Crypto Basics

Pump and Dump Schemes - How to Spot and Avoid Investment Scams

Learn everything about pump and dump schemes and how to identify it, in this descriptive guide.
Token Metrics Team
7 Minutes
MIN

As the world of finance continues to evolve, new and innovative investment opportunities have emerged. However, alongside these opportunities come potential risks and scams.

One such scam that has become increasingly prevalent is the "pump and dump" scheme. In this article, we'll discuss what a pump and dump scheme is, how to spot it, and how to avoid falling victim to such investment scams.

What is Pump and Dump?

Pump and dump is a type of investment fraud used in the financial market where one or more people intentionally raise the price of a stock, crypto or other financial assets by disseminating false or deceptive information to lure investors. 

Once the price has increased to the desired level, these manipulators sell their shares at a profit, leading to a decrease in price, and leaving innocent investors with securities that are either worthless or overpriced.

How Does the Pump and Dump Scheme Work?

The mechanics of a pump and dump scheme works by manipulating microcap assets, such as penny stocks or cheap cryptos, which are companies with a small market capitalization. These assets are usually traded at a very low price, and do not follow strict requirements for public listing.

Therefore, scammers can easily manipulate information about these assets. The lack of publicly available information provides fraudsters with favorable conditions since potential investors lack the necessary sources to verify all the information about a company and management.

Moreover, microcap assets are highly illiquid and have very low trading volume. As a result, even small transactions can significantly boost the asset price.

The fraudster typically starts by buying a large number of shares in that type of micro cap asset, then spreading false information about the company through various channels, such as social media, chat rooms, and email newsletters.

Once the price of the asset has been artificially inflated, the fraudsters will begin selling their holdings, realizing significant profits. As the scheme is uncovered, the price of the asset typically plummets, leaving unsuspecting investors with significant losses.

Types of Pump and Dump Schemes

There are several types of pump and dump schemes in financial world, including:

Pre-arranged pump and dump: A group of fraudsters will agree to buy a particular asset simultaneously, creating an artificial demand and price surge. Once the price has reached a certain level, the fraudsters will sell their holdings, causing the price to crash.

Social media pump and dump: Fraudsters will use social media platforms to spread false information and create hype around a particular cryptocurrency, stocks or any other asset, encouraging investors to buy. Once the price has been inflated, the fraudsters will sell their holdings.

Exchange-based pump and dump: Fraudsters will use exchanges with low liquidity to create artificial demand for a particular asset, causing the price to surge. Once the fraudsters have sold their holdings, the price typically crashes.

Role of Social Media in Pump and Dump Schemes

Social media plays a significant role in pump and dump schemes as it allows individuals to disseminate false or misleading information about a stock or cryptocurrency quickly and easily to a large audience. 

Scammers may create fake social media profiles or use existing ones to promote the cryptocurrency or digital asset and spread positive news about it, encouraging others to invest. They may also use social media to organize groups of investors to buy and sell the asset at specific times to manipulate its price. 

Social media platforms such as Twitter and Telegram are popular channels for these activities. Investors must be cautious and verify the accuracy of information before making investment decisions based on social media posts or messages.

Pump and Dump Examples

Here are some real-life examples of crypto pump and dump schemes:

Verge - In April 2018, the cryptocurrency Verge experienced a sudden price increase of over 300% in just a few hours. The price increase was caused by a group of individuals who coordinated a pump and dump scheme on social media platforms. The group created false hype around the cryptocurrency, which caused a massive influx of investors who were looking to get rich quickly. 

Soon after the scheme was executed, the value of the cryptocurrency dropped sharply, resulting in substantial losses for investors who failed to dispose of their holdings promptly.

Dogecoin - Dogecoin is a cryptocurrency that was created as a joke in 2013 but gained a significant following due to its popularity on social media. In 2021, a group of individuals on Reddit coordinated a pump and dump scheme on Dogecoin, causing its value to increase significantly in a very short span of time.

The group created a social media campaign that encouraged investors to buy and hold Dogecoin, which caused its value to skyrocket. However, as with all pump and dump schemes, the value of the cryptocurrency eventually plummeted, causing significant losses for investors who were not able to sell their holdings in time.

How to Spot Pump and Dump?

There are several warning signs that investors can look for to spot a pump and dump scheme -

High-pressure sales tactics - Fraudsters often use high-pressure sales tactics to convince investors to buy into a stock or crypto quickly before the price goes up. They may use language such as "this is a once-in-a-lifetime opportunity" or "you don't want to miss out on this."

Unsolicited investment advice - Be wary of unsolicited investment advice from people you don't know, especially if it comes in the form of an email or social media message. Fraudsters may pose as legitimate investment advisors or insiders and offer tips on assets that are "about to take off."

Huge price swings - If you see a stock that is experiencing huge price swings with no apparent reason, this could be a sign of a pump and dump scheme. 

Lack of information - If you can't find any information about a company or its products, this could be a red flag. Pump and dump fraudsters often create shell companies or use obscure assets to make it difficult for investors to do their due diligence.

Misleading information - Be skeptical of any information that seems too good to be true. Pump and dump fraudsters often make false or misleading statements about a company's financial health, products, or industry.

How to Avoid Pump and Dump Schemes?

Here are some tips for avoiding pump and dump investment scams:

Do your research - Before investing in any stock, crypto or other asset, do your research. Read the company's annual report, financial statements, and news articles about the company.

Be skeptical - If an investment opportunity seems too good to be true, it probably is. Be skeptical of high-pressure sales tactics, unsolicited investment advice, and promises of guaranteed returns.

Avoid small-cap cryptocurrencies or assets - Investors should be wary of investing in small-cap cryptocurrencies or assets, particularly those with low liquidity.

Use stop-loss orders - Investors can use stop-loss orders to automatically sell their holdings if the price of the cryptocurrency or assets falls below a certain level.

Diversify your portfolio - Don't put all your eggs in one basket. Diversify your portfolio by investing in a variety of stocks, bonds, cryptos and other assets. This will help minimize your risk and protect you from losses.

Use a reputable trading platform - When buying or selling assets, use a reputable trading platform only. Check the platform's credentials and make sure they are trusted, widely used and legally registered.

Is Pump and Dump illegal?

Yes, the pump and dump scheme is illegal as it involves the intentional manipulation of the price of assets through false or misleading information. This scheme is a violation of securities laws in many jurisdictions and can result in serious legal consequences for those who participate in it. 

In addition to legal repercussions, individuals who fall victim to the pump and dump scheme can suffer significant financial losses. It is essential for investors to be aware of the risks associated with this fraudulent activity and to exercise caution when investing in cryptocurrencies.

The Bottom Line

In conclusion, the pump and dump scheme is a fraudulent trading strategy that manipulates the price of financial assets by artificially inflating its value resulting in illegal profits for a select group of individuals. 

It is important for investors to be cautious, while making investment related decisions in the stocks, cryptos and digital assets. Since these assets can be volatile and unpredictable.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How They Connect Apps and Data

Token Metrics Team
5
MIN

APIs power modern software by letting systems talk to one another. Whether you use a mobile app, connect a trading bot, or plug an AI model into a data feed, APIs are the plumbing that moves data and requests. This guide explains what an API is, how APIs work, common types and protocols, practical crypto and AI use cases, and design and security practices you should know as a developer or analyst.

What an API Is and How It Works

API stands for Application Programming Interface. Broadly, it is a contract that defines how one software component requests services or data from another. An API specifies:

  • Available endpoints or functions (what you can ask for)
  • Input and output formats (how to send and receive data)
  • Authentication and rate limits (who can use it and how often)

At runtime a client (for example, a web app) sends a request to an API endpoint on a server. The server validates the request, executes logic, and returns a response—usually structured data like JSON or XML. Think of an API as a standardized messenger that abstracts internal complexity and enforces clear expectations between systems.

Common API Types and Protocols

APIs differ by style and protocol. Key varieties include:

  • REST: Resource-oriented, uses HTTP methods (GET/POST/PUT/DELETE) and JSON. Widely adopted for web services.
  • GraphQL: Client-specified queries that can reduce over- or under-fetching by letting clients request exactly what they need.
  • gRPC: High-performance RPC framework using Protocol Buffers; common for internal microservices.
  • Webhooks: Server-to-client callbacks that push events instead of polling, useful for real-time notifications.

Protocol selection depends on latency, payload size, developer ergonomics, and whether the API is public, private, or internal to an organization.

APIs in Crypto and AI: Practical Use Cases

APIs are foundational in crypto and AI workflows. Examples include:

  • Market data: Endpoints that return prices, orderbook snapshots, and historical candles for trading and backtesting.
  • On-chain data: APIs that expose blockchain state, transactions, token balances, and smart contract events.
  • Execution: Trading APIs that allow order placement, cancellations, and account management (note: focus on technical integration, not trading advice).
  • AI model inputs: Data pipelines that feed structured market or on-chain data into models and agents for feature generation or monitoring.

For teams building crypto analytics or AI agents, structured and timely data is essential. For example, Token Metrics provides research tools that combine on-chain and market signals behind an API-friendly interface, illustrating how analytics platforms expose data and insights for downstream tools.

Design, Security, and Best Practices for APIs

Robust API design balances usability, performance, and safety. Key best practices include:

  1. Clear documentation: Describe endpoints, parameters, examples, and error codes to speed onboarding.
  2. Versioning: Use explicit versioning (v1, v2) to avoid breaking client integrations when you change behavior.
  3. Authentication & Authorization: Implement API keys, OAuth, or signed requests and scope keys to limit access.
  4. Rate limits & quotas: Protect backend systems and ensure fair use by enforcing sensible limits.
  5. Input validation & sanitization: Prevent injection attacks and ensure predictable behavior.
  6. Monitoring & observability: Track latency, error rates, and usage patterns to detect anomalies early.

Security is especially important for crypto-related endpoints that can expose sensitive account or on-chain actions. Design your API assuming adversaries will attempt to abuse endpoints and validate responses on the client side as well.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API — Common Questions

How does an API differ from a library or SDK?

An API defines how to communicate with a service; a library is code you include in a project. An SDK bundles libraries, documentation, and tools to help developers use an API more easily.

What is the difference between REST and GraphQL?

REST exposes fixed endpoints for resources and often returns entire objects, while GraphQL lets clients specify exact fields to fetch. GraphQL can reduce data transfer for complex UIs but adds server-side complexity.

Are public APIs safe to use for production systems?

Public APIs can be used in production if they meet reliability, latency, and security requirements. Verify SLAs, implement retries and fallbacks, and isolate credentials using secure storage patterns.

How do I authenticate with most APIs?

Common methods include API keys, OAuth 2.0, JWTs, and signed requests. Choose mechanisms that match your threat model: short-lived tokens and scoped keys reduce exposure compared to long-lived secrets.

How can I test and monitor an API integration?

Use unit and integration tests with mocked responses, postman or curl for ad-hoc tests, and observability tools to monitor latency, error rates, and unexpected schema changes. Deploy health checks and alarming for critical endpoints.

What are typical rate limits and how should clients handle them?

Rate limits vary by provider; common patterns include requests-per-minute and burst allowances. Clients should implement exponential backoff, respect Retry-After headers, and cache responses where appropriate.

How does an API support AI agents?

APIs supply structured, machine-readable data that AI agents can ingest for feature generation, state tracking, or decision-making. Consistent schemas, timestamps, and low-latency endpoints improve model reliability.

Conclusion

APIs are the connective tissue of modern software, enabling modular design, data sharing, and integration across web, crypto, and AI systems. Understanding API types, security practices, and operational patterns helps teams design robust integrations and choose the right tooling for scale.

Disclaimer

This article is for educational purposes only. It provides technical explanations and practical guidance about APIs and related technologies. It does not constitute investment, legal, or professional advice.

Research

APIs Explained: How They Power Apps and Data

Token Metrics Team
5
MIN

APIs are one of the least visible yet most powerful pieces of modern software infrastructure. Whether you're building a mobile app, connecting to market data, or integrating an AI model, APIs are the bridges that let systems share data and functionality. This guide unpacks what an API is, how different API styles work, and practical steps to evaluate and use APIs safely and effectively.

What an API Is: A Practical Definition

An API—short for Application Programming Interface—is a set of rules and protocols that lets one software system request services or data from another. At its simplest, an API specifies the inputs a caller must provide, the format of those inputs, and the shape of the output it can expect. APIs abstract internal implementation details so developers can build on top of existing services without reinventing core functionality.

Key conceptual elements include:

  • Endpoints: Named URLs or addresses that expose specific functionality or data.
  • Requests & Responses: Standardized messages (often JSON) sent to and returned from endpoints.
  • Authentication: Mechanisms (API keys, OAuth tokens) that control who can access the interface.
  • Rate limits & quotas: Rules that protect services and ensure fair usage.

How APIs Work: The Mechanics

At a technical level, most modern APIs follow a request-response model. A client sends a request to an endpoint, the server processes that request using internal logic or data stores, and then returns a response. The most common flow includes:

  1. Client constructs a request (method, headers, body) according to the API specification.
  2. Client authenticates using the required scheme (API key, bearer token, etc.).
  3. Server validates input, applies business logic, and accesses data sources.
  4. Server returns a standardized response with status codes and a body payload.

APIs also include non-functional considerations: latency, consistency, error handling, and observability. Robust APIs document error codes, expected payloads, and examples to reduce integration friction.

Common API Types and When to Use Them

Not all APIs are the same. Choosing the right style depends on use case, performance needs, and complexity.

  • REST (Representational State Transfer): Widely used, HTTP-based, resource-oriented, typically JSON over GET/POST methods. Good for CRUD-style operations and public web services.
  • GraphQL: Client-driven queries that let callers request precisely the fields they need. Useful when reducing overfetching matters or when multiple clients require different views of the same data.
  • WebSocket: Full-duplex channels for real-time, low-latency communication. Common for live market feeds, chat systems, and push notifications.
  • RPC / gRPC: Procedure-call semantics with efficient binary serialization, often used in microservices and high-throughput internal systems.

In crypto and AI contexts, combinations are common: REST for configuration and historical data, WebSocket for live updates, and specialized RPC endpoints for blockchain node interactions.

Practical Uses, Evaluation, and Best Practices

APIs are used to access market data, execute trades (in regulated contexts), fetch on-chain metrics, call ML inference endpoints, and orchestrate microservices. When evaluating or integrating an API, consider:

  • Documentation quality: Clear examples, schemas, and code snippets shorten integration time.
  • Authentication & access models: Ensure the offered auth methods match your security needs and deployment model.
  • Rate limits and pricing: Understand throughput constraints and cost implications for production usage.
  • Data freshness and SLAs: Check update frequency, latency expectations, and uptime guarantees if available.
  • Error handling and retries: Use idempotent patterns and backoff strategies when calls fail temporarily.

For teams building AI agents or analytic dashboards, designing APIs with predictable schemas and clear versioning reduces downstream friction. AI-driven research platforms can augment manual analysis by normalizing data and providing signal overlays; for example, tools like Token Metrics integrate multiple data sources and can be accessed via APIs to feed models or dashboards.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What Is an API?

Q: How is an API different from a library or SDK?
A: A library is code included in an application at compile/runtime and runs locally; an SDK bundles libraries and tools for a platform. An API is an interface—often remote—that defines how to interact with a service that may run on different infrastructure.

FAQ: What security practices should I follow?

Q: How should I secure API access?
A: Use strong authentication (tokens, OAuth), enforce least privilege, rotate keys, use TLS for transport encryption, validate inputs server-side, and monitor usage for anomalies.

FAQ: What are rate limits and why do they matter?

Q: Why do APIs throttle requests?
A: Rate limits protect service stability, prevent abuse, and ensure fair access. Design clients to respect published limits and apply exponential backoff on failures.

FAQ: How do API versions work?

Q: What approaches are used for versioning?
A: Common patterns: URL versioning (/v1/...), header-based versioning, or content negotiation. Versioning maintains backward compatibility and lets providers evolve interfaces without breaking clients.

FAQ: How do I choose the right API style?

Q: REST, GraphQL, or WebSocket—how to decide?
A: Choose REST for straightforward resource access and broad compatibility, GraphQL when clients need flexible queries to minimize payloads, and WebSocket for real-time streaming or low-latency updates.

Disclaimer

This article is for informational purposes only and does not constitute financial, legal, or professional advice. It outlines technical concepts and best practices for understanding and integrating APIs. Evaluate services and compliance considerations independently before sending or acting on production data.

Research

APIs Explained: What an API Does and Why It Matters

Token Metrics Team
5
MIN

APIs power much of the modern software economy, but the term can feel abstract. This guide breaks down what an API is, how APIs work in practice, common types you’ll encounter, and practical frameworks for evaluating or integrating an API into your projects.

What is an API? A concise definition

An API, or application programming interface, is a set of rules and protocols that lets different software components communicate. Think of an API as a contract: one system exposes specific operations (endpoints) and data structures, and other systems call those operations to request services or information. The API hides internal complexity and provides a predictable interface for developers.

At its core, an API specifies:

  • The actions available (e.g., read data, submit a transaction, trigger a process).
  • The input and output formats (often JSON or XML for web APIs).
  • The transport protocol and authentication methods (HTTP, gRPC, OAuth, API keys).

How APIs work — protocols, endpoints, and flows

APIs can be implemented with different technologies, but common patterns include REST, GraphQL, and RPC (gRPC). A typical web API flow involves a client sending an HTTP request to an endpoint URL, the server processing that request, and then returning a structured response. Key components to understand:

  • Endpoint: A specific URL that performs an action or returns data.
  • Method: HTTP verbs such as GET, POST, PUT, DELETE indicate intent.
  • Payload: The data sent with requests (body) or returned (response).
  • Authentication: Controls access — API keys, OAuth tokens, or signed requests.
  • Rate limits: Servers often limit calls per minute to protect resources.

Understanding these pieces helps you design predictable integrations and debug issues like unexpected latencies or malformed responses.

Common API types and real-world examples

Different APIs serve different needs. Here are common categories and examples:

  • Public / Open APIs: Accessible to external developers. Examples: public weather APIs, mapping APIs.
  • Private APIs: Used internally within an organization to modularize services.
  • Partner APIs: Shared with specific partners under contract.
  • Web APIs (REST/GraphQL): Most common for web and mobile apps. REST APIs expose resources via endpoints; GraphQL exposes a flexible query schema.
  • Streaming / WebSocket APIs: Real-time data feeds such as live market prices or chat messages.

Practical examples: integrating a payment processor via its REST API, pulling exchange rates from a crypto API for display, or using a mapping API to embed location features.

Evaluating and integrating APIs: a practical checklist

When researching or choosing an API, apply a short framework: compatibility, cost, reliability, and security (CCRS).

  1. Compatibility: Does the API support the required protocols and data formats? Is client SDK support available for your stack?
  2. Cost: Understand pricing tiers, rate limits, and overage fees. Check if a free tier or trial exists for testing.
  3. Reliability: Review historical uptime, SLAs, and status page transparency. Look for rate limit details and failover options.
  4. Security: Evaluate authentication models, data encryption, and compliance notes (e.g., GDPR, SOC2 where relevant).

Additional integration tips: use sandbox environments for testing, log API requests/responses for troubleshooting, and build retry/backoff logic to handle transient failures.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common questions about APIs

What is the difference between REST and GraphQL?

REST defines endpoints that return fixed data structures, which can result in over- or under-fetching. GraphQL exposes a query language where clients request exactly the fields they need, reducing extra data transfer but adding schema complexity on the server side.

How do API keys differ from OAuth tokens?

API keys are simple credentials often used for server-to-server authentication or identifying an app. OAuth is an authorization framework that enables delegated access (user consents) and typically issues short-lived access tokens with refresh mechanics for better security.

Are APIs secure by default?

No. Security depends on implementation: use HTTPS, validate and sanitize inputs, enforce proper authentication/authorization, rotate keys periodically, and monitor for unusual activity. Treat APIs as a potential attack surface and apply standard security controls.

What are typical API rate limits and how should I handle them?

Rate limits vary widely: some services allow thousands of requests per minute, others are stricter. Implement client-side throttling, exponential backoff on retries, and caching where appropriate to reduce request volume and avoid hitting limits.

How can AI and analytics help when working with APIs?

AI-driven tools can help parse API responses, detect anomalies, prioritize endpoints by value, and synthesize insights from multiple data feeds. Platforms such as Token Metrics use AI to aggregate on-chain and market data, which can speed evaluation when integrating crypto-related APIs.

What are common pitfalls when building with third-party APIs?

Common issues include unexpected breaking changes, insufficient error handling, underestimating rate limits, hidden costs, and lack of observability. Mitigate these by reading docs thoroughly, using versioned endpoints, and automating monitoring and alerts.

Disclaimer: This article is for educational and informational purposes only. It explains technical concepts and practical frameworks related to APIs and does not provide investment, legal, or professional advice. Evaluate services independently and consult appropriate experts for decision-making.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products