Back to blog
Research

Practical Guide to Building and Using REST APIs

A practical, implementation-focused guide to REST API design, security, documentation, and integration workflows—useful for developers and technical managers.
Token Metrics Team
6
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

REST APIs power much of the modern web: mobile apps, single-page frontends, third-party integrations, and many backend services communicate via RESTful endpoints. This guide breaks down the core principles, design patterns, security considerations, and practical workflows for building and consuming reliable REST APIs. Whether you are evaluating an external API or designing one for production, the frameworks and checklists here will help you ask the right technical questions and set up measurable controls.

What is a REST API and why it matters

REST (Representational State Transfer) is an architectural style for networked applications that uses stateless communication, standard HTTP verbs, and resource-oriented URLs. A REST API exposes resources (users, orders, prices, metadata) as endpoints that clients can retrieve or modify. The simplicity of the model and ubiquity of HTTP make REST a common choice for public APIs and internal microservices.

Key benefits include:

  • Interoperability: Clients and servers can be developed independently as long as they agree on the contract.
  • Scalability: Stateless interactions simplify horizontal scaling and load balancing.
  • Tooling: Broad tool and library support — from Postman to client SDK generators.

Core principles and HTTP methods

Designing a good REST API starts with consistent use of HTTP semantics. The common verbs and their typical uses are:

  • GET — retrieve a representation of a resource; should be safe and idempotent.
  • POST — create a new resource or trigger processing; not idempotent by default.
  • PUT — replace a resource entirely; idempotent.
  • PATCH — apply partial updates to a resource.
  • DELETE — remove a resource.

Good RESTful design also emphasizes:

  • Resource modeling: use nouns for endpoints (/orders, /users/{id}) not verbs.
  • Meaningful status codes: 200, 201, 204, 400, 401, 404, 429, 500 to convey outcomes.
  • HATEOAS (where appropriate): include links in responses to related actions.

Design, documentation, and versioning best practices

Well-documented APIs reduce integration friction and errors. Follow these practical habits:

  1. Start with a contract: define your OpenAPI/Swagger specification before coding. It captures endpoints, data models, query parameters, and error shapes.
  2. Use semantic versioning for breaking changes: /v1/ or header-based versioning helps consumers migrate predictably.
  3. Document error schemas and rate limit behavior clearly so clients can implement backoff and retries.
  4. Support pagination and filtering consistently (cursor-based pagination is more resilient than offset-based for large datasets).
  5. Ship SDKs or client code samples in common languages to accelerate adoption and reduce misuse.

Automate documentation generation and run contract tests as part of CI to detect regressions early.

Security, performance, and monitoring

Security and observability are essential. Practical controls and patterns include:

  • Authentication and authorization: implement OAuth 2.0, API keys, or mutual TLS depending on threat model. Always scope tokens and rotate secrets regularly.
  • Input validation and output encoding to prevent injection attacks and data leaks.
  • Rate limiting, quotas, and request throttling to protect downstream systems during spikes.
  • Use TLS for all traffic and enforce strong cipher suites and certificate pinning where appropriate.
  • Logging, distributed tracing, and metrics: instrument endpoints to measure latency, error rates, and usage patterns. Tools like OpenTelemetry make it easier to correlate traces across microservices.

Security reviews and occasional red-team exercises help identify gaps beyond static checks.

Integrating REST APIs with modern workflows

Consuming and testing REST APIs fits into several common workflows:

  • Exploration: use Postman or curl to verify basic behavior and response shapes.
  • Automation: generate client libraries from OpenAPI specs and include them in CI pipelines to validate integrations automatically.
  • API gateways: centralize authentication, caching, rate limiting, and request shaping to relieve backend services.
  • Monitoring: surface alerts for error budgets and SLA breaches; capture representative traces to debug bottlenecks.

When building sector-specific APIs — for example, price feeds or on-chain data — combining REST endpoints with streaming (webhooks or websockets) can deliver both historical queries and low-latency updates. AI-driven analytics platforms can help synthesize large API outputs into actionable signals and summaries; for example, Token Metrics and similar tools can ingest API data for model-driven analysis without manual aggregation.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common REST API questions

What is the difference between REST and RESTful?

REST describes the architectural constraints and principles. "RESTful" is commonly used to describe APIs that follow those principles, i.e., resource-based design, stateless interactions, and use of standard HTTP verbs.

How should I handle versioning for a public API?

Expose a clear versioning strategy early. Path versioning (/v1/) is explicit and simple, while header or content negotiation can be more flexible. Regardless of approach, document migration timelines and provide backward compatibility where feasible.

When should I use PATCH vs PUT?

Use PUT to replace a resource fully; use PATCH to apply partial updates. PATCH payloads should be well-defined (JSON Patch or application/merge-patch+json) to avoid ambiguity.

What are common pagination strategies?

Offset-based pagination is easy to implement but can produce inconsistent results with concurrent writes. Cursor-based (opaque token) pagination is more robust for large, frequently changing datasets.

How do I test and validate an API contract?

Use OpenAPI specs combined with contract testing tools that validate servers against the spec. Include integration tests in CI that exercise representative workflows and simulate error conditions and rate limits.

How can I secure public endpoints without impacting developer experience?

Apply tiered access controls: provide limited free access with API keys and rate limits for discovery, and require stronger auth (OAuth, signed requests) for sensitive endpoints. Clear docs and quickstart SDKs reduce friction for legitimate users.

What metrics should I monitor for API health?

Track latency percentiles (p50/p95/p99), error rates by status code, request volume, and authentication failures. Correlate these with infrastructure metrics and traces to identify root causes quickly.

Can REST APIs be used with AI models?

Yes. REST APIs can serve as a data ingestion layer for AI workflows, supplying labeled data, telemetry, and features. Combining batch and streaming APIs allows models to access both historical and near-real-time inputs for inference and retraining.

Are there alternatives to REST I should consider?

GraphQL offers flexible client-driven queries and can reduce overfetching, while gRPC provides efficient binary RPC for internal services. Choose based on client needs, performance constraints, and team expertise.

Disclaimer

This article is educational and technical in nature. It does not provide investment, legal, or regulatory advice. Implementations and design choices should be validated against your organization’s security policies and compliance requirements.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Understanding Web3 Wallets: Your Guide to Secure Crypto Asset Management

Token Metrics Team
4

Introduction to Web3 Wallets

As the blockchain landscape evolves, the term "Web3 wallets" has become fundamental in discussions around decentralized finance and digital asset management. Web3 wallets act as a gateway for users to interact with decentralized applications (dApps), access blockchain networks, and securely manage their digital assets without reliance on centralized intermediaries.

This article explores the concept of Web3 wallets, their types, core features, and the security considerations essential for users. It also highlights how analytical platforms like Token Metrics can aid in understanding the complexities surrounding these wallets and blockchain technologies.

What Are Web3 Wallets?

Web3 wallets are software or hardware tools that enable users to store, send, receive, and interact with cryptocurrencies and tokens on blockchain networks. Unlike traditional digital wallets, Web3 wallets are designed primarily to facilitate decentralized interactions beyond simple transactions, such as signing smart contracts and accessing dApps.

They come in two main forms:

  • Custodial wallets: Where a third party holds the private keys on behalf of the user. This category offers convenience but introduces counterparty risk.
  • Non-custodial wallets: Users retain full control of their private keys. This type aligns with the ethos of decentralization, offering enhanced security but requiring users to take responsibility for key management.

Types of Web3 Wallets

Understanding the various types of Web3 wallets helps users select options that fit their security posture and use cases.

  • Software Wallets: Installed as browser extensions or mobile apps, these wallets offer easy access and integration with dApps. Examples include MetaMask and Trust Wallet.
  • Hardware Wallets: Physical devices that store private keys offline, significantly reducing exposure to hacks. Examples include Ledger and Trezor.
  • Smart Contract Wallets: Wallets deployed as smart contracts allow for programmable control over funds, including multi-signature functionality and customizable security policies.

Key Features and Functionalities

Web3 wallets provide a suite of functionalities tailored to decentralized ecosystems:

  1. Private Key Management: Safe handling and storage of private keys, either locally or hardware-backed, is central to wallet security.
  2. Transaction Signing: Wallets enable users to approve blockchain transactions through cryptographic signatures.
  3. dApp Integration: Seamless interaction with Web3 applications via standardized protocols like WalletConnect.
  4. Multi-Chain Support: Ability to interact with different blockchain networks within a single interface.
  5. Token Management: Displaying and organizing various tokens compliant with standards such as ERC-20 or BEP-20.

Security Considerations for Web3 Wallets

Security remains paramount for Web3 wallet users due to the irreversible nature of blockchain transactions and increasing cyber threats:

  • Private Key Confidentiality: Exposure of private keys or seed phrases can result in total asset loss. Users should store these securely offline.
  • Phishing Attacks: Malicious actors may use fake websites or apps to steal credentials; exercising caution and verifying authenticity is critical.
  • Software Vulnerabilities: Keeping wallet software updated and using reputable wallets can minimize risks related to bugs or exploits.
  • Hardware Storage: Hardware wallets mitigate online threats by keeping keys offline but require physical safeguarding.

Leveraging AI Tools for In-Depth Analysis

The complexity of blockchain ecosystems has led to the emergence of AI-driven analytical platforms that assist users and researchers in understanding market trends, token metrics, and network behaviors. Token Metrics is an example of such a tool, providing data-backed ratings and insights that can complement wallet usage by offering research capabilities on tokens and market conditions.

These platforms can support educational efforts by:

  • Providing fundamentals and trend analysis based on on-chain and market data.
  • Offering scenario analysis to understand potential developments in blockchain protocols.
  • Enhancing security posture by informing users about project credibility and token performance metrics.

Practical Steps to Choose and Use Web3 Wallets

Choosing the right Web3 wallet is a process that balances ease of use, security, and compatibility needs:

  • Research Wallet Types: Understand differences between custodial and non-custodial options.
  • Assess Security Features: Review if the wallet supports hardware integration, multi-factor authentication, or multisig capabilities.
  • Confirm dApp Compatibility: If interaction with decentralized platforms is important, ensure smooth integration.
  • Backup Procedures: Follow recommended practices for seed phrase storage and wallet backup.

Additionally, engaging with AI-driven platforms like Token Metrics can provide analytical depth during the research phase and support ongoing management of crypto assets.

Conclusion and Disclaimer

Web3 wallets represent a critical component of the decentralized internet, empowering users to control their digital assets and participate in blockchain ecosystems securely and effectively. By understanding wallet types, functionalities, and security measures, users can navigate this complex space with greater confidence.

Tools like Token Metrics serve as valuable resources for educational and analytical purposes, enabling deeper insight into token fundamentals and network dynamics.

Disclaimer: This article is intended for educational purposes only and does not constitute financial or investment advice. Readers should conduct their own research and consider their risk tolerance before engaging with any cryptocurrency or blockchain technology.

Research

Understanding Altcoins: The Diverse World of Alternative Cryptocurrencies

Token Metrics Team
4

Introduction to Altcoins

The term altcoins broadly refers to all cryptocurrencies that exist as alternatives to Bitcoin, the pioneering digital currency. Since Bitcoin’s inception in 2009, thousands of alternative crypto coins have emerged with a variety of designs, purposes, and technologies. Understanding what altcoins are and how they differ from Bitcoin and one another is vital for anyone interested in the cryptocurrency ecosystem.

Definition and Types of Altcoins

Altcoins are digital assets that operate on blockchain technology but distinguish themselves from Bitcoin in technical structure or intended utility. Technically, the name is a contraction of “alternative coins.” Altcoins encompass a wide range of projects, including but not limited to:

             

Technological Innovations in Altcoins

Many altcoins distinguish themselves by innovating on blockchain design, consensus mechanisms, scalability, and privacy. For instance, some use Proof of Stake instead of Bitcoin’s Proof of Work to reduce energy consumption. Others implement advanced cryptographic techniques to enhance transaction confidentiality. These technical differences contribute to the diverse use cases altcoins pursue and can affect their adoption and network effects within various communities.

Evaluating Altcoins and Research Approaches

Evaluating altcoins requires a multifaceted approach that considers technology fundamentals, development activity, community support, and use cases. Research techniques often include:

           

Advanced AI-driven research tools like Token Metrics synthesize vast amounts of data and market signals to provide quantitative ratings and analysis, aiding in a more informed understanding of altcoin projects.

Altcoins vs Bitcoin: Key Differences

While Bitcoin is primarily conceived as a decentralized digital currency and store of value, altcoins often aim to address specific limitations or explore novel functionalities. Differences can include:

           

Understanding these distinctions informs discussions around the complementary roles altcoins play alongside Bitcoin in the broader crypto ecosystem.

Considering Risks and Complexities

Due to the large number and variety of altcoins, the space involves considerable complexity and risk. Important considerations include:

           

Using analytics platforms like Token Metrics can provide data-driven insights into these factors by compiling technical, fundamental, and sentiment indicators.

Practical Steps for Using AI Tools in Altcoin Analysis

AI-powered platforms enable systematic, scalable analysis of altcoins through machine learning models harnessing blockchain data, news sentiment, and market indicators. To incorporate these tools effectively:

           

Conclusion and Key Takeaways

Altcoins represent a diverse and rapidly evolving segment of the cryptocurrency landscape, designed to explore new functionalities and solve various challenges beyond Bitcoin’s scope. They encompass broad categories, from payments and smart contract platforms to privacy and stablecoins. Due to the complexity and number of projects, rigorous, data-informed research approaches are essential to understand their technology, use cases, and network health.

AI-driven research tools such as Token Metrics offer valuable support in this endeavor by aggregating multiple data streams into comprehensive analysis, helping stakeholders objectively compare altcoins on various factors.

Disclaimer

This blog post is for educational and informational purposes only and does not constitute financial, investment, or trading advice. Readers should conduct their own independent research before engaging with cryptocurrencies.

Research

Best AI Tools for Crypto Trading in 2025: Smarter Strategies for Maximum Profits

Token Metrics Team
6 min

Click here to trade cryptos at MEXC!

Contact us at promo@tokenmetrics.com for marketing and sponsorship programs.

Introduction: Why AI Is Transforming Crypto Trading

In 2025, cryptocurrency trading has evolved far beyond manual chart analysis and intuition. Artificial Intelligence (AI) is now at the forefront of trading strategies, enabling investors to process massive amounts of data, predict market movements, and make faster, smarter decisions.

AI trading tools have become indispensable for retail and institutional traders alike, offering insights that were once only available to hedge funds with large research teams. This article explores the best AI tools for crypto trading in 2025, with a special focus on how platforms like Token Metrics give traders a competitive edge.

What Are AI Crypto Trading Tools?

AI crypto trading tools use machine learning algorithms, predictive analytics, and natural language processing to analyze market data and provide actionable insights.

These platforms help traders:

  • Predict Price Movements: Using historical data and sentiment analysis.
  • Detect Emerging Trends: Spotting narratives like AI coins, DeFi, and Layer 2 growth early.
  • Automate Trades: Executing strategies faster than manual trading.
  • Manage Risk: Offering portfolio rebalancing and stop‑loss recommendations.

In short, AI tools turn complex crypto data into clear, actionable decisions.

1. Token Metrics — The All‑In‑One AI Trading Platform

Best For: Portfolio optimization, coin ratings, and narrative detection

Token Metrics is one of the most advanced AI‑powered crypto platforms in 2025. Designed for both traders and long‑term investors, it uses over 80 data points per token to generate AI‑driven ratings, predictions, and portfolio recommendations.

Key Features:

  • AI Coin Ratings: Score cryptocurrencies based on fundamentals, technicals, sentiment, and on‑chain data.
  • Narrative Detection: Identify early‑stage trends like AI tokens or real‑world asset tokenization before they go mainstream.
  • Portfolio Optimization: Create a personalized, data‑driven portfolio aligned with your goals and risk tolerance.
  • Trading Signals & Alerts: Get real‑time updates on bullish/bearish movements.

Why It’s Great:
Token Metrics is more than a tool — it’s a full trading intelligence platform. It helps users discover hidden gems, fine‑tune strategies, and stay ahead of shifting market conditions.

2. CryptoHopper — AI‑Driven Trading Automation

Best For: Automated crypto trading bots

CryptoHopper allows traders to automate their trading strategies using AI‑powered bots. It connects to major exchanges and executes trades based on predefined conditions, reducing emotional trading.

Key Features:

  • AI‑Driven Bots: Adapt strategies based on real‑time data.
  • Backtesting: Test strategies against historical market performance.
  • Social Trading: Copy strategies from experienced traders.

Why It’s Great:
For traders who want hands‑off execution, CryptoHopper provides robust automation paired with AI insights.

3. 3Commas — AI for Portfolio and Trade Management

Best For: Multi‑exchange trading and smart portfolio management

3Commas combines AI‑driven analytics with smart trading tools, allowing users to execute trades across multiple exchanges.

Key Features:

  • AI Portfolio Management: Optimize holdings using automated rebalancing.
  • Trading Bots: Configure AI bots for spot, futures, or options markets.
  • SmartTrade Terminal: Advanced order types for precision trading.

Why It’s Great:
3Commas is ideal for active traders managing multiple accounts across different platforms.

4. Pionex — AI‑Powered Grid Trading

Best For: Grid and arbitrage trading

Pionex specializes in AI‑powered grid trading, which profits from market volatility.

Key Features:

  • AI Grid Bots: Automate buy‑low, sell‑high strategies.
  • Arbitrage Bots: Capitalize on price differences across exchanges.
  • Low Fees: Competitive rates for active traders.

Why It’s Great:
Pionex helps beginner and intermediate traders profit from sideways markets using low‑maintenance AI bots.

Click here to trade cryptos at MEXC!

Contact us at promo@tokenmetrics.com for marketing and sponsorship programs.

5. Numerai Signals — AI for Predictive Trading

Best For: Crowdsourced AI predictions

Numerai Signals collects machine learning models from data scientists worldwide to generate highly predictive trading insights.

Key Features:

  • Crowdsourced AI Models: Benefit from collective intelligence.
  • Predictive Signals: Forecast market moves using advanced algorithms.
  • Quantitative Trading: Build data‑driven strategies with institutional‑grade tools.

Why It’s Great:
Numerai offers unique crowdsourced intelligence, making it an attractive tool for data‑driven traders.

How to Choose the Right AI Trading Tool

When selecting a platform, consider:

  • Your Goals: Are you looking for portfolio optimization, day trading, or automation?
  • Ease of Use: Some tools require technical expertise, while others (like Token Metrics) are beginner‑friendly.
  • Data Sources: Ensure the tool uses reliable, real‑time market data.
  • Integration: Check if it works with your preferred exchanges or wallets.

Combining AI Tools for Maximum Impact

The best approach in 2025 isn’t using just one tool — it’s combining multiple platforms:

  • Use Token Metrics for narrative detection and portfolio building.
  • Automate execution with CryptoHopper or 3Commas.
  • Apply Pionex bots for volatility trading and arbitrage opportunities.

This hybrid approach creates a comprehensive AI‑driven trading strategy.

Risks of AI Trading Tools

While AI can enhance trading, it isn’t foolproof:

  • Overreliance on Bots: AI models can fail during extreme volatility.
  • Data Quality Issues: Poor‑quality data leads to inaccurate predictions.
  • Security Risks: Using third‑party tools requires strong cybersecurity practices.

Using Token Metrics’ AI analytics helps mitigate these risks by providing transparent, multi‑factor coin ratings.

Conclusion

AI is transforming how crypto trading works in 2025. From narrative detection to automated execution, these tools give traders the ability to make smarter, faster, and more profitable decisions.

Token Metrics leads the way, offering AI‑powered coin ratings, trend detection, and portfolio optimization — making it the ideal platform for traders and investors aiming to stay ahead in a volatile market.

In crypto, information is power — and with the right AI tools, you can turn that information into consistent profits.

Click here to trade cryptos at MEXC!

Contact us at promo@tokenmetrics.com for marketing and sponsorship programs.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products