ensure both ease of use and the utmost security for its users. Follow these step-by-step guidelines to get started:

1. Visit the Official Website - Head over to Kraken's official website. On the homepage, click on the "Create Account" button, typically located in the top right corner.

2. Enter Basic Information - You'll be prompted to enter your email address, create a username, and set a strong, unique password. Remember, a robust password often combines letters (both upper and lowercase), numbers, and special symbols.

3. Verify Email - After providing your details, Kraken will send a confirmation email to the address you provided. Click on the verification link in the email to confirm your account's creation.

4. Set Up Two-Factor Authentication (2FA) - For enhanced security, Kraken will prompt you to set up 2FA. This is a critical step as it provides an additional layer of protection for your account. You can use apps like Google Authenticator or Authy for this purpose.

5. Complete KYC Verification - Before you can begin trading, Kraken requires users to complete a Know Your Customer (KYC) verification. 

This step involves providing personal details and uploading identification documents, such as a passport or driver's license. The verification process helps ensure the platform's safety and compliance with regulatory standards.

6. Funding Your Account - Once verified, navigate to the 'Funding' tab in your account. Here, you can choose your preferred method to deposit funds, whether in fiat currency or cryptocurrencies.

7. Ready to Trade - With your account funded, you're all set to start exploring and trading on Kraken's extensive platform.

Remember, while the sign-up process is designed to be user-friendly, always ensure you’re using a secure connection and a trusted device when setting up your account, given the sensitive nature of the information involved.

Customer Support and Education

One of Kraken's most commendable aspects is its dedication to customer education. Their resource library contains a multitude of guides, video tutorials, and webinars. In case of concerns, their customer support, available 24/7, is responsive and effective.

Pros and Cons of Kraken

Like all platforms, Kraken comes with its set of strengths and weaknesses. Recognizing them can help users make an informed decision on whether it aligns with their trading and investment needs.

Pros

1. Robust Security - One of Kraken’s foremost advantages is its strong emphasis on security. Features like cold storage for funds, encrypted data, and the option of two-factor authentication make it a reliable platform.

2. Wide Cryptocurrency Selection - Kraken boasts an extensive list of supported cryptocurrencies. From mainstream coins like Bitcoin and Ethereum to emerging tokens, there's a diverse range for investors.

3. User-Friendly Interface - Whether you're a novice or a pro, Kraken’s intuitive design ensures a smooth trading experience. Their platform, including the mobile app, is designed for efficiency and ease.

4. Regulatory Compliance - As one of the few exchanges that prioritize regulatory measures, Kraken ensures it operates within legal boundaries, enhancing trust among its users.

5. Educative Resources - Kraken doesn't just offer a trading platform; they educate. With a vast collection of articles, tutorials, and webinars, users can stay informed and sharpen their trading skills.

Cons

1. Instant Buy Fees - Kraken's instant buy option comes with significant fees. Purchases for stablecoins begin at 0.9% while other cryptocurrencies stand at 1.5%. 

If using a debit or credit card, an additional 3.75% fee is charged, and 0.5% for ACH transfers. For fewer fees, consider depositing cash and waiting for clearance.

2. Geographical Restrictions - Kraken is currently unavailable for residents of New York and Washington state due to high regulatory compliance costs. This restriction isn't exclusive to Kraken; exchanges like Binance.US and Crypto.com have similar limitations.

3. Platform and App Limitations - While Kraken's platform and app cover basic functionalities efficiently, they might fall short for those seeking advanced features. 

While you can monitor cryptocurrency prices and set alerts, advanced traders might miss comprehensive charting tools and research capabilities.

Is Kraken Right for You?

Deciding on Kraken hinges on your trading needs and priorities. Consider factors like fees, especially for instant buys which are higher on Kraken. 

If you're based in New York or Washington state, Kraken's services are unavailable due to regional restrictions. While beginners might find Kraken comprehensive, seasoned traders could miss certain advanced features. 

Nonetheless, if security and educational resources rank high on your list, Kraken's robust safety measures and learning tools could make it an ideal choice. Always align the platform's offerings with your unique requirements before diving in.

Top Alternatives to Kraken

While Kraken offers an impressive suite of features, it's always beneficial to consider alternatives based on individual needs.

Coinbase - A friendly interface and strong security protocols make Coinbase an excellent choice for beginners. It offers over 210 cryptocurrencies and is known for its ease of use.

Binance - With an extensive range of supported coins and low fees, Binance remains a top competitor. It's ideal for those seeking diverse trading options.

Gemini - Prioritizing regulatory compliance and security, Gemini is a platform for those who place safety above all else.

Also Read - eToro Review

Frequently Asked Questions

Q1. What is the minimum deposit amount on Kraken?

While Kraken doesn't have a strict minimum deposit for cryptocurrencies(ACH method minimum $1), there might be minimum limits for fiat deposits, which vary based on your funding method and currency.

Q2. How does Kraken handle forked coins?

Kraken typically supports major forks, crediting users with the forked coins based on their existing holdings. However, always check Kraken's official announcements for specifics on individual forks.

Q3. Can I use Kraken for staking?

Yes, Kraken offers staking services with the Kraken Pro app for certain cryptocurrencies except ETH, allowing users to earn rewards by simply holding their coins on the platform.

Q4. How does Kraken ensure the safety of user funds?

A significant portion of Kraken's funds are stored offline in cold storage. Additionally, they use encrypted databases and offer two-factor authentication for user accounts.

Q5. Are there withdrawal limits on Kraken?

Yes, withdrawal limits on Kraken depend on the user's verification level. The more verified and compliant you are, the higher your withdrawal limit.

Q6. Is Kraken available internationally?

Kraken is accessible in many countries worldwide, with a few exceptions. Always verify availability based on your specific location on their website.

Conclusion

Choosing a crypto exchange is a significant decision, influencing the ease, safety, and success of your trading ventures. Kraken, with its extensive features, remains a top contender in 2023. However, based on specific requirements, alternatives like Coinbase, Binance, Gemini, or Bitfinex might be more suitable.

Before diving in, always ensure to conduct personal research and consult trusted resources to remain updated. Remember, the crypto landscape is dynamic, and the best decisions are informed ones.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Understanding APIs: What They Are and How They Work

Token Metrics Team
5
MIN

APIs (Application Programming Interfaces) are the invisible wiring that lets modern software communicate. From mobile apps fetching data to AI agents orchestrating workflows, APIs enable systems to request services, exchange structured data, and extend functionality without exposing internal implementation. This article unpacks what an API is, how different API styles operate, where they’re used (including crypto and AI contexts), and practical approaches to evaluate, integrate, and secure them.

What an API Is: core concepts and terminology

An API is a set of rules and conventions that allows one software component to interact with another. At its simplest, an API defines:

  • Endpoints: Named access points that accept requests (for example, /users or /price).
  • Methods: Actions supported at an endpoint (common HTTP verbs: GET, POST, PUT, DELETE).
  • Request/Response formats: Structured payloads, typically JSON or XML, that describe inputs and outputs.
  • Authentication and authorization: How clients prove identity and gain access to resources (API keys, OAuth, JWT).
  • Rate limits and quotas: Constraints that protect services from abuse and manage capacity.

Think of an API as a contract: the provider promises certain behaviors and data shapes, and the consumer agrees to use the API according to those rules. That contract enables modular design, reusability, and language-agnostic integration.

How APIs work: protocols, formats, and architectural styles

APIs use protocols and conventions to carry requests and responses. The most common patterns include:

  • REST (Representational State Transfer): Uses standard HTTP methods and resource-oriented URLs. REST favors stateless interactions and JSON payloads.
  • GraphQL: Lets clients request exactly the fields they need in a single query, reducing over- and under-fetching.
  • gRPC: A high-performance RPC framework that uses protocol buffers for compact binary messages—often used for internal microservices.
  • Webhooks: A push model where the API provider sends events to a client URL when something changes.

Choosing an architecture depends on latency needs, payload sizes, versioning strategy, and developer ergonomics. For instance, GraphQL can simplify complex frontend queries, while REST remains straightforward for simple resource CRUD operations.

Common API types and real-world use cases (including crypto and AI)

APIs power an enormous variety of use cases across industries. Representative examples include:

  • Data APIs: Provide access to datasets or market data (weather, financial prices, on-chain metrics).
  • Service APIs: Offer functionality like payments, authentication, or messaging.
  • Platform APIs: Enable third-party apps to extend a core product—social platforms, cloud providers, and exchanges expose platform APIs.
  • AI and ML APIs: Expose model inference endpoints for tasks such as text generation, image recognition, or embeddings.

In the crypto ecosystem, APIs are fundamental: explorers, node providers, exchanges, and analytics platforms expose endpoints for price feeds, order books, trade history, wallet balances, and on-chain events. AI-driven research tools use APIs to combine market data, on-chain signals, and model outputs into research workflows and agents.

How to evaluate and integrate an API: practical steps

Adopting an API requires both technical and operational considerations. A pragmatic evaluation process includes:

  1. Define needs: Identify required data, latency tolerance, throughput, and allowable costs.
  2. Review documentation: Clear docs, example requests, schema definitions, and SDKs accelerate integration.
  3. Test endpoints: Use sandbox keys or Postman to validate payloads, error handling, and edge cases.
  4. Assess SLAs and rate limits: Understand uptime guarantees and throttling behavior; build retry/backoff strategies.
  5. Security and compliance: Check authentication methods, encryption, and data retention policies.
  6. Monitoring and observability: Plan logging, latency monitoring, and alerting to detect regressions post-integration.

When integrating multiple APIs—such as combining market data with model inference—consider a middleware layer that normalizes data shapes, caches frequent responses, and orchestrates calls to minimize latency and cost.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API — common questions

What is the difference between an API and a web service?

An API is a broader concept that defines interfaces for software interaction. A web service is a type of API that operates over network protocols such as HTTP. In practice, REST and GraphQL are web service styles used to implement APIs.

Are public APIs safe to use?

Public APIs can be safe if they follow security best practices: HTTPS everywhere, proper authentication, input validation, and rate limiting. Consumers should validate responses, handle errors, and avoid exposing credentials in client-side code.

How do API keys differ from OAuth?

API keys are simple tokens that identify a client application and are often used for server-to-server interactions. OAuth is a delegated authorization framework that allows users to grant limited access to their accounts without sharing credentials—common for user-facing integrations.

What is API rate limiting and why does it matter?

Rate limiting constrains how many requests a client can make in a time window. It prevents abuse, protects backend resources, and ensures fair usage. Clients should implement retries with exponential backoff and caching to stay within limits.

When should I use GraphQL instead of REST?

Choose GraphQL when clients need flexible, precise queries that fetch nested or disparate fields in a single request. REST can be simpler for straightforward resource CRUD and when predictable caching semantics are required.

Can APIs be used for real-time data?

Yes. Real-time patterns include WebSockets, Server-Sent Events (SSE), and streaming APIs. Some platforms also provide push notifications or webhooks to deliver near-instant updates to subscribers.

How do I handle versioning in APIs?

Common strategies include using version numbers in the URL (e.g., /v1/) or via headers. Maintain backward compatibility, communicate deprecation timelines, and provide migration guides to minimize friction for integrators.

What monitoring should I implement after integrating an API?

Track uptime, latency percentiles, error rates, and throughput. Instrument retries, logging of failed requests, and alerts for sustained degradation. Observability helps diagnose issues and communicate with API providers when needed.

Disclaimer: This article is for educational and informational purposes only. It explains technical concepts related to APIs and integration practices and does not provide financial, investment, or regulatory advice. Always evaluate tools and services according to your own requirements and compliance needs.

Research

APIs Explained: How They Connect Software and Data

Token Metrics Team
5
MIN

APIs — application programming interfaces — are the invisible glue that lets software talk to software. Whether you're building a dashboard, feeding data into an AI model, or fetching market prices for analytics, understanding what an API is and how it works is essential to designing reliable systems. This guide explains APIs in plain language, shows how they’re used in crypto and AI, and outlines practical steps for safe, scalable integration.

What is an API? Core definition and common types

An API (application programming interface) is a defined set of rules and endpoints that lets one software program request and exchange data or functionality with another. Think of it as a contract: the provider defines what inputs it accepts and what output it returns, and the consumer follows that contract to integrate services reliably.

Common API types:

  • REST APIs: Use HTTP verbs (GET, POST, PUT, DELETE) and structured URLs. They are stateless and often return JSON.
  • GraphQL: Allows clients to request exactly the data they need via a single endpoint, improving efficiency for complex queries.
  • WebSocket / Streaming APIs: Provide persistent connections for real-time data flows, useful for live feeds like price updates or chat.
  • RPC & gRPC: Remote procedure calls optimized for low-latency, typed interactions, often used in microservices.

How APIs work: requests, endpoints, and authentication

At a technical level, using an API involves sending a request to an endpoint and interpreting the response. Key components include:

  • Endpoint: A URL representing a resource or action (e.g., /v1/prices/bitcoin).
  • Method: The HTTP verb that signals the intent (GET to read, POST to create, etc.).
  • Headers & Body: Metadata (like authentication tokens) and payloads for requests that change state.
  • Response codes: Numeric codes (200 OK, 404 Not Found, 429 Too Many Requests) that indicate success or error types.
  • Authentication: API keys, OAuth tokens, JWTs, or mutual TLS are common ways to authenticate and authorize consumers.

Understanding these elements helps teams design error handling, retry logic, and monitoring so integrations behave predictably in production.

APIs in crypto and AI: practical use cases

APIs enable many building blocks in crypto and AI ecosystems. Examples include:

  • Market data & price feeds: REST or websocket APIs provide real-time and historical prices, order book snapshots, and trade events.
  • On-chain data: Indexing services expose transactions, balances, and contract events via APIs for analytics and compliance workflows.
  • Model serving: AI inference APIs let applications call trained models to generate predictions, embeddings, or natural language outputs.
  • Wallet & transaction APIs: Abstract common wallet operations like address generation, signing, and broadcasting transactions.

When integrating APIs for data-driven systems, consider latency, data provenance, and consistency. For research and model inputs, services that combine price data with on-chain metrics and signals can reduce the time it takes to assemble reliable datasets. For teams exploring such aggregations, Token Metrics provides an example of an AI-driven analytics platform that synthesizes multiple data sources for research workflows.

Best practices and security considerations for API integration

Secure, maintainable APIs follow established practices that protect data and reduce operational risk:

  1. Authentication & least privilege: Use scoped API keys or OAuth to limit access, rotate credentials regularly, and avoid embedding secrets in client code.
  2. Rate limiting and retries: Respect provider rate limits, implement exponential backoff, and design idempotent operations to avoid duplication.
  3. Input validation and sanitization: Validate incoming data and sanitize outputs to prevent injection and misuse.
  4. Versioning: Use semantic versioning in endpoint paths (e.g., /v1/) and deprecate old versions with clear timelines.
  5. Monitoring and observability: Log requests, latency, errors, and usage patterns. Set alerts for anomalies and integrate telemetry into incident response playbooks.
  6. Data integrity and provenance: When using third-party feeds, capture timestamps, unique identifiers, and proof-of-origin where available so downstream analysis can trace sources.

Following these practices helps teams scale API usage without sacrificing reliability or security.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is an API and why is it useful?

An API is a set of rules that enables software components to interact. It’s useful because it abstracts complexity, standardizes data exchange, and enables modular development across systems and teams.

Which API type should I choose: REST, GraphQL, or streaming?

Choose based on access patterns: REST is simple and widely supported; GraphQL excels when clients need flexible queries and fewer round trips; streaming (WebSocket) is best for low-latency, continuous updates. Consider caching, complexity, and tooling support.

How do I secure API keys and credentials?

Store secrets in secure vaults or environment variables, avoid hardcoding them in source code, rotate keys periodically, and apply principle of least privilege to limit access scopes.

What are rate limits and how should I handle them?

Rate limits restrict how many requests a client can make in a time window. Handle them by respecting limits, implementing exponential backoff for retries, caching responses, and batching requests where possible.

How do I evaluate an API provider?

Assess documentation quality, uptime SLAs, authentication methods, data freshness, cost model, and community or support channels. Test with realistic workloads and review security practices and versioning policies.

Can APIs be used to power AI agents?

Yes. AI agents often call APIs for data ingestion, model inference, or action execution. Reliable APIs for feature data, model serving, and orchestration are key to building robust AI workflows.

Disclaimer

This article is for educational and informational purposes only. It does not constitute financial, investment, legal, or professional advice. Evaluate APIs and data sources independently and consider security and compliance requirements specific to your use case.

Research

APIs Explained: How Application Interfaces Work

Token Metrics Team
6
MIN

APIs power modern software by acting as intermediaries that let different programs communicate. Whether you use a weather app, sign in with a social account, or combine data sources for analysis, APIs are the plumbing behind those interactions. This guide breaks down what an API is, how it works, common types and use cases, plus practical steps to evaluate and use APIs responsibly.

What an API Is and Why It Matters

An application programming interface (API) is a contract between two software components. It specifies the methods, inputs, outputs, and error handling that allow one service to use another’s functionality or data without needing to know its internal implementation. Think of an API as a well-documented door: the requester knocks with a specific format, and the server replies according to agreed rules.

APIs matter because they:

  • Enable modular development and reuse of functionality across teams and products.
  • Abstract complexity so consumers focus on features rather than implementation details.
  • Drive ecosystems: public APIs can enable third-party innovation and integrations.

How APIs Work: Key Components

At a technical level, an API involves several elements that define reliable communication:

  • Endpoint: A URL or address where a service accepts requests.
  • Methods/Operations: Actions permitted by the API (e.g., read, create, update, delete).
  • Payload and Format: Data exchange format—JSON and XML are common—and schemas that describe expected fields.
  • Authentication & Authorization: Mechanisms like API keys, OAuth, or JWTs that control access.
  • Rate Limits and Quotas: Controls on request volume to protect stability and fairness.
  • Versioning: Strategies (URI versioning, header-based) for evolving an API without breaking clients.

Most web APIs use HTTP as a transport; RESTful APIs map CRUD operations to HTTP verbs, while alternatives like GraphQL let clients request exactly the data they need. The right style depends on use cases and performance trade-offs.

Common API Use Cases and Types

APIs appear across many layers of software and business models. Common categories include:

  • Public (Open) APIs: Exposed to external developers to grow an ecosystem—examples include mapping, social, and payment APIs.
  • Private/Internal APIs: Power internal systems and microservices within an organization for modularity.
  • Partner APIs: Shared with specific business partners under contract for integrated services.
  • Data APIs: Provide structured data feeds (market data, telemetry, or on-chain metrics) used by analytics and AI systems.

Practical examples: a mobile app calling a backend to fetch user profiles, an analytics pipeline ingesting a third-party data API, or a serverless function invoking a payment API to process transactions.

Design, Security, and Best Practices

Designing and consuming APIs effectively requires both technical and governance considerations:

  1. Design for clarity: Use consistent naming, clear error codes, and robust documentation to reduce friction for integrators.
  2. Plan for versioning: Avoid breaking changes by providing backward compatibility or clear migration paths.
  3. Secure your interfaces: Enforce authentication, use TLS, validate inputs, and implement least-privilege authorization.
  4. Observe and throttle: Monitor latency, error rates, and apply rate limits to protect availability.
  5. Test and simulate: Provide sandbox environments and thorough API tests for both functional and load scenarios.

When evaluating an API to integrate, consider documentation quality, SLAs, data freshness, error handling patterns, and cost model. For data-driven workflows and AI systems, consistency of schemas and latency characteristics are critical.

APIs for Data, AI, and Research Workflows

APIs are foundational for AI and data research because they provide structured, automatable access to data and models. Teams often combine multiple APIs—data feeds, enrichment services, feature stores—to assemble training datasets or live inference pipelines. Important considerations include freshness, normalization, rate limits, and licensing of data.

AI-driven research platforms can simplify integration by aggregating multiple sources and offering standardized endpoints. For example, Token Metrics provides AI-powered analysis that ingests diverse signals via APIs to support research workflows and model inputs.

Discover Crypto Gems with Token Metrics AI

Token Metrics uses AI-powered analysis to help you uncover profitable opportunities in the crypto market. Get Started For Free

What is an API? (FAQ)

1. What does API stand for and mean?

API stands for Application Programming Interface. It is a set of rules and definitions that lets software components communicate by exposing specific operations and data formats.

2. How is a web API different from a library or SDK?

A web API is accessed over a network (typically HTTP) and provides remote functionality or data. A library or SDK is code included directly in an application. APIs enable decoupled services and cross-platform access; libraries are local dependencies.

3. What are REST, GraphQL, and gRPC?

REST is an architectural style using HTTP verbs and resource URIs. GraphQL lets clients specify exactly which fields they need in a single query. gRPC is a high-performance RPC framework using protocol buffers and is suited for internal microservice communication with strict performance needs.

4. How do I authenticate to an API?

Common methods include API keys, OAuth 2.0 for delegated access, and JWTs for stateless tokens. Choose an approach that matches security requirements and user interaction patterns; always use TLS to protect credentials in transit.

5. What are typical failure modes and how should I handle them?

Failures include rate-limit rejections, transient network errors, schema changes, and authentication failures. Implement retries with exponential backoff for transient errors, validate responses, and monitor for schema or semantic changes.

6. Can APIs be used for real-time data?

Yes. Polling HTTP APIs at short intervals can approximate near-real-time, but push-based models (webhooks, streaming APIs, WebSockets, or event streams) are often more efficient and lower latency for real-time needs.

7. How do I choose an API provider?

Evaluate documentation, uptime history, data freshness, pricing, rate limits, privacy and licensing, and community support. For data or AI integrations, prioritize consistent schemas, sandbox access, and clear SLAs.

8. How can I learn to design APIs?

Start with principles like consistent resource naming, strong documentation (OpenAPI/Swagger), automated testing, and security by design. Study public APIs from major platforms and use tools that validate contracts and simulate client behavior.

Disclaimer

This article is for educational and informational purposes only. It does not constitute investment advice, financial recommendations, or endorsements. Readers should perform independent research and consult qualified professionals where appropriate.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products