Crypto Basics

Liquid Staking - A Comprehensive Guide to Getting Started

Learn everything about liquid staking with our detailed guide. Check how to start and unleash the potential for passive income in the crypto space.
Marcus K
8 Minutes
MIN

Cryptocurrency enthusiasts are always on the lookout for new and innovative ways to make the most of their digital assets. One such method that has been gaining traction in recent years is liquid staking. 

This approach allows users to stake their tokens in proof-of-stake (PoS) blockchains while maintaining liquidity and participating in other decentralized finance (DeFi) activities. 

In this article, we will explore the concept of liquid staking, how it works, its advantages and disadvantages, popular cryptocurrencies that support this method, and how you can get started.

Understanding Staking and Its Benefits

Before delving into liquid staking, it's essential to grasp the concept of staking and its benefits. Staking involves locking up a certain amount of tokens in a PoS blockchain network to support its operations and security. 

In return for staking, participants can earn rewards in the form of additional tokens. Staking provides several benefits, such as incentivizing token holders to act in the network's best interest and maintaining the blockchain's security and integrity.

What is Liquid Staking?

Liquid staking takes the traditional staking model a step further by allowing users to stake their tokens and receive a separate token, known as a liquid staking token (LST), in return. 

These LSTs represent ownership of the staked tokens and can be freely traded, used in DeFi protocols, or transferred to other users. This innovative approach allows users to access liquidity and utilize their staked assets while potentially earning staking rewards.

How Does Liquid Staking Work?

Liquid staking involves a three-step process: staking, issuing liquid staking tokens, and unstaking. The first step is similar to traditional staking, where users lock their tokens in a designated smart contract on a liquid staking platform. The platform then verifies the tokens' legitimacy and stores them securely.

In the next phase, the platform issues the users liquid staking tokens (LSTs) as receipts for their staked assets. 

These LSTs are pegged to the value of the original tokens and can be used in various DeFi protocols and blockchain applications. The platform also utilizes the staked assets for native staking, earning rewards from securing the PoS blockchain.

When users decide to unstake their tokens, they must burn the corresponding LSTs. This process typically incurs a fee, and the platform verifies the burn transaction on-chain before returning the unstaked tokens to the user. 

It's important to note that liquid staking platforms may also impose a bonding period, during which users may have to wait before receiving their unstaked tokens.

Advantages of Liquid Staking

Liquid staking offers several advantages over traditional staking methods. Firstly, it provides increased accessibility and flexibility to users. 

Unlike traditional staking, which often requires a bonding period, liquid staking allows users to unstake their tokens and access liquidity immediately. This flexibility enables efficient capital allocation and utilizing staked assets in other financial activities.

Secondly, liquid staking enhances the liquidity of staked assets. Traditional staking typically locks up the tokens for a specific period, restricting their use and trading. With liquid staking, users receive LSTs that can be freely traded, swapped, or used as collateral in lending protocols. 

This additional liquidity opens up a world of possibilities for users, allowing them to maximize the utility of their staked assets.

Liquid staking also promotes the composability of DeFi protocols. By enabling users to use their LSTs in various DeFi platforms, liquid staking enhances the interoperability and integration of different applications within the decentralized ecosystem. 

Users can lend, borrow, or participate in yield farming using their LSTs, increasing their engagement and potential returns.

Lastly, liquid staking may offer higher rewards compared to traditional staking. Users can earn additional rewards on top of their original staking rewards by utilizing LSTs in multiple staking platforms. 

This strategy allows for the optimization of staking returns without the need for additional investments.

Disadvantages of Liquid Staking

While liquid staking offers numerous advantages, it's important to consider this method's potential risks and challenges. One significant risk is the possibility of smart contract vulnerabilities. 

Since liquid staking involves interacting with smart contracts, there is a chance of exploitation if a flaw or bug exists in the code. Choosing reputable and audited liquid staking platforms to mitigate this risk is crucial.

Another challenge is the potential for price volatility. LSTs are pegged to the value of the original tokens, but there is a risk of de-pegging if market conditions fluctuate significantly. 

If the LSTs' value deviates from the underlying assets, users may experience losses when trading or redeeming their LSTs. It's essential to closely monitor market conditions and assess the risks before engaging in liquid staking.

Additionally, liquid staking may involve higher fees compared to traditional staking. Liquid staking platforms often charge fees for the issuance and burning of LSTs, as well as network transaction fees. 

These costs can impact the overall profitability of liquid staking, especially for users with smaller staking amounts.

Staking Vs. Liquid Staking: Key Differences

It's important to distinguish between traditional staking and liquid staking to understand their unique characteristics. 

Traditional staking involves locking up tokens in a smart contract without the ability to use or transfer them until the staking period ends. Stakers earn rewards solely from staking activities.

On the other hand, liquid staking provides users with a receipt token (LST) that represents ownership of the staked assets. These LSTs are freely transferable and can be used in DeFi protocols, providing users with additional liquidity and utility. 

Liquid staking enables users to potentially earn rewards while still participating in other blockchain activities, offering a more flexible approach compared to traditional staking.

Popular Crypto That Supports Liquid Staking

Liquid staking has gained significant traction across various blockchain networks, with several cryptocurrencies supporting this innovative method. 

Ethereum, one of the largest and most well-known blockchains, has implemented liquid staking following its transition to a PoS consensus mechanism. 

Users can stake their ETH and receive liquid staking tokens (LSTs), such as stETH, which can be used in DeFi protocols and traded on supported platforms.

Other popular cryptocurrencies that support liquid staking include Polkadot, Cardano, Avalanche, and Cosmos. Each of these projects offers its own liquid staking solutions, allowing users to stake their tokens and benefit from the advantages of liquidity and additional utility.

How to Start Liquid Staking?

If you're interested in participating in liquid staking, choosing a reputable and secure platform that supports this method is essential. 

Ledger, a prominent cryptocurrency hardware wallet provider, offers a liquid staking platform through its Ledger Live ecosystem. 

Connecting your Ledger device to Ledger Live and navigating to the Discover tab allows you to explore liquid staking options available on supported networks such as Polygon, Hedera, BNB, Near, Terra 2.0, and Fantom.

By utilizing Ledger's secure infrastructure, you can stake your tokens, receive liquid staking tokens (LSTs), and participate in the vibrant world of DeFi while maintaining full control and custody of your assets.

Conclusion

Liquid staking is an innovative approach to maximize the potential of your crypto assets. By combining the benefits of staking with increased liquidity and utility, liquid staking offers users a flexible and efficient way to participate in PoS networks while enjoying the opportunities provided by DeFi protocols. 

It's important to weigh the advantages and disadvantages, consider the risks, and choose reliable platforms to ensure a successful liquid staking experience. 

With the growing adoption and development of liquid staking solutions, this method is poised to play a significant role in the future of blockchain-based finance.

Frequently Asked Questions

Q1. How is liquid staking different from traditional staking?

Liquid staking allows users to maintain liquidity and utilize their staked assets, while traditional staking locks up tokens for a specific period without the ability to use or transfer them until the staking period ends.

Q2. Which cryptocurrencies support liquid staking?

Popular cryptocurrencies that support liquid staking include Ethereum, Polkadot, Cardano, Avalanche, and Cosmos. Each project offers its own solutions for users to participate in liquid staking.

Q3. How can I start liquid staking?

To start liquid staking, choose a reputable platform that supports this method, such as Ledger's liquid staking platform. Connect your Ledger device to Ledger Live, explore the available options, and stake your tokens while maintaining full control of your assets.

Q4. Is liquid staking safe?

Liquid staking carries risks, such as smart contract vulnerabilities and price volatility. It's crucial to choose secure platforms, conduct thorough research, and stay informed about potential risks and developments in the cryptocurrency space.

Q5. Can I unstake my tokens in liquid staking?

Users can unstake their tokens in liquid staking by burning the corresponding liquid staking tokens (LSTs). However, the process may involve fees, and a bonding period may exist before users can receive their unstaked tokens.

Q6. What is the future of liquid staking?

Liquid staking is expected to play a significant role in the future of blockchain-based finance. As more projects adopt and develop liquid staking solutions, users can expect increased accessibility, liquidity, and integration with DeFi protocols, further enhancing the potential of their crypto assets.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Building High-Performance APIs with FastAPI

Token Metrics Team
5
MIN

FastAPI has rapidly become a go-to framework for Python developers who need fast, async-ready web APIs. In this post we break down why FastAPI delivers strong developer ergonomics and runtime performance, how to design scalable endpoints, and practical patterns for production deployment. Whether you are prototyping an AI-backed service or integrating real-time crypto feeds, understanding FastAPI's architecture helps you build resilient APIs that scale.

Overview: What Makes FastAPI Fast?

FastAPI combines modern Python type hints, asynchronous request handling, and an automatic interactive API docs system to accelerate development and runtime efficiency. It is built on top of Starlette for the web parts and Pydantic for data validation. Key advantages include:

  • Asynchronous concurrency: Native support for async/await lets FastAPI handle I/O-bound workloads with high concurrency when served by ASGI servers like Uvicorn or Hypercorn.
  • Type-driven validation: Request and response schemas are derived from Python types, reducing boilerplate and surface area for bugs.
  • Auto docs: OpenAPI and Swagger UI are generated automatically, improving discoverability and client integration.

These traits make FastAPI suitable for microservices, ML model endpoints, and real-time data APIs where latency and developer velocity matter.

Performance & Scalability Patterns

Performance is a combination of framework design, server selection, and deployment topology. Consider these patterns:

  • ASGI server tuning: Use Uvicorn with Gunicorn workers for multi-core deployments (example: Gunicorn to manage multiple Uvicorn worker processes).
  • Concurrency model: Prefer async operations for external I/O (databases, HTTP calls). Use thread pools for CPU-bound tasks or offload to background workers like Celery or RQ.
  • Connection pooling: Maintain connection pools to databases and upstream services to avoid per-request handshake overhead.
  • Horizontal scaling: Deploy multiple replicas behind a load balancer and utilize health checks and graceful shutdown to ensure reliability.

Measure latency and throughput under realistic traffic using tools like Locust or k6, and tune worker counts and max requests to balance memory and CPU usage.

Best Practices for Building APIs with FastAPI

Adopt these practical steps to keep APIs maintainable and secure:

  1. Schema-first design: Define request and response models early with Pydantic, and use OpenAPI to validate client expectations.
  2. Versioning: Include API versioning in your URL paths or headers to enable iterative changes without breaking clients.
  3. Input validation & error handling: Rely on Pydantic for validation and implement consistent error responses with clear status codes.
  4. Authentication & rate limiting: Protect endpoints with OAuth2/JWT or API keys and apply rate limits via middleware or API gateways.
  5. CI/CD & testing: Automate unit and integration tests, and include performance tests in CI to detect regressions early.

Document deployment runbooks that cover database migrations, secrets rotation, and safe schema migrations to reduce operational risk.

Integrating AI and Real-Time Data

FastAPI is commonly used to expose AI model inference endpoints and aggregate real-time data streams. Key considerations include:

  • Model serving: For CPU/GPU-bound inference, consider dedicated model servers (e.g., TensorFlow Serving, TorchServe) or containerized inference processes, with FastAPI handling orchestration and routing.
  • Batching & async inference: Implement request batching if latency and throughput profiles allow it. Use async I/O for data fetches and preprocessing.
  • Data pipelines: Separate ingestion, processing, and serving layers. Use message queues (Kafka, RabbitMQ) for event-driven flows and background workers for heavy transforms.

AI-driven research and analytics tools can augment API development and monitoring. For example, Token Metrics provides structured crypto insights and on-chain metrics that can be integrated into API endpoints for analytics or enrichment workflows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is FastAPI and when should I use it?

FastAPI is a modern Python web framework optimized for building APIs quickly using async support and type annotations. Use it when you need high-concurrency I/O performance, automatic API docs, and strong input validation for services like microservices, ML endpoints, or data APIs.

Should I write async or sync endpoints?

If your endpoint performs network or I/O-bound operations (database queries, HTTP calls), async endpoints with awaitable libraries improve concurrency. For CPU-heavy tasks, prefer offloading to background workers or separate services to avoid blocking the event loop.

What are common deployment options for FastAPI?

Common patterns include Uvicorn managed by Gunicorn for process management, containerized deployments on Kubernetes, serverless deployments via providers that support ASGI, and platform-as-a-service options that accept Docker images. Choose based on operational needs and scaling model.

How do I secure FastAPI endpoints?

Implement authentication (OAuth2, JWT, API keys), enforce HTTPS, validate inputs with Pydantic models, and apply rate limiting. Use security headers and monitor logs for suspicious activity. Consider using API gateways for centralized auth and throttling.

How should I monitor and debug FastAPI in production?

Instrument endpoints with structured logging, distributed tracing, and metrics (request latency, error rates). Use APM tools compatible with ASGI frameworks. Configure health checks, and capture exception traces to diagnose errors without exposing sensitive data.

How do I test FastAPI applications?

Use the TestClient from FastAPI (built on Starlette) for endpoint tests, and pytest for unit tests. Include schema validation tests, contract tests for public APIs, and performance tests with k6 or Locust for load characterization.

Disclaimer: This article is educational and technical in nature. It explains development patterns, architecture choices, and tooling options for API design and deployment. It is not financial, trading, or investment advice. Always conduct independent research and follow your organizations compliance policies when integrating external data or services.

Research

Building High-Performance APIs with FastAPI

Token Metrics Team
5
MIN

FastAPI has emerged as a go-to framework for building fast, scalable, and developer-friendly APIs in Python. Whether you are prototyping a machine learning inference endpoint, building internal microservices, or exposing realtime data to clients, understanding FastAPI’s design principles and best practices can save development time and operational costs. This guide walks through the technology fundamentals, pragmatic design patterns, deployment considerations, and how to integrate modern AI tools safely and efficiently.

Overview: What Makes FastAPI Fast?

FastAPI is built on Starlette for the web parts and Pydantic for data validation. It leverages Python’s async/await syntax and ASGI (Asynchronous Server Gateway Interface) to handle high concurrency with non-blocking I/O. Key features that contribute to its performance profile include:

  • Async-first architecture: Native support for asynchronous endpoints enables efficient multiplexing of I/O-bound tasks.
  • Automatic validation and docs: Pydantic-based validation reduces runtime errors and generates OpenAPI schemas and interactive docs out of the box.
  • Small, focused stack: Minimal middleware and lean core reduce overhead compared to some full-stack frameworks.

In practice, correctly using async patterns and avoiding blocking calls (e.g., heavy CPU-bound tasks or synchronous DB drivers) is critical to achieve the theoretical throughput FastAPI promises.

Design Patterns & Best Practices

Adopt these patterns to keep your FastAPI codebase maintainable and performant:

  1. Separate concerns: Keep routing, business logic, and data access in separate modules. Use dependency injection for database sessions, authentication, and configuration.
  2. Prefer async I/O: Use async database drivers (e.g., asyncpg for PostgreSQL), async HTTP clients (httpx), and async message brokers when possible. If you must call blocking code, run it in a thread pool via asyncio.to_thread or FastAPI’s background tasks.
  3. Schema-driven DTOs: Define request and response models with Pydantic to validate inputs and serialize outputs consistently. This reduces defensive coding and improves API contract clarity.
  4. Version your APIs: Use path or header-based versioning to avoid breaking consumers when iterating rapidly.
  5. Pagination and rate limiting: For endpoints that return large collections, implement pagination and consider rate-limiting to protect downstream systems.

Applying these patterns leads to clearer contracts, fewer runtime errors, and easier scaling.

Performance Tuning and Monitoring

Beyond using async endpoints, real-world performance tuning focuses on observability and identifying bottlenecks:

  • Profiling: Profile endpoints under representative load to find hotspots. Tools like py-spy or Scalene can reveal CPU vs. I/O contention.
  • Tracing and metrics: Integrate OpenTelemetry or Prometheus to gather latency, error rates, and resource metrics. Correlate traces across services to diagnose distributed latency.
  • Connection pooling: Ensure database and HTTP clients use connection pools tuned for your concurrency levels.
  • Caching: Use HTTP caching headers, in-memory caches (Redis, Memcached), or application-level caches for expensive or frequently requested data.
  • Async worker offloading: Offload CPU-heavy or long-running tasks to background workers (e.g., Celery, Dramatiq, or RQ) to keep request latency low.

Measure before and after changes. Small configuration tweaks (worker counts, keepalive settings) often deliver outsized latency improvements compared to code rewrites.

Deployment, Security, and Scaling

Productionizing FastAPI requires attention to hosting, process management, and security hardening:

  • ASGI server: Use a robust ASGI server such as Uvicorn or Hypercorn behind a process manager (systemd) or a supervisor like Gunicorn with Uvicorn workers.
  • Containerization: Containerize with multi-stage Dockerfiles to keep images small. Use environment variables and secrets management for configuration.
  • Load balancing: Place a reverse proxy (NGINX, Traefik) or cloud load balancer in front of your ASGI processes to manage TLS, routing, and retries.
  • Security: Validate and sanitize inputs, enforce strict CORS policies, and implement authentication and authorization (OAuth2, JWT) consistently. Keep dependencies updated and monitor for CVEs.
  • Autoscaling: In cloud environments, autoscale based on request latency and queue depth. For stateful workloads or in-memory caches, ensure sticky session or state replication strategies.

Combine operational best practices with continuous monitoring to keep services resilient as traffic grows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: How fast is FastAPI compared to Flask or Django?

FastAPI often outperforms traditional WSGI frameworks like Flask or Django for I/O-bound workloads because it leverages ASGI and async endpoints. Benchmarks depend heavily on endpoint logic, database drivers, and deployment configuration. For CPU-bound tasks, raw Python performance is similar; offload heavy computation to workers.

FAQ: Should I rewrite existing Flask endpoints to FastAPI?

Rewrite only if you need asynchronous I/O, better schema validation, or automatic OpenAPI docs. For many projects, incremental migration or adding new async services is a lower-risk approach than a full rewrite.

FAQ: How do I handle background tasks and long-running jobs?

Use background workers or task queues (Celery, Dramatiq) for long-running jobs. FastAPI provides BackgroundTasks for simple fire-and-forget operations, but distributed task systems are better for retries, scheduling, and scaling.

FAQ: What are common pitfalls when using async in FastAPI?

Common pitfalls include calling blocking I/O inside async endpoints (e.g., synchronous DB drivers), not using connection pools properly, and overusing threads. Always verify that third-party libraries are async-compatible or run them in a thread pool.

FAQ: How can FastAPI integrate with AI models and inference pipelines?

FastAPI is a good fit for serving model inference because it can handle concurrent requests and easily serialize inputs and outputs. For heavy inference workloads, serve models with dedicated inference servers (TorchServe, TensorFlow Serving) or containerized model endpoints and use FastAPI as a thin orchestration layer. Implement batching, request timeouts, and model versioning to manage performance and reliability.

Disclaimer

This article is educational and technical in nature. It does not provide investment, legal, or professional advice. Evaluate tools and design decisions according to your project requirements and compliance obligations.

Research

Fast, Reliable APIs with FastAPI

Token Metrics Team
5
MIN

Fast API design is no longer just about response time — it’s about developer ergonomics, safety, observability, and the ability to integrate modern AI services. FastAPI (commonly referenced by the search phrase "fast api") has become a favored framework in Python for building high-performance, async-ready APIs with built-in validation. This article explains the core concepts, best practices, and deployment patterns to help engineering teams build reliable, maintainable APIs that scale.

Overview: What makes FastAPI distinct?

FastAPI is a Python web framework built on top of ASGI standards (like Starlette and Uvicorn) that emphasizes developer speed and runtime performance. Key differentiators include automatic request validation via Pydantic, type-driven documentation (OpenAPI/Swagger UI generated automatically), and first-class async support. Practically, that means less boilerplate, clearer contracts between clients and servers, and competitive throughput for I/O-bound workloads.

Async model and performance considerations

At the heart of FastAPI’s performance is asynchronous concurrency. By leveraging async/await, FastAPI handles many simultaneous connections efficiently, especially when endpoints perform non-blocking I/O such as database queries, HTTP calls to third-party services, or interactions with AI models. Important performance factors to evaluate:

  • ASGI server choice: Uvicorn and Hypercorn are common; tuning workers and loop settings affects latency and throughput.
  • Blocking calls: Avoid CPU-bound work inside async endpoints; offload heavy computation to worker processes or task queues.
  • Connection pooling: Use async database drivers and HTTP clients (e.g., asyncpg, httpx) with pooled connections to reduce latency.
  • Metrics and profiling: Collect request duration, error rates, and concurrency metrics to identify hotspots.

Design patterns: validation, schemas, and dependency injection

FastAPI’s integration with Pydantic makes data validation explicit and type-driven. Use Pydantic models for request and response schemas to ensure inputs are sanitized and outputs are predictable. Recommended patterns:

  • Separate DTOs and domain models: Keep Pydantic models for I/O distinct from internal database or business models to avoid tight coupling.
  • Dependencies: FastAPI’s dependency injection simplifies authentication, database sessions, and configuration handling while keeping endpoints concise.
  • Versioning and contracts: Expose clear OpenAPI contracts and consider semantic versioning for breaking changes.

Integration with AI services and external APIs

Many modern APIs act as orchestrators for AI models or third-party data services. FastAPI’s async-first design pairs well with calling model inference endpoints or streaming responses. Practical tips when integrating AI services:

  • Use async clients to call external inference or data APIs to prevent blocking the event loop.
  • Implement robust timeouts, retries with backoff, and circuit breakers to handle intermittent failures gracefully.
  • Cache deterministic responses where appropriate, and use paginated or streaming responses for large outputs to reduce memory pressure.

Deployment, scaling, and observability

Deploying FastAPI to production typically involves containerized ASGI servers, an API gateway, and autoscaling infrastructure. Core operational considerations include:

  • Process model: Run multiple Uvicorn workers per host for CPU-bound workloads or use worker pools for synchronous tasks.
  • Autoscaling: Configure horizontal scaling based on request latency and queue length rather than CPU alone for I/O-bound services.
  • Logging and tracing: Integrate structured logs, distributed tracing (OpenTelemetry), and request/response sampling to diagnose issues.
  • Security: Enforce input validation, rate limiting, authentication layers, and secure secrets management.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between FastAPI and Flask?

FastAPI is built for the async ASGI ecosystem and emphasizes type-driven validation and automatic OpenAPI documentation. Flask is a synchronous WSGI framework that is lightweight and flexible but requires more manual setup for async support, validation, and schema generation. Choose based on concurrency needs, existing ecosystem, and developer preference.

When should I use async endpoints in FastAPI?

Use async endpoints when your handler performs non-blocking I/O such as database queries with async drivers, external HTTP requests, or calls to async message brokers. For CPU-heavy tasks, prefer background workers or separate services to avoid blocking the event loop.

How do Pydantic models help with API reliability?

Pydantic enforces input types and constraints at the boundary of your application, reducing runtime errors and making APIs self-documenting. It also provides clear error messages, supports complex nested structures, and integrates tightly with FastAPI’s automatic documentation.

What are common deployment pitfalls for FastAPI?

Common issues include running blocking code in async endpoints, inadequate connection pooling, missing rate limiting, and insufficient observability. Ensure proper worker/process models, async drivers, and graceful shutdown handling when deploying to production.

How can I test FastAPI applications effectively?

Use FastAPI’s TestClient (based on Starlette’s testing utilities) for endpoint tests and pytest for unit and integration tests. Mock external services and use testing databases or fixtures for repeatable test runs. Also include load testing to validate performance under expected concurrency.

Is FastAPI suitable for production-grade microservices?

Yes. When combined with proper patterns—type-driven design, async-safe libraries, containerization, observability, and scalable deployment—FastAPI is well-suited for production microservices focused on I/O-bound workloads and integrations with AI or external APIs.

Disclaimer

This article is for educational and informational purposes only. It does not constitute professional, legal, or investment advice. Evaluate tools and architectures according to your organization’s requirements and consult qualified professionals when needed.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products