Crypto Basics

Liquid Staking - A Comprehensive Guide to Getting Started

Learn everything about liquid staking with our detailed guide. Check how to start and unleash the potential for passive income in the crypto space.
Marcus K
8 Minutes
MIN

Cryptocurrency enthusiasts are always on the lookout for new and innovative ways to make the most of their digital assets. One such method that has been gaining traction in recent years is liquid staking. 

This approach allows users to stake their tokens in proof-of-stake (PoS) blockchains while maintaining liquidity and participating in other decentralized finance (DeFi) activities. 

In this article, we will explore the concept of liquid staking, how it works, its advantages and disadvantages, popular cryptocurrencies that support this method, and how you can get started.

Understanding Staking and Its Benefits

Before delving into liquid staking, it's essential to grasp the concept of staking and its benefits. Staking involves locking up a certain amount of tokens in a PoS blockchain network to support its operations and security. 

In return for staking, participants can earn rewards in the form of additional tokens. Staking provides several benefits, such as incentivizing token holders to act in the network's best interest and maintaining the blockchain's security and integrity.

What is Liquid Staking?

Liquid staking takes the traditional staking model a step further by allowing users to stake their tokens and receive a separate token, known as a liquid staking token (LST), in return. 

These LSTs represent ownership of the staked tokens and can be freely traded, used in DeFi protocols, or transferred to other users. This innovative approach allows users to access liquidity and utilize their staked assets while potentially earning staking rewards.

How Does Liquid Staking Work?

Liquid staking involves a three-step process: staking, issuing liquid staking tokens, and unstaking. The first step is similar to traditional staking, where users lock their tokens in a designated smart contract on a liquid staking platform. The platform then verifies the tokens' legitimacy and stores them securely.

In the next phase, the platform issues the users liquid staking tokens (LSTs) as receipts for their staked assets. 

These LSTs are pegged to the value of the original tokens and can be used in various DeFi protocols and blockchain applications. The platform also utilizes the staked assets for native staking, earning rewards from securing the PoS blockchain.

When users decide to unstake their tokens, they must burn the corresponding LSTs. This process typically incurs a fee, and the platform verifies the burn transaction on-chain before returning the unstaked tokens to the user. 

It's important to note that liquid staking platforms may also impose a bonding period, during which users may have to wait before receiving their unstaked tokens.

Advantages of Liquid Staking

Liquid staking offers several advantages over traditional staking methods. Firstly, it provides increased accessibility and flexibility to users. 

Unlike traditional staking, which often requires a bonding period, liquid staking allows users to unstake their tokens and access liquidity immediately. This flexibility enables efficient capital allocation and utilizing staked assets in other financial activities.

Secondly, liquid staking enhances the liquidity of staked assets. Traditional staking typically locks up the tokens for a specific period, restricting their use and trading. With liquid staking, users receive LSTs that can be freely traded, swapped, or used as collateral in lending protocols. 

This additional liquidity opens up a world of possibilities for users, allowing them to maximize the utility of their staked assets.

Liquid staking also promotes the composability of DeFi protocols. By enabling users to use their LSTs in various DeFi platforms, liquid staking enhances the interoperability and integration of different applications within the decentralized ecosystem. 

Users can lend, borrow, or participate in yield farming using their LSTs, increasing their engagement and potential returns.

Lastly, liquid staking may offer higher rewards compared to traditional staking. Users can earn additional rewards on top of their original staking rewards by utilizing LSTs in multiple staking platforms. 

This strategy allows for the optimization of staking returns without the need for additional investments.

Disadvantages of Liquid Staking

While liquid staking offers numerous advantages, it's important to consider this method's potential risks and challenges. One significant risk is the possibility of smart contract vulnerabilities. 

Since liquid staking involves interacting with smart contracts, there is a chance of exploitation if a flaw or bug exists in the code. Choosing reputable and audited liquid staking platforms to mitigate this risk is crucial.

Another challenge is the potential for price volatility. LSTs are pegged to the value of the original tokens, but there is a risk of de-pegging if market conditions fluctuate significantly. 

If the LSTs' value deviates from the underlying assets, users may experience losses when trading or redeeming their LSTs. It's essential to closely monitor market conditions and assess the risks before engaging in liquid staking.

Additionally, liquid staking may involve higher fees compared to traditional staking. Liquid staking platforms often charge fees for the issuance and burning of LSTs, as well as network transaction fees. 

These costs can impact the overall profitability of liquid staking, especially for users with smaller staking amounts.

Staking Vs. Liquid Staking: Key Differences

It's important to distinguish between traditional staking and liquid staking to understand their unique characteristics. 

Traditional staking involves locking up tokens in a smart contract without the ability to use or transfer them until the staking period ends. Stakers earn rewards solely from staking activities.

On the other hand, liquid staking provides users with a receipt token (LST) that represents ownership of the staked assets. These LSTs are freely transferable and can be used in DeFi protocols, providing users with additional liquidity and utility. 

Liquid staking enables users to potentially earn rewards while still participating in other blockchain activities, offering a more flexible approach compared to traditional staking.

Popular Crypto That Supports Liquid Staking

Liquid staking has gained significant traction across various blockchain networks, with several cryptocurrencies supporting this innovative method. 

Ethereum, one of the largest and most well-known blockchains, has implemented liquid staking following its transition to a PoS consensus mechanism. 

Users can stake their ETH and receive liquid staking tokens (LSTs), such as stETH, which can be used in DeFi protocols and traded on supported platforms.

Other popular cryptocurrencies that support liquid staking include Polkadot, Cardano, Avalanche, and Cosmos. Each of these projects offers its own liquid staking solutions, allowing users to stake their tokens and benefit from the advantages of liquidity and additional utility.

How to Start Liquid Staking?

If you're interested in participating in liquid staking, choosing a reputable and secure platform that supports this method is essential. 

Ledger, a prominent cryptocurrency hardware wallet provider, offers a liquid staking platform through its Ledger Live ecosystem. 

Connecting your Ledger device to Ledger Live and navigating to the Discover tab allows you to explore liquid staking options available on supported networks such as Polygon, Hedera, BNB, Near, Terra 2.0, and Fantom.

By utilizing Ledger's secure infrastructure, you can stake your tokens, receive liquid staking tokens (LSTs), and participate in the vibrant world of DeFi while maintaining full control and custody of your assets.

Conclusion

Liquid staking is an innovative approach to maximize the potential of your crypto assets. By combining the benefits of staking with increased liquidity and utility, liquid staking offers users a flexible and efficient way to participate in PoS networks while enjoying the opportunities provided by DeFi protocols. 

It's important to weigh the advantages and disadvantages, consider the risks, and choose reliable platforms to ensure a successful liquid staking experience. 

With the growing adoption and development of liquid staking solutions, this method is poised to play a significant role in the future of blockchain-based finance.

Frequently Asked Questions

Q1. How is liquid staking different from traditional staking?

Liquid staking allows users to maintain liquidity and utilize their staked assets, while traditional staking locks up tokens for a specific period without the ability to use or transfer them until the staking period ends.

Q2. Which cryptocurrencies support liquid staking?

Popular cryptocurrencies that support liquid staking include Ethereum, Polkadot, Cardano, Avalanche, and Cosmos. Each project offers its own solutions for users to participate in liquid staking.

Q3. How can I start liquid staking?

To start liquid staking, choose a reputable platform that supports this method, such as Ledger's liquid staking platform. Connect your Ledger device to Ledger Live, explore the available options, and stake your tokens while maintaining full control of your assets.

Q4. Is liquid staking safe?

Liquid staking carries risks, such as smart contract vulnerabilities and price volatility. It's crucial to choose secure platforms, conduct thorough research, and stay informed about potential risks and developments in the cryptocurrency space.

Q5. Can I unstake my tokens in liquid staking?

Users can unstake their tokens in liquid staking by burning the corresponding liquid staking tokens (LSTs). However, the process may involve fees, and a bonding period may exist before users can receive their unstaked tokens.

Q6. What is the future of liquid staking?

Liquid staking is expected to play a significant role in the future of blockchain-based finance. As more projects adopt and develop liquid staking solutions, users can expect increased accessibility, liquidity, and integration with DeFi protocols, further enhancing the potential of their crypto assets.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: What Is an API and How It Works

Token Metrics Team
5
MIN

APIs (application programming interfaces) are the invisible connectors that let software systems talk to each other. Whether you open a weather app, sign in with a social account, or call a machine-learning model, an API is usually orchestrating the data exchange behind the scenes. This guide explains what an API is, how APIs work, common types and use cases, and practical frameworks to evaluate or integrate APIs into projects.

What is an API? Definition & core concepts

An API is a set of rules, protocols, and tools that defines how two software components communicate. At its simplest, an API specifies the inputs a system accepts, the outputs it returns, and the behavior in between. APIs abstract internal implementation details so developers can reuse capabilities without understanding the underlying codebase.

Key concepts:

  • Endpoints: Network-accessible URLs or methods where requests are sent.
  • Requests & responses: Structured messages (often JSON or XML) sent by a client and returned by a server.
  • Authentication: Mechanisms (API keys, OAuth, tokens) that control who can use the API.
  • Rate limits: Constraints on how often the API can be called.

How APIs work: a technical overview

Most modern APIs use HTTP as the transport protocol and follow architectural styles such as REST or GraphQL. A typical interaction looks like this:

  1. Client constructs a request (method, endpoint, headers, payload).
  2. Request is routed over the network to the API server.
  3. Server authenticates and authorizes the request.
  4. Server processes the request, possibly calling internal services or databases.
  5. Server returns a structured response with status codes and data.

APIs also expose documentation and machine-readable specifications (OpenAPI/Swagger, RAML) that describe available endpoints, parameters, data models, and expected responses. Tools can generate client libraries and interactive docs from these specs, accelerating integration.

Types of APIs and common use cases

APIs serve different purposes depending on design and context:

  • Web APIs (REST/HTTP): Most common for web and mobile backends. Use stateless requests, JSON payloads, and standard HTTP verbs.
  • GraphQL APIs: Allow clients to request precisely the fields they need, reducing over-fetching.
  • RPC and gRPC: High-performance, typed remote procedure calls used in microservices and internal infrastructure.
  • SDKs and libraries: Language-specific wrappers around raw APIs to simplify usage.
  • Domain-specific APIs: Payment APIs, mapping APIs, social login APIs, and crypto APIs that expose blockchain data, wallet operations, and on-chain analytics.

Use cases span the product lifecycle: integrating third-party services, composing microservices, extending platforms, or enabling AI models to fetch and write data programmatically.

Evaluating and integrating APIs: a practical framework

When selecting or integrating an API, apply a simple checklist to reduce technical risk and operational friction:

  • Specification quality: Is there an OpenAPI spec, clear examples, and machine-readable docs?
  • Authentication: What auth flows are supported and do they meet your security model?
  • Rate limits & quotas: Do limits match your usage profile? Are paid tiers available for scale?
  • Error handling: Are error codes consistent and documented to support robust client logic?
  • Latency & reliability: Benchmark typical response times and uptime SLAs for production readiness.
  • Data semantics & provenance: For analytics or financial data, understand update frequency, normalization, and source trustworthiness.

Operationally, start with a sandbox key and integrate incrementally: mock responses in early stages, implement retry/backoff and circuit breakers, and monitor usage and costs in production.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common questions about APIs

What is the difference between REST and GraphQL?

REST organizes resources as endpoints and often returns fixed data shapes per endpoint. GraphQL exposes a single endpoint where clients request the exact fields they need. REST is simple and cache-friendly; GraphQL reduces over-fetching but can require more server-side control and caching strategies.

How do API keys and OAuth differ?

API keys are simple tokens issued to identify a client and are easy to use for server-to-server interactions. OAuth provides delegated access where a user can authorize a third-party app to act on their behalf without sharing credentials; it's essential for user-consent flows.

Are there standards for API documentation?

Yes. OpenAPI (formerly Swagger) is widely used for REST APIs and supports automated client generation and interactive documentation. GraphQL has its own schema specification and introspection capabilities. Adopting standards improves developer experience significantly.

What security considerations matter most for APIs?

Common practices include strong authentication, TLS encryption, input validation, explicit authorization, rate limiting, and logging. For sensitive data, consider data minimization, field-level encryption, and strict access controls.

How can AI models use APIs?

AI models can call APIs to fetch external context, enrich inputs, or persist outputs. Examples include retrieving live market data, fetching user profiles, or invoking specialized ML inference services. Manage latency, cost, and error handling when chaining many external calls in a pipeline.

Disclaimer

This article is for educational and informational purposes only. It does not constitute professional, legal, or financial advice. Evaluate any API, provider, or integration according to your own technical, legal, and security requirements before use.

Research

Mastering Google APIs: Practical Developer Guide

Token Metrics Team
5
MIN

APIs from Google power a huge portion of modern applications, from location-aware mobile apps to automated data workflows in the cloud. Understanding how Google API endpoints, authentication, quotas, and client libraries fit together helps developers build reliable, maintainable integrations that scale. This guide breaks down the most practical aspects of working with Google APIs and highlights research and AI tools that can streamline development.

Overview: What the term “Google API” covers

"Google API" is an umbrella term for a wide range of services offered by Google, including but not limited to Google Cloud APIs (Compute, Storage, BigQuery), Maps and Places, OAuth 2.0 identity, Drive, Sheets, and machine learning APIs like Vision and Translation. Each service exposes RESTful endpoints and often provides SDKs in multiple languages (Node.js, Python, Java, Go, and more).

Key dimensions to evaluate when selecting a Google API:

  • Functionality: Does the API provide the exact data or operation you need (e.g., geocoding vs. routing)?
  • Authentication model: API keys, OAuth 2.0, or service accounts (server-to-server).
  • Rate limits and quotas: per-minute or per-day limits, and how to monitor them.
  • Pricing and billing: free tier limits, billing account requirements, and potential cost drivers.

Core Google API services and common use cases

Popular categories and what developers commonly use them for:

  • Maps & Places — interactive maps, geocoding, places search, routing for location-based apps.
  • Cloud Platform APIs — storage (Cloud Storage), analytics (BigQuery), compute (Compute Engine, Cloud Run) for backend workloads.
  • Identity & Access — OAuth 2.0 and OpenID Connect for user sign-in; service accounts for server-to-server authentication.
  • Workspace APIs — Drive, Sheets, and Gmail automation for productivity integrations.
  • AI & Vision — Vision API, Natural Language, and Translation for content analysis and enrichment.

Choosing the right API often starts with mapping product requirements to the available endpoints. For example, if you need user authentication and access to Google Drive files, combine OAuth 2.0 with the Drive API rather than inventing a custom flow.

Best practices for integration, authentication, and error handling

Follow these practical steps to reduce friction and improve reliability:

  1. Use official client libraries where available — they implement retries, backoff, and serialization conventions that keep your code simpler.
  2. Prefer OAuth or service accounts over long-lived API keys for sensitive operations. Use short-lived tokens and rotate credentials regularly.
  3. Implement exponential backoff for rate-limited operations and surface clear error messages when requests fail.
  4. Monitor quotas and billing with Google Cloud Console alerts and programmatic checks so you can detect spikes before they affect users.
  5. Design for idempotency if your operation may be retried — include request tokens or use idempotent endpoints.

These patterns reduce operational surprises and make integrations more maintainable over time.

Security, quotas, and governance considerations

Security and quota constraints often shape architecture decisions:

  • Least privilege — grant the minimum IAM roles needed. For service accounts, avoid broad roles like owner.
  • Auditing — enable Cloud Audit Logs to trace who accessed which APIs and when.
  • Quota planning — understand per-minute and per-day limits. For high-throughput needs, request quota increases with a clear justification.
  • Data residency and compliance — check where data is stored and whether it meets your regulatory requirements.

Secure-by-design implementations and proactive quota management reduce operational risk when moving from prototype to production.

Building apps with Google APIs and AI workflows

Combining Google APIs with AI tooling unlocks new workflows: use Vision API to extract entities from images, then store structured results in BigQuery for analytics; call Translation or Natural Language for content normalization before indexing. When experimenting with AI-driven pipelines, maintain traceability between raw inputs and transformed outputs to support auditing and debugging.

AI-driven research platforms like Token Metrics can help developers prototype analytics and compare signal sources by aggregating on-chain and market datasets; such tools may inform how you prioritize data ingestion and model inputs when building composite systems that include external data alongside Google APIs.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a Google API and how does it differ from other APIs?

Google APIs are a collection of RESTful services and SDKs that grant programmatic access to Google products and cloud services. They differ in scope and SLAs from third-party APIs by integrating with Google Cloud's IAM, billing, and monitoring ecosystems.

FAQ: Which authentication method should I use?

Use OAuth 2.0 for user-level access where users must grant permission. For server-to-server calls, use service accounts with short-lived tokens. API keys are acceptable for public, limited-scope requests like simple Maps access but carry higher security risk if exposed.

FAQ: How do I monitor and request higher quotas?

Monitor quotas in Google Cloud Console under the "IAM & Admin" and "APIs & Services" sections. If you need more capacity, submit a quota increase request with usage patterns and justification; Google evaluates requests based on scope and safety.

FAQ: How can I estimate costs for Google API usage?

Cost depends on API type and usage volume. Use the Google Cloud Pricing Calculator for services like BigQuery or Cloud Storage, and review per-request pricing for Maps and Vision APIs. Track costs via billing reports and set alerts to avoid surprises.

FAQ: Are client libraries necessary?

Client libraries are not strictly necessary, but they simplify authentication flows, retries, and response parsing. If you need maximum control or a minimal runtime, you can call REST endpoints directly with standard HTTP libraries.

Disclaimer

This article is educational and technical in nature. It does not provide financial, legal, or investment advice. Evaluate APIs and third-party services against your own technical, security, and compliance requirements before use.

Research

API Management Essentials for Teams

Token Metrics Team
5
MIN

APIs are the connective tissue of modern software. As organizations expose more endpoints to partners, internal teams and third-party developers, effective api management becomes a competitive and operational imperative. This article breaks down practical frameworks, governance guardrails, and monitoring strategies that help teams scale APIs securely and reliably without sacrificing developer velocity.

Overview: What API management solves

API management is the set of practices, tools and processes that enable teams to design, publish, secure, monitor and monetize application programming interfaces. At its core it addresses three recurring challenges: consistent access control, predictable performance, and discoverability for developers. Well-managed APIs reduce friction for consumers, decrease operational incidents, and support governance priorities such as compliance and data protection.

Think of api management as a lifecycle discipline: from design and documentation to runtime enforcement and iterative refinement. Organizations that treat APIs as products—measuring adoption, latency, error rates, and business outcomes—are better positioned to scale integrations without accumulating technical debt.

Governance & Security: Policies that scale

Security and governance are non-negotiable for production APIs. Implement a layered approach:

  • Access control: Use token-based authentication (OAuth 2.0, JWT) and centralize identity validation at the gateway to avoid duplicating logic across services.
  • Rate limiting & quotas: Protect backend services and control cost by enforcing per-key or per-tenant limits. Different tiers can align with SLAs for partners.
  • Input validation & schema contracts: Define explicit contracts using OpenAPI/JSON Schema and validate at the edge to reduce injection and integration errors.
  • Audit & compliance: Log authentication events, data access, and configuration changes. Retain logs in a way that maps to regulatory obligations.

Combining automated policy enforcement at an API gateway with a governance framework (ownerable APIs, review gates, and versioning rules) ensures changes are controlled without slowing legitimate feature delivery.

Developer experience & the API product model

Developer experience (DX) determines adoption. Treat APIs as products by providing clear documentation, SDKs and a self-service developer portal. Key practices include:

  • Interactive docs: Publish OpenAPI-driven docs that allow developers to try endpoints in a sandbox.
  • Onboarding flows: Provide quick start guides, sample payloads and error explanations to reduce time-to-first-call.
  • Versioning strategy: Use semantic versioning and deprecation notices to minimize breaking changes.
  • Feedback loops: Instrument usage and surface developer issues to product owners so APIs evolve with consumer needs.

Metrics to track DX include signups, first successful call time, and repeat usage per key. These are leading indicators of whether an API is fulfilling its product intent.

Monitoring, observability & reliability

Operational visibility is essential for api management. Implement monitoring at multiple layers—gateway, service, and database—to triangulate causes when issues occur. Core telemetry includes:

  • Traffic metrics: requests per second, latency percentiles (p50/p95/p99), and throughput.
  • Error rates: HTTP 4xx/5xx breakdowns, client-specific failure patterns, and circuit-breaker triggers.
  • Business KPIs: API calls tied to revenue, conversions, or key workflows to prioritize fixes that have impact.

Observability practices—distributed tracing, structured logs, and context propagation—help teams move from alert fatigue to actionable incident response. Build runbooks that map common alerts to remediation steps and owners.

Implementation roadmap & tooling choices

Adopt an incremental roadmap rather than a big-bang rollout. A pragmatic sequence looks like:

  1. Inventory existing endpoints and annotate owners.
  2. Standardize contracts with OpenAPI and publish baseline docs.
  3. Introduce an API gateway for auth, rate limiting, and basic WAF rules.
  4. Instrument telemetry, set SLAs, and define retention for logs and traces.
  5. Launch a developer portal and iterate based on usage signals.

Choose tools that match team maturity: managed API platforms accelerate setup for companies lacking infra resources, while open-source gateways provide control for those with specialized needs. Evaluate vendors on extensibility, observability integrations, and policy-as-code support to avoid lock-in.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is API management and why does it matter?

API management encompasses the processes and tools required to publish, secure, monitor, and monetize APIs. It matters because it enables predictable, governed access to services while maintaining developer productivity and operational reliability.

Which components make up an API management stack?

Common components include an API gateway (auth, routing, rate limiting), developer portal (docs, keys), analytics and monitoring systems (metrics, traces), and lifecycle tooling (design, versioning, CI/CD integrations).

How should teams approach API security?

Implement defense-in-depth: centralized authentication, token validation, input schema checks, rate limits, and continuous auditing. Shift security left by validating contracts and scanning specs before deployment.

What metrics are most useful for API health?

Track latency percentiles, error rates, traffic patterns, and consumer-specific usage. Pair operational metrics with business KPIs (e.g., API-driven signups) to prioritize work that affects outcomes.

How do teams manage breaking changes?

Use explicit versioning, deprecation windows, and dual-running strategies where consumers migrate incrementally. Communicate changes via the developer portal and automated notifications tied to API keys.

When should an organization introduce an API gateway?

Introduce a gateway early when multiple consumers, partners, or internal teams rely on APIs. A gateway centralizes cross-cutting concerns and reduces duplicated security and routing logic.

Disclaimer

This article is for educational and informational purposes only. It provides neutral, analytical information about api management practices and tools and does not constitute professional or investment advice.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products