Crypto Basics

Liquid Staking - A Comprehensive Guide to Getting Started

Learn everything about liquid staking with our detailed guide. Check how to start and unleash the potential for passive income in the crypto space.
Marcus K
8 Minutes
MIN

Cryptocurrency enthusiasts are always on the lookout for new and innovative ways to make the most of their digital assets. One such method that has been gaining traction in recent years is liquid staking. 

This approach allows users to stake their tokens in proof-of-stake (PoS) blockchains while maintaining liquidity and participating in other decentralized finance (DeFi) activities. 

In this article, we will explore the concept of liquid staking, how it works, its advantages and disadvantages, popular cryptocurrencies that support this method, and how you can get started.

Understanding Staking and Its Benefits

Before delving into liquid staking, it's essential to grasp the concept of staking and its benefits. Staking involves locking up a certain amount of tokens in a PoS blockchain network to support its operations and security. 

In return for staking, participants can earn rewards in the form of additional tokens. Staking provides several benefits, such as incentivizing token holders to act in the network's best interest and maintaining the blockchain's security and integrity.

What is Liquid Staking?

Liquid staking takes the traditional staking model a step further by allowing users to stake their tokens and receive a separate token, known as a liquid staking token (LST), in return. 

These LSTs represent ownership of the staked tokens and can be freely traded, used in DeFi protocols, or transferred to other users. This innovative approach allows users to access liquidity and utilize their staked assets while potentially earning staking rewards.

How Does Liquid Staking Work?

Liquid staking involves a three-step process: staking, issuing liquid staking tokens, and unstaking. The first step is similar to traditional staking, where users lock their tokens in a designated smart contract on a liquid staking platform. The platform then verifies the tokens' legitimacy and stores them securely.

In the next phase, the platform issues the users liquid staking tokens (LSTs) as receipts for their staked assets. 

These LSTs are pegged to the value of the original tokens and can be used in various DeFi protocols and blockchain applications. The platform also utilizes the staked assets for native staking, earning rewards from securing the PoS blockchain.

When users decide to unstake their tokens, they must burn the corresponding LSTs. This process typically incurs a fee, and the platform verifies the burn transaction on-chain before returning the unstaked tokens to the user. 

It's important to note that liquid staking platforms may also impose a bonding period, during which users may have to wait before receiving their unstaked tokens.

Advantages of Liquid Staking

Liquid staking offers several advantages over traditional staking methods. Firstly, it provides increased accessibility and flexibility to users. 

Unlike traditional staking, which often requires a bonding period, liquid staking allows users to unstake their tokens and access liquidity immediately. This flexibility enables efficient capital allocation and utilizing staked assets in other financial activities.

Secondly, liquid staking enhances the liquidity of staked assets. Traditional staking typically locks up the tokens for a specific period, restricting their use and trading. With liquid staking, users receive LSTs that can be freely traded, swapped, or used as collateral in lending protocols. 

This additional liquidity opens up a world of possibilities for users, allowing them to maximize the utility of their staked assets.

Liquid staking also promotes the composability of DeFi protocols. By enabling users to use their LSTs in various DeFi platforms, liquid staking enhances the interoperability and integration of different applications within the decentralized ecosystem. 

Users can lend, borrow, or participate in yield farming using their LSTs, increasing their engagement and potential returns.

Lastly, liquid staking may offer higher rewards compared to traditional staking. Users can earn additional rewards on top of their original staking rewards by utilizing LSTs in multiple staking platforms. 

This strategy allows for the optimization of staking returns without the need for additional investments.

Disadvantages of Liquid Staking

While liquid staking offers numerous advantages, it's important to consider this method's potential risks and challenges. One significant risk is the possibility of smart contract vulnerabilities. 

Since liquid staking involves interacting with smart contracts, there is a chance of exploitation if a flaw or bug exists in the code. Choosing reputable and audited liquid staking platforms to mitigate this risk is crucial.

Another challenge is the potential for price volatility. LSTs are pegged to the value of the original tokens, but there is a risk of de-pegging if market conditions fluctuate significantly. 

If the LSTs' value deviates from the underlying assets, users may experience losses when trading or redeeming their LSTs. It's essential to closely monitor market conditions and assess the risks before engaging in liquid staking.

Additionally, liquid staking may involve higher fees compared to traditional staking. Liquid staking platforms often charge fees for the issuance and burning of LSTs, as well as network transaction fees. 

These costs can impact the overall profitability of liquid staking, especially for users with smaller staking amounts.

Staking Vs. Liquid Staking: Key Differences

It's important to distinguish between traditional staking and liquid staking to understand their unique characteristics. 

Traditional staking involves locking up tokens in a smart contract without the ability to use or transfer them until the staking period ends. Stakers earn rewards solely from staking activities.

On the other hand, liquid staking provides users with a receipt token (LST) that represents ownership of the staked assets. These LSTs are freely transferable and can be used in DeFi protocols, providing users with additional liquidity and utility. 

Liquid staking enables users to potentially earn rewards while still participating in other blockchain activities, offering a more flexible approach compared to traditional staking.

Popular Crypto That Supports Liquid Staking

Liquid staking has gained significant traction across various blockchain networks, with several cryptocurrencies supporting this innovative method. 

Ethereum, one of the largest and most well-known blockchains, has implemented liquid staking following its transition to a PoS consensus mechanism. 

Users can stake their ETH and receive liquid staking tokens (LSTs), such as stETH, which can be used in DeFi protocols and traded on supported platforms.

Other popular cryptocurrencies that support liquid staking include Polkadot, Cardano, Avalanche, and Cosmos. Each of these projects offers its own liquid staking solutions, allowing users to stake their tokens and benefit from the advantages of liquidity and additional utility.

How to Start Liquid Staking?

If you're interested in participating in liquid staking, choosing a reputable and secure platform that supports this method is essential. 

Ledger, a prominent cryptocurrency hardware wallet provider, offers a liquid staking platform through its Ledger Live ecosystem. 

Connecting your Ledger device to Ledger Live and navigating to the Discover tab allows you to explore liquid staking options available on supported networks such as Polygon, Hedera, BNB, Near, Terra 2.0, and Fantom.

By utilizing Ledger's secure infrastructure, you can stake your tokens, receive liquid staking tokens (LSTs), and participate in the vibrant world of DeFi while maintaining full control and custody of your assets.

Conclusion

Liquid staking is an innovative approach to maximize the potential of your crypto assets. By combining the benefits of staking with increased liquidity and utility, liquid staking offers users a flexible and efficient way to participate in PoS networks while enjoying the opportunities provided by DeFi protocols. 

It's important to weigh the advantages and disadvantages, consider the risks, and choose reliable platforms to ensure a successful liquid staking experience. 

With the growing adoption and development of liquid staking solutions, this method is poised to play a significant role in the future of blockchain-based finance.

Frequently Asked Questions

Q1. How is liquid staking different from traditional staking?

Liquid staking allows users to maintain liquidity and utilize their staked assets, while traditional staking locks up tokens for a specific period without the ability to use or transfer them until the staking period ends.

Q2. Which cryptocurrencies support liquid staking?

Popular cryptocurrencies that support liquid staking include Ethereum, Polkadot, Cardano, Avalanche, and Cosmos. Each project offers its own solutions for users to participate in liquid staking.

Q3. How can I start liquid staking?

To start liquid staking, choose a reputable platform that supports this method, such as Ledger's liquid staking platform. Connect your Ledger device to Ledger Live, explore the available options, and stake your tokens while maintaining full control of your assets.

Q4. Is liquid staking safe?

Liquid staking carries risks, such as smart contract vulnerabilities and price volatility. It's crucial to choose secure platforms, conduct thorough research, and stay informed about potential risks and developments in the cryptocurrency space.

Q5. Can I unstake my tokens in liquid staking?

Users can unstake their tokens in liquid staking by burning the corresponding liquid staking tokens (LSTs). However, the process may involve fees, and a bonding period may exist before users can receive their unstaked tokens.

Q6. What is the future of liquid staking?

Liquid staking is expected to play a significant role in the future of blockchain-based finance. As more projects adopt and develop liquid staking solutions, users can expect increased accessibility, liquidity, and integration with DeFi protocols, further enhancing the potential of their crypto assets.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Is Web3 Just a Buzzword or a Real Innovation?

Token Metrics Team
3
MIN

Introduction to Web3

The emergence of Web3 has sparked diverse conversations in technology and blockchain communities. Some consider it the next revolutionary phase of the internet, while others dismiss it as mere hype. This blog explores whether Web3 is just a buzzword or if it represents a tangible and meaningful evolution in digital interactions.

Understanding the Concept of Web3

Web3 broadly refers to a new paradigm of the internet built on decentralized technologies like blockchain, aiming to enable peer-to-peer interactions without centralized intermediaries. Unlike Web2, which is dominated by centralized platforms controlling data and services, Web3 proposes a more open, user-controlled internet.

Key Web3 features include:

  • Decentralization: Data and services distributed across networks instead of centralized servers.
  • Blockchain Integration: Use of immutable ledgers to ensure transparency and security.
  • Token-based Economics: Implementation of cryptocurrencies and tokens to incentivize participation.
  • Enhanced User Sovereignty: Users control their data and digital identities.

The Technology and Applications Behind Web3

Web3 relies heavily on blockchain technology, smart contracts, and decentralized applications (dApps). These components facilitate trustless transactions and programmable digital agreements.

Notable Web3 applications include decentralized finance (DeFi), non-fungible tokens (NFTs), and decentralized autonomous organizations (DAOs). These innovations demonstrate practical use cases extending beyond theoretical frameworks.

Moreover, artificial intelligence (AI) tools are increasingly applied to analyze and navigate the evolving Web3 landscape. Platforms such as Token Metrics leverage AI-driven insights to help users research blockchain projects and assess technology fundamentals without financial recommendations.

Addressing the Skepticism Around Web3

Critics argue that Web3 might be overhyped with limited real-world adoption so far. Challenges include scalability issues, user experience complexities, regulatory uncertainties, and potential misuse.

However, innovation cycles often follow initial hype phases. Historical tech developments illustrate how novel ideas initially labeled as buzzwords eventually matured into foundational technologies over time.

Scenario analysis suggests varying outcomes for Web3:

  1. Gradual Adoption: Incremental integration of Web3 elements into mainstream platforms.
  2. Disruptive Shift: Web3 replaces significant portions of centralized internet infrastructure.
  3. Fragmentation or Stall: Development slows due to technical, regulatory, or societal barriers.

Practical Steps for Evaluating Web3 Projects

Due diligence is essential in understanding Web3 initiatives. Consider these points when researching:

  • Team and Community: Assess project founders' credentials and community engagement.
  • Technology Fundamentals: Examine code repositories, technical whitepapers, and audit reports.
  • Use Case Viability: Analyze how a project solves real problems uniquely.
  • Partnerships and Ecosystem: Look at collaborators and interoperability with existing platforms.

Leveraging AI-powered platforms like Token Metrics can assist users in organizing and interpreting vast data points objectively, aiding a comprehensive understanding.

The Role of Regulation and Governance

Regulation remains an evolving factor for Web3 projects. Decentralized governance models, such as DAOs, aim to allow stakeholder participation in decision-making processes. However, legal frameworks vary globally and can impact project development and adoption.

Understanding the nuanced regulatory landscape is critical for assessing the long-term feasibility and resilience of Web3 innovations.

Conclusion: Is Web3 Buzzword or Real?

Web3 encompasses transformative potentials in reimagining internet architecture. While it faces significant hurdles and exhibits hype characteristics, substantial technological progress and adoption signals suggest it is more than mere buzzword.

Objective analysis, supported by AI research tools like Token Metrics, can facilitate critical evaluation of emerging projects and technologies within this evolving domain.

Disclaimer

This article is for educational and informational purposes only and does not constitute financial advice. Readers should conduct their own research and consult professional advisors before making any decisions related to blockchain technologies or digital assets.

Research

Understanding Web3: How It Differs From Today's Internet

Token Metrics Team
4
MIN

Introduction

The internet has become an integral part of modern life, continually evolving since its inception. In recent years, a new paradigm called Web3 has emerged, promising to reshape how users interact with digital platforms. This blog post explores the fundamental differences between Web3 and the current internet, often referred to as Web2, to clarify what Web3 entails and its potential impact.

What Is Web3?

Web3 represents the next phase of the internet, built on the principle of decentralization. Unlike the current centralized internet infrastructure, Web3 aims to distribute control away from traditional intermediaries like corporations and governments to users and communities. Key technologies underpinning Web3 include blockchain, decentralized finance (DeFi), non-fungible tokens (NFTs), and decentralized autonomous organizations (DAOs).

At its core, Web3 is designed to empower users to own and control their data, digital assets, and online identities through cryptographic proof rather than relying on centralized entities. This shift holds the promise of enhanced privacy, improved security, and greater transparency across digital services.

How Web3 Differs From the Current Internet

The current internet, or Web2, is characterized by centralized platforms such as social media networks, content-sharing sites, and cloud service providers. These platforms control user data and have significant influence over digital ecosystems. Web3 introduces several pivotal differences:

  • Decentralization: Traditional web services store data on central servers. Web3 applications (dApps) operate on decentralized networks like Ethereum, distributing data across many nodes.
  • Data Ownership and Privacy: In Web3, users have sovereignty over their personal data via cryptographic keys, reducing dependency on intermediaries.
  • Trustless Interactions: Web3 uses smart contracts to automate transactions without requiring trust in a third party, enhancing transparency.
  • Monetization and Incentives: Users can directly monetize their contributions or assets through tokens without relying on platform-controlled advertising models.

Key Technologies Enabling Web3

A few seminal technologies make the Web3 vision feasible:

  1. Blockchain: A distributed ledger technology providing an immutable record of transactions and data accessible to all network participants.
  2. Cryptographic wallets: Tools that allow users to manage private keys securely, facilitating ownership and transaction signing.
  3. Smart contracts: Self-executing contracts with the terms directly written into code, automating agreements and processes without intermediaries.
  4. Decentralized storage: Networks like IPFS provide distributed data hosting, improving resilience and censorship resistance.

These technologies collectively foster environments where decentralized applications can function effectively, distinguishing Web3 from legacy web systems.

Impact of AI Research Tools in Understanding Web3

Analyzing the Web3 space requires comprehensive research and understanding of complex, rapidly evolving technologies. AI-driven research platforms like Token Metrics use machine learning and data analytics to provide insights into blockchain networks, emerging protocols, and token metrics. By leveraging these tools, researchers and enthusiasts can assess technological fundamentals and ecosystem trends in a structured, data-informed manner, facilitating a clearer understanding of Web3 developments.

Practical Considerations for Exploring Web3

For those interested in exploring Web3, keeping the following factors in mind can enhance comprehension and engagement:

  • Focus on fundamentals: Evaluate protocols and projects based on technology, use case, and community involvement.
  • Understand risk: Web3 technologies are experimental and subject to regulatory and technical challenges.
  • Use credible research tools: Platforms like Token Metrics offer analytical data that aid in objective evaluation.
  • Stay informed: The Web3 landscape evolves rapidly, requiring continuous learning and monitoring.

Future Outlook: Web3 vs. Web2

While Web3 promises a more decentralized and user-empowered internet, it is essential to consider practical implications. Adoption hurdles, scalability, user experience, and regulatory frameworks will shape its trajectory. Unlike Web2, which offers convenience and centralized control, Web3 emphasizes autonomy and distributed governance. The future internet may well integrate strengths from both models, providing a hybrid approach that balances user control with usability.

Conclusion

Web3 represents a transformative vision for the internet, aiming to decentralize control and enhance user ownership of data and digital assets. Its key distinctions from the current internet (Web2) include decentralization, trustless interactions, and new economic models. Technologies like blockchain and smart contracts drive these changes, supported by analytical tools such as Token Metrics that aid in navigating this complex environment. As Web3 continues to evolve, understanding its fundamentals remains crucial for anyone interested in the future of the internet.

Disclaimer

This blog post is intended for educational and informational purposes only and does not constitute financial or investment advice. Readers should conduct their own research and consider their risk tolerance before engaging with Web3 technologies or cryptocurrencies.

Research

Understanding Why Blockchain Transactions Are Irreversible

Token Metrics Team
5
MIN

Introduction

The concept of irreversible transactions is a foundational aspect of blockchain technology and cryptocurrencies. Unlike traditional banking systems where transactions can be reversed or disputed, blockchain transactions are designed to be permanent and unalterable once confirmed. This unique feature raises an important question: why are blockchain transactions irreversible? This article delves into the fundamental principles, technological mechanisms, and security frameworks that underpin transaction irreversibility in blockchains. In addition, it highlights how analytical and AI-driven research platforms such as Token Metrics can help users better understand the underlying dynamics.

Basics of Blockchain Transactions

To answer why blockchain transactions are irreversible, it is essential to understand what constitutes a blockchain transaction. At its core, a blockchain is a decentralized and distributed digital ledger of transactions, grouped into blocks and linked through cryptographic hashes.

  • Transaction creation: Users initiate transactions by digitally signing them with private keys, ensuring authenticity and ownership.
  • Broadcast and validation: Transactions are broadcast to a network of nodes, where consensus algorithms validate and verify them based on predefined rules.
  • Inclusion in blocks: Validated transactions are bundled into a block.
  • Linking blocks into a chain: Each block references the previous block through a cryptographic hash, forming a chronological chain.

Once a transaction is included in a confirmed block, it becomes part of the immutable ledger, considered permanent and irreversible.

Role of Immutability and Cryptography

Immutability is the cornerstone of transaction irreversibility. Blockchain achieves immutability using cryptographic techniques and decentralized consensus.

  • Cryptographic hashes: Each block contains a hash of the previous block, creating a tamper-evident chain. Changing any transaction data in a previous block alters its hash and breaks the chain's continuity.
  • Digital signatures: Transactions are signed by senders using private keys, and their validity is verified through public keys.
  • Decentralization: Since multiple nodes maintain copies of the ledger, altering one copy would require overwhelming control over the network to rewrite history, which is prohibitively difficult.

This design ensures that once a transaction is confirmed and embedded in a block, it is computationally infeasible to modify or reverse it without consensus from the majority of the network.

Consensus Mechanisms and Finality

Consensus algorithms play an essential role in determining when transactions are considered final and irreversible.

  • Proof of Work (PoW): In PoW systems like Bitcoin, miners solve complex puzzles to add new blocks. The longer the subsequent chain grows past a block, the more secure and irreversible the transactions within it become, as rewriting would require significant energy expenditure.
  • Proof of Stake (PoS) and others: Other consensus models like PoS, delegated PoS, or Byzantine Fault Tolerant algorithms offer different methods of achieving agreement but similarly provide guarantees on transaction finality.

Network participants generally treat transactions as irreversible after a certain number of confirmations (additional blocks). This requirement reduces risks from temporary forks or reorganizations.

Technical Challenges to Reversing Transactions

Reversing a blockchain transaction would entail rewriting the blockchain history, which is impeded by several technical realities:

  1. Hash chain dependency: Because every block contains the hash of its predecessor, any change would cascade through the chain, invalidating all subsequent blocks.
  2. Network consensus: The majority of nodes must agree on a change, which is practically impossible in secure, well-distributed networks without control of a 51% attack.
  3. Resource expenditure: The computational power and time required to modify past transactions increase exponentially with block depth.

Therefore, even accidental or malicious attempts to reverse a transaction face insurmountable obstacles.

Practical Implications of Irreversibility

The irreversible nature of blockchain transactions carries both benefits and risks.

  • Benefits: Enhanced security against fraud and censorship, fostering trust in decentralized financial systems.
  • Risks: Users need to exercise caution, as mistakes such as sending to incorrect addresses or falling victim to scams cannot be undone.

Understanding these implications is critical for users engaging with blockchain-based systems, and tools like Token Metrics provide data-driven insights to enhance awareness and decision-making.

How AI and Analytics Support Understanding

With the growing complexity of blockchain ecosystems, AI-driven platforms are increasingly valuable for dissecting transaction behaviors and network health.

  • Transaction analysis: AI can identify patterns, potential risks, or anomalies in blockchain activity.
  • Market insights: Analytical tools can augment research on transaction volumes, confirmation times, and network congestion.
  • Educational resources: Platforms such as Token Metrics leverage AI to provide accessible metrics and ratings that inform users about blockchain projects and technologies.

Utilizing these resources supports a better grasp of the irreversible nature of transactions and the broader blockchain infrastructure.

Conclusion

Blockchain transaction irreversibility is rooted in the technology’s core principles of immutability, decentralization, and consensus-driven finality. These mechanisms collectively ensure that once a transaction is recorded on the blockchain and sufficiently confirmed, it cannot be altered or undone without prohibitive computational effort and majority network control. While irreversible transactions provide robust security and trustlessness, they also emphasize the importance of user diligence. Leveraging AI-powered analytical tools like Token Metrics can enhance comprehension and navigational confidence within blockchain ecosystems.

Disclaimer

This article is intended for educational purposes only and does not constitute financial advice. Readers should conduct their own research using varied sources, including specialized platforms such as Token Metrics, before engaging with blockchain or cryptocurrency activities.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products