Crypto Basics

NFTs Explained: What Are Non-Fungible Tokens?

A definitive guide to explain NFTs, or non-fungible tokens.
Token Metrics Team
7 minutes
MIN

NFTs, or non-fungible tokens, are gaining widespread popularity in the market for digital art and collectibles. In recent years, NFTs have become a cultural phenomenon, attracting the attention of crypto enthusiasts, digital art creators, and celebrities alike. As the Web 3.0 ecosystem continues to grow and adoption increases, many believe that NFTs will play a key role in the ownership of assets online.

So what are NFTs? Let's find out.

‍NFT Basics

NFTs, or non-fungible tokens, are a type of digital asset that represents ownership of something on the blockchain.

NFTs can be anything such as art, collectibles, music, profile pictures or PFP, DAO memberships, event tickets, gaming assets, virtual land, domain names, and so on. They can represent either completely digital assets or tokenized versions of assets that exist in the real world. Currently, there is a lot of excitement around using NFTs to sell virtual art.

Characteristics of NFTs

  • Ownership: NFT represents digital ownership of an item on a blockchain
  • Permanent: NFTs have data permanently stored within the token. This information includes images, messages, signatures, or any other data
  • Programmable: An NFT can be programmed to do anything. For example, an NFT artwork might be programmed to pay the artist royalties on every secondary sale of that artwork
  • Unique: NFTs are unique, and that uniqueness can be confirmed on a blockchain

How to Make an NFT

To create an NFT, or non-fungible token, you will need to first prepare your media file. NFTs can support a wide range of file types, including audio, images, and even 3D files. Some popular file types that are supported by NFTs include MP3, JPG, PNG, and GIF. You can also use 3D file formats like GLB to create NFTs that represent unique, digital objects.

Once your media is ready, you will need to set up a non-custodial wallet to securely store the cryptocurrency that you will use to buy, sell, and create NFTs. Non-custodial wallets are important because they allow you to retain control of your private keys, which are needed to access your cryptocurrency and make transactions. There are many different wallet options available, so it is important to do your research and choose one that is secure and user-friendly.

Once you have set up your wallet, you will need to buy Ethereum, or other fungible tokens depending on the blockchain being used, to cover the cost of minting your NFT. Ethereum is the most commonly used blockchain for NFTs, and it is typically the easiest to get started with. You can buy Ethereum using a variety of methods, including through a cryptocurrency exchange or from other individuals who are willing to sell.

Once you have your Ethereum, you will need to connect your wallet to an NFT marketplace like Rarible or OpenSea. These platforms allow you to easily create and mint your NFT, as well as trade and purchase NFTs created by others. To connect your wallet, simply tap the "Connect" button in the top right corner of the marketplace's website. This will create an account for you on the platform and allow you to begin creating your NFT.

To create your NFT, upload your media file to the platform and provide a description of your asset. You can choose to create a standalone piece, or create multiple NFTs of the same piece, each with its own unique characteristics. You can also set rules around royalties and other aspects of your NFT to ensure that you are fairly compensated for your work.

Once you are ready to mint your NFT, the process will require you to pay a small amount of ETH for transaction fees. This is necessary to get your NFT added to the blockchain and verified as unique. Once your NFT is minted, it will be available for trade and purchase on the marketplace. You can monitor the progress of your NFT and track its sales through your wallet or the marketplace's website.

NFT Secondary Markets

Creators make NFTs using blockchain-based minting platforms to retain more control over their creative output. Once NFTs are minted on a non-custodial wallet-compatible website, collectors and traders can sell these assets on the secondary market.

Here is a list of the most used NFT marketplaces:

  • OpenSea: OpenSea is the first and largest marketplace for NFTs. OpenSea is building tools that allow consumers to trade their items, creators to launch new digital works, and developers to build rich, integrated marketplaces for their digital items. It recently announced the support for Solana-based NFTs.
  • Coinbase NFT: Coinbase, a cryptocurrency exchange, recently launched its NFT marketplace in beta version to the public. This marketplace acts as a social media platform in which users can not only buy and sell NFTs but also interact with and showcase their collections using user profiles, likes, and comments.
  • Solanart: Solanart is the first and largest fully-fledged NFT marketplace on Solana. Users can get quick and easy access to digital collectibles, and explore, buy, and sell NFTs that run on the Solana blockchain.
  • Rarible: Rarible is a do-it-yourself NFT marketplace where you can mint NFTs when and how you please. Creators are highly favorable towards Rarible, as the minting process is free, easy, and unrestricted. Rarible’s native governance token “RARI” is used to incentivize platform users and give the community members a voice.
  • Nifty Gateway: Nifty Gateway is owned by the Gemini crypto exchange and has become one of the most known NFT marketplaces lately. They focus on viral drops from artists like Beeple, Trevor Jones, Pak, and more.
  • SuperRare: SuperRare (SR) is one of Ethereum’s debut crypto-art NFT marketplaces. Artists must be accepted to the platform before they can list their assets.

Notable NFT Projects

NFT-based companies have seen significant growth in recent years. Some notable examples include:

  • Yuga Labs: a blockchain technology company that creates Ethereum-based NFTs and digital collectibles. Yuga's most valuable NFT collection is Bored Ape Yacht Club, which has seen a floor price of over 150 ETH at its all-time high. In addition to apes, Yuga has also created dog NFTs, mutant apes, and deeds for its Metaverse. The company recently acquired Larva Labs, bringing high-value projects like Cryptopunks and Meebits under the Yuga brand. Yuga is backed by investors like Coinbase, Samsung, and Mark Cuban.
  • Doodles: a collection of 10,000 Ethereum-based NFTs created by artist BurntToast. The Doodles collection includes a wide range of visual traits, heads, costumes, and colorways. Owners of Doodles NFTs have exclusive access to new experiences like Space Doodles and Dooplicator.
  • Okay Bears: a collection of 10,000 Solana-based NFTs. Ownership of an Okay Bear grants access to a community of collectors and exclusive products, merchandise, and events.

Investing in NFTs

NFTs, or non-fungible tokens, provide many benefits as an investment vehicle.

One of the main advantages of NFTs is that they allow physical objects, such as artwork, to be tokenized.

Additionally, NFTs offer greater liquidity for investors, making it easier to trade and sell their assets.

The Future of NFTs

NFTs offer a new way to represent and prove ownership of assets on the blockchain.

This technology has already been used for digital art, collectibles, and in-game assets, but it has the potential to be applied to a wide range of other industries as well. For example, tokenized real estate could provide a way for people to invest in property without the barriers to entry that currently exist.

High-end fashion brands like Louis Vuitton have also expressed interest in using NFTs to track the ownership of luxury items.

Additionally, NFTs can be used to tokenize certifications, degrees, and licenses, providing a way to securely track and maintain this sensitive data on the blockchain.

Overall, the potential applications for NFTs are nearly limitless.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How Interfaces Power Modern Apps

Token Metrics Team
5
MIN

Every modern app, website, or AI agent depends on a set of invisible connectors that move data and commands between systems. These connectors—APIs—define how software talks to software. This post breaks down what an API is, how different API styles work, why they matter in crypto and AI, and practical steps to evaluate and use APIs responsibly.

What is an API?

An API (application programming interface) is a formalized set of rules and specifications that lets one software component interact with another. Rather than exposing internal code or databases, an API provides a defined surface: endpoints, request formats, response schemas, and error codes. Think of it as a contract between systems: you ask for data or an action in a specified way, and the provider responds in a predictable format.

APIs reduce friction when integrating services. They standardize access to functionality (like payment processing, identity verification, or market data) so developers can build on top of existing systems instead of reinventing core features. Because APIs abstract complexity, they enable modular design, encourage reusability, and accelerate development cycles.

How APIs work — technical overview

At a technical level, APIs expose endpoints over transport protocols (commonly HTTPS). Clients send requests—often with authentication tokens, query parameters, and request bodies—and servers return structured responses (JSON or XML). Key architectural patterns include:

  • REST: Resource-oriented, uses standard HTTP verbs (GET, POST, PUT, DELETE), and typically returns JSON. It's simple and cache-friendly.
  • GraphQL: A query language that lets clients request exactly the fields they need, minimizing over-fetching.
  • WebSocket / Streaming APIs: Persistent connections for real-time data push, useful for live feeds and low-latency updates.
  • RPC / gRPC: Procedure-call style with strong typing and high performance, common in internal microservices.

Operationally, important supporting features include rate limits, API keys or OAuth for authentication, versioning strategies, and standardized error handling. Observability—metrics, logging, and tracing—is critical to diagnose integration issues and ensure reliability.

APIs in crypto and AI — practical examples

In crypto ecosystems, APIs provide price feeds, historical market data, on-chain metrics, wallet services, and order execution. For AI-driven agents, APIs enable access to compute, models, and third-party signals. Example uses:

  • Fetching real-time and historical price data to power dashboards and analytics.
  • Querying on-chain explorers for transaction and address activity for compliance or research.
  • Integrating identity or KYC providers to verify users without handling sensitive documents directly.
  • Calling AI model APIs to generate embeddings, summaries, or predictions used by downstream workflows.

Tools that combine market data, on-chain insights, and AI-driven analysis can streamline research workflows. For example, AI research platforms and data APIs help synthesize signals and surface trends faster. When referencing such platforms in research or product development, it is best practice to evaluate their documentation, data sources, and rate limits carefully. One example of an AI research offering is Token Metrics, which illustrates how analytics and model-driven insights can be presented via a service interface.

Choosing & using APIs: a research checklist

When evaluating an API for a project, consider these practical criteria:

  1. Documentation quality: Clear examples, SDKs, response schemas, and error cases reduce integration time.
  2. Data provenance: Understand sources, update frequency, and any aggregation or normalization applied.
  3. Authentication & permissions: Which auth methods are supported? Can access be scoped and rotated?
  4. Rate limits & pricing: Are limits suitable for your expected throughput, and is pricing predictable?
  5. Latency & uptime SLAs: Critical for real-time systems; check historical status and monitoring APIs.
  6. Security practices: Encryption in transit, secure storage of keys, and breach disclosure policies.
  7. Versioning & backward compatibility: How does the provider manage breaking changes?

Implementation tips: sandbox first, validate edge cases (timeouts, partial responses), and build exponential backoff for retries. For production systems, segregate API keys by environment and rotate credentials regularly.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

Q: What is the difference between an API and a web service?
A: A web service is a type of API accessed over a network using web protocols. APIs can be broader, including libraries and OS-level interfaces; web services are specifically networked services.

FAQ: How do APIs secure communication?

Q: How are APIs secured?
A: Common methods include HTTPS for encryption, API keys or OAuth for authentication, scopes to limit access, and rate limiting to reduce abuse. Proper key management and least-privilege access are essential.

FAQ: REST vs GraphQL — when to use which?

Q: When is REST preferable to GraphQL?
A: REST is simple and widely supported—good for standardized CRUD operations and caching. GraphQL excels when clients need flexible queries and want to minimize over-fetching, but it adds complexity on the server side.

FAQ: Can APIs be used for crypto trading?

Q: Are APIs used to place trades?
A: Many exchange APIs allow programmatic order placement, market data retrieval, and account management. Using them requires careful handling of authentication, error states, and adherence to exchange rate limits and terms of service.

FAQ: How to evaluate an API for a project?

Q: What steps help evaluate an API?
A: Review docs, test a sandbox, verify data lineage and SLA, estimate costs at scale, and ensure the provider follows security and versioning best practices before integrating.

Disclaimer

This article is educational and informational only. It does not constitute investment advice, trading recommendations, or endorsements of any specific products or services. Always perform your own due diligence and comply with applicable laws and platform terms when using APIs or building systems that interact with financial markets.

Research

APIs Explained: How They Work and Why They Matter

Token Metrics Team
5
MIN

APIs power modern software: they let apps talk to each other, enable data sharing, and underpin many AI and crypto services. Whether you use a weather widget, connect to a payment gateway, or build an AI agent that queries market data, understanding what an API is will make you a smarter builder and researcher.

What is an API? A concise definition

An API, or application programming interface, is a set of rules and contracts that lets one software component request services or data from another. Think of an API as a menu at a restaurant: it lists operations you can ask for (endpoints), the inputs required (parameters), and the outputs you’ll receive (responses). The menu hides the kitchen’s complexity while enabling reliable interactions.

At a technical level, APIs define:

  • Endpoints: addressable paths (e.g., /v1/price) that expose functionality.
  • Methods: actions (GET, POST, PUT, DELETE) that describe intent.
  • Payloads and formats: how data is sent and returned (JSON, XML, protobuf).
  • Authentication and rate limits: controls that protect providers and consumers.

How APIs work: protocols, formats, and patterns

APIs come in many flavors, but several common patterns and technologies recur. HTTP-based REST APIs are ubiquitous: clients send HTTP requests to endpoints, and servers return structured responses. GraphQL provides a flexible query language so clients request exactly the data they need. gRPC and protobuf offer high-performance binary protocols suited for internal systems.

Key technical considerations include:

  • Authentication: API keys, OAuth 2.0, and signed requests verify identity.
  • Data formats: JSON is common for public APIs; compact formats (protobuf) are used for efficiency.
  • Versioning: /v1/, /v2/ patterns prevent breaking changes for consumers.
  • Error handling: HTTP status codes and descriptive error bodies aid debugging.

From a user perspective, well-designed APIs are predictable, documented, and testable. Tools like Postman, curl, and OpenAPI (Swagger) specs help developers explore capabilities and simulate workflows before writing production code.

Types of APIs and common use cases

APIs fall into categories by audience and purpose: public (open) APIs available to external developers, partner APIs for trusted integrations, and private/internal APIs for microservices inside an organization. Use cases span virtually every industry:

  • Web and mobile apps: fetch user data, manage authentication, or render dynamic content.
  • Payments and identity: integrate payment processors or single-sign-on providers.
  • AI and data services: call model inference endpoints, fetch embeddings, or retrieve labeled datasets.
  • Crypto and Web3: query blockchain state, streaming market data, or execute on-chain reads via node and indexer APIs.

For crypto developers, specialized endpoints like on-chain transaction lookups, token metadata, and real-time price feeds are common. Choosing the right API type and provider depends on latency, data freshness, cost, and reliability requirements.

How to evaluate and use an API effectively

Selecting an API is a mix of technical and operational checks. Use a framework to compare candidates across functionality, quality, and governance:

  1. Functional fit: Does the API expose the endpoints and data shapes you need? Can it filter, paginate, or aggregate appropriately?
  2. Performance: Measure latency, throughput, and SLA guarantees. For real-time systems, prefer providers with streaming or websocket options.
  3. Data quality & provenance: Verify how data is sourced and updated. For analytical work, consistent timestamps and clear versioning are critical.
  4. Security & compliance: Check authentication methods, encryption in transit, and data-handling policies.
  5. Cost & rate limits: Understand pricing tiers, request quotas, and backoff strategies.
  6. Documentation & community: Good docs, SDKs, and examples reduce integration time and maintenance risk.

When building prototypes, use sandbox or free tiers to validate assumptions. Instrument usage with logging and observability so you can detect schema changes or degraded data quality quickly. For AI agents, prefer APIs that return structured, consistent responses to reduce post-processing needs.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is an API?

An API is a contract that allows software components to interact. It specifies endpoints, request formats, authentication, and expected responses so different systems can communicate reliably.

How do I start using an API?

Begin by reading the provider’s documentation, obtain any required credentials (API key or OAuth token), and make simple test calls with curl or Postman. Use SDKs if available to accelerate development.

What’s the difference between REST and GraphQL?

REST exposes fixed endpoints returning predefined data structures, while GraphQL lets clients query for exactly the fields they need. REST is simple and cache-friendly; GraphQL provides flexibility at the cost of more complex server logic.

Are APIs secure to use for sensitive data?

APIs can be secure if they use strong authentication (OAuth, signed requests), TLS encryption, access controls, and proper rate limiting. Review the provider’s security practices and compliance certifications for sensitive use cases.

How are APIs used with AI and agents?

AI systems call APIs to fetch data, request model inferences, or enrich contexts. Stable, well-documented APIs with predictable schemas reduce the need for complex parsing and improve reliability of AI agents.

Disclaimer

This article is for educational purposes only. It explains technical concepts and evaluation frameworks but is not investment advice or a recommendation to use any specific API for financial decisions. Always review terms of service and data governance policies before integrating third-party APIs.

Research

APIs Explained: How They Work and Why They Matter

Token Metrics Team
5
MIN

APIs power modern software: they let apps talk to each other, enable mobile experiences, connect to cloud services, and feed AI agents. Understanding what an API is and how it operates helps product builders, researchers, and technical decision-makers evaluate integrations with clarity.

What is an API?

An API, or application programming interface, is a set of rules and contracts that defines how software components communicate. At its core an API exposes functionality or data so that another program can consume it without needing to understand internal implementation. Think of an API as a menu in a restaurant: you don’t need to know how the chef cooks — you just place an order and receive a result according to the menu’s options.

APIs come in many shapes: web APIs (HTTP-based), library or framework APIs (functions callable within code), and system APIs (operating system calls). In web and cloud contexts, developers most often work with REST, GraphQL, gRPC, and WebSocket APIs.

How APIs work: common patterns and protocols

At a technical level, an API defines the request and response pattern. For web APIs this typically involves:

  • Endpoint: a URL that represents a resource or action.
  • Method: an operation such as GET, POST, PUT, DELETE (for REST) or query/mutation in GraphQL.
  • Payload: the data sent with a request (JSON, XML, binary).
  • Response: the data returned, status codes, and error information.

APIs also incorporate metadata: authentication tokens, rate limits, and versioning headers. Protocol choice matters: REST is simple and widely supported; GraphQL offers flexible queries; gRPC is efficient for high-throughput, typed services; WebSockets suit bidirectional, low-latency streams. The right pattern depends on latency, payload size, and developer ergonomics.

API use cases: where APIs add value

APIs are the connective tissue across many domains. Typical use cases include:

  • Web and mobile apps: fetching user profiles, syncing data, and processing payments.
  • Microservices: internal services communicate via APIs to form scalable systems.
  • Data platforms: exposing analytical results, telemetry, and ETL endpoints.
  • AI and agents: models consume APIs for context, data enrichment, and action execution.
  • Crypto and on-chain tooling: price feeds, on-chain analytics, and wallet services often expose crypto APIs so applications can read ledger data and market signals.

These examples highlight how APIs abstract complexity and enable composability: a developer can integrate capabilities from third parties without rebuilding them.

Design and security: best practices to consider

Designing an API involves functionality, but security and reliability are equally important. Key practices include:

  • Authentication and authorization: use tokens, scopes, and role-based access control to limit what callers can do.
  • Input validation: validate and sanitize inputs to prevent injection and abuse.
  • Rate limiting and quotas: protect backends from spikes and enforce fair use.
  • Clear versioning: avoid breaking changes by introducing versioned endpoints or compatibility layers.
  • Observability: log requests, measure latency, and expose metrics to detect failures early.

Security hardening often includes transport encryption (TLS), secure key management, and routine audits. For APIs that touch financial or sensitive data, layered controls and monitoring are essential to reduce operational risk.

How to evaluate and choose an API

When comparing APIs, use a practical checklist:

  1. Documentation quality: clear examples and error descriptions reduce implementation friction.
  2. Latency and throughput: test typical response times and how the API behaves under load.
  3. Data freshness and coverage: confirm how often data updates and whether it covers required assets or regions.
  4. Security model: ensure authentication mechanisms and compliance posture meet your requirements.
  5. Cost and quotas: consider pricing tiers, rate limits, and overage behavior for production use.

For AI-driven workflows, examine whether the API supports batch access, streaming, and programmatic filtering so models can retrieve relevant context efficiently.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API is a defined interface that allows software components to communicate. It specifies how to request data or services and what responses to expect, enabling integration without exposing internal code.

FAQ: What are REST, GraphQL, and gRPC?

REST is a resource-oriented, HTTP-based approach. GraphQL lets clients request precisely the data they need via queries. gRPC uses binary protocols and strongly typed contracts for efficient inter-service communication—each fits different performance and flexibility needs.

FAQ: How do APIs handle authentication?

Common methods include API keys, OAuth 2.0 tokens, JWTs (JSON Web Tokens), and mutual TLS. Each balances security and developer convenience differently; choose based on threat model and integration scope.

FAQ: Can APIs be used for AI agents?

Yes. AI agents consume APIs for data enrichment, action execution, and orchestration. APIs that provide structured, low-latency data are particularly useful for agent workflows and real-time decision processes.

FAQ: What are common API failure modes?

Failures include rate-limit rejections, timeouts, partial data, authentication errors, and schema changes. Robust clients implement retries with backoff, graceful degradation, and schema validation to handle such scenarios.

FAQ: How should I test an API before integrating?

Perform functional tests, load tests, and end-to-end scenarios. Validate error handling, latency under expected traffic, and behavior at quota limits. Use sandbox keys when available to avoid impacting production systems.

Disclaimer

This article is for educational and informational purposes only and does not constitute financial, legal, or professional advice. Evaluate technologies and services in the context of your own requirements and constraints.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products