Research

REST API Guide: Design, Security & Best Practices

A practical guide to REST API design covering resource modeling, security, performance, versioning, and integration with AI-driven tooling to help teams build reliable, scalable APIs.
Token Metrics Team
5
MIN

REST APIs remain the backbone of modern web and mobile integrations. Whether you are building a public data service, an internal microservice, or an AI agent that consumes remote endpoints, understanding REST architecture, trade-offs, and operational considerations helps you design reliable, maintainable services. This guide outlines core principles, security patterns, performance levers, and practical steps to take a REST API from prototype to production-ready.

Overview: What REST Means and When to Use It

REST (Representational State Transfer) is an architectural style that emphasizes stateless interactions, resource-oriented URLs, and a uniform interface over HTTP. REST excels when you need:

  • Clear resource models (users, orders, assets) that map to endpoints.
  • Interoperability across heterogeneous clients (web, mobile, bots).
  • Simple caching and scalability using standard HTTP semantics.

It is less ideal for tightly-coupled RPC-style workflows or highly transactional systems where more specialized protocols (gRPC, WebSockets) may be better. Use scenario analysis: list the primary operations, expected throughput, latency requirements, and client types before committing to REST.

Design Principles: Modeling Resources, Endpoints & Versioning

Good REST design begins with resource modeling. Convert nouns into endpoints (e.g., /users, /orders/{id}) and use HTTP verbs for actions (GET, POST, PUT, PATCH, DELETE). Key practices include:

  • Consistent URI structure: predictable paths reduce client complexity and documentation friction.
  • Use of status codes: return standard HTTP codes (200, 201, 400, 401, 403, 404, 429, 500) and embed machine-readable error payloads.
  • Pagination and filtering: design scalable list endpoints with limit/offset or cursor approaches and clear sort/filter parameters.
  • API versioning: prefer versioning via headers or a version segment (e.g., /v1/) and adopt deprecation policies to manage breaking changes.

Document the contract using OpenAPI/Swagger to enable client generation and automated testing. Maintain a change log and semantic versioning conventions to help consumers plan migrations.

Security & Authentication Patterns

Security must be baked into API design. Core controls include transport security, authentication, authorization, and abuse prevention:

  • TLS everywhere: require HTTPS and disallow insecure endpoints.
  • Authentication: use OAuth2 for delegated access, API keys for service-to-service calls, or JWTs for stateless sessions. Rotate and scope keys to limit blast radius.
  • Authorization: implement least-privilege ACLs and role-based checks at the resource layer.
  • Rate limiting and throttling: protect against spikes and abuse with client-tiered rate limits and graceful 429 responses.
  • Input validation and sanitization: validate payloads, enforce size limits, and apply schema checks to avoid injection and denial-of-service vectors.

Audit logs and monitoring provide visibility into suspicious patterns. Use a layered approach: perimeter controls, application checks, and runtime protections.

Performance, Scaling & Reliability

Design for performance from the start. Profile expected workloads and adopt strategies appropriate to scale:

  • Caching: leverage HTTP caching headers (ETag, Cache-Control) and CDN caching for public resources.
  • Asynchronous workflows: move long-running tasks to background jobs and expose status endpoints rather than blocking request threads.
  • Connection and payload optimization: support gzip/brotli compression and consider payload minimization or field selection to reduce bandwidth.
  • Horizontal scaling: design services to be stateless so they can scale behind load balancers; externalize state to databases or caches.
  • Observability: collect structured logs, distributed traces, and metrics (latency, error rates, saturations) to detect regressions early.

Test performance with realistic load patterns and failure injection. A resilient API recovers gracefully from partial outages and provides useful error information to clients.

Practical Integration: Tooling, SDKs & AI Agents

Operationalizing a REST API includes client SDKs, developer portals, and automation. Use OpenAPI to generate SDKs in common languages and provide interactive documentation (Swagger UI, Redoc). For AI-driven applications, consider these steps:

  1. Expose well-documented endpoints for the data models AI agents will consume.
  2. Provide schema and example payloads so model prompts can be constructed deterministically.
  3. Rate-limit and sandbox agent access to prevent excessive usage and protect sensitive data fields.

AI-driven research and analytics tools can augment API design and monitoring by surfacing anomalies and suggesting schema changes. For example, platforms that combine on-chain and market data help teams design endpoints that better serve analytics workloads—see Token Metrics for an example of an AI-powered crypto research tool that demonstrates how combining signals and APIs supports data-driven product design.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a REST API?

A REST API is an interface that uses HTTP methods and resource-oriented URLs to enable stateless communication between clients and servers. It emphasizes a uniform interface and uses standard HTTP semantics.

FAQ: How do I version a REST API safely?

Version by URI segment (/v1/) or headers, publish changelogs, and use semantic versioning to communicate compatibility. Provide backward-compatible migrations and deprecation timelines for breaking changes.

FAQ: What authentication methods are common for REST APIs?

Common approaches include OAuth2 for delegated access, API keys for service access, and JWTs for stateless sessions. Choose based on client types and security requirements, and always use TLS.

FAQ: How can I optimize REST API performance?

Apply caching headers, use CDNs, compress payloads, paginate large lists, and move long-running tasks to asynchronous queues. Monitor metrics and load-test using representative traffic.

FAQ: When should I choose gRPC or GraphQL instead of REST?

Choose gRPC for low-latency, high-throughput RPC between services and GraphQL when clients need flexible queries over a complex graph of resources. REST is often best for simple resource-based services and broad interoperability.

Disclaimer

This article is for educational and informational purposes only. It does not constitute professional advice. Evaluate technical choices in the context of your own project requirements and constraints.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Token Metrics API vs. CoinGecko API: Which Crypto API Should You Choose in 2025?

Token Metrics Team
7 min
MIN

As the crypto ecosystem rapidly matures, developers, quant traders, and crypto-native startups are relying more than ever on high-quality APIs to build data-powered applications. Whether you're crafting a trading bot, developing a crypto research platform, or launching a GPT agent for market analysis, choosing the right API is critical.

Two names dominate the space in 2025: CoinGecko and Token Metrics. But while both offer access to market data, they serve fundamentally different purposes. CoinGecko is a trusted source for market-wide token listings and exchange metadata. Token Metrics, on the other hand, delivers AI-powered intelligence for predictive analytics and decision-making.

Let’s break down how they compare—and why the Token Metrics API is the superior choice for advanced, insight-driven builders.

🧠 AI Intelligence: Token Metrics Leads the Pack

At the core of Token Metrics is machine learning and natural language processing. It’s not just a data feed. It’s an AI that interprets the market.

Features exclusive to Token Metrics API:

  • Trader Grade (0–100) – Short-term momentum score based on volume, volatility, and technicals
  • Investor Grade (0–100) – Long-term asset quality score using fundamentals, community metrics, liquidity, and funding
  • Bullish/Bearish AI Signals – Real-time alerts based on over 80 weighted indicators
  • Sector-Based Smart Indices – Curated index sets grouped by theme (AI, DeFi, Gaming, RWA, etc.)
  • Sentiment Scores – Derived from social and news data using NLP
  • LLM-Friendly AI Reports – Structured, API-returned GPT summaries per token
  • Conversational Agent Access – GPT-based assistant that queries the API using natural language

In contrast, CoinGecko is primarily a token and exchange aggregator. It offers static data: price, volume, market cap, supply, etc. It’s incredibly useful for basic info—but it lacks context or predictive modeling.

Winner: Token Metrics — The only crypto API built for AI-native applications and intelligent automation.

🔍 Data Depth & Coverage

While CoinGecko covers more tokens and more exchanges, Token Metrics focuses on providing actionable insights rather than exhaustively listing everything.

Feature                                                   Token Metrics API                                    CoinGecko API

Real-time + historical OHLCV              ✅                                                          ✅

Trader/Investor Grades                        ✅ AI-powered                                     ❌

Exchange Aggregation                         ✅ (Used in indices, not exposed)     ✅

Sentiment & Social Scoring                  ✅ NLP-driven                                     ❌

AI Signals                                               ✅                                                         ❌

Token Fundamentals                            ✅ Summary via deepdive         ⚠️ Limited

                                                                        endpoint

NFT Market Data                                  ❌                                                          ✅

On-Chain Behavior                               ✅ Signals + Indices                   ⚠️ Pro-only (limited)

If you're building something analytics-heavy—especially trading or AI-driven—Token Metrics gives you depth, not just breadth.

Verdict: CoinGecko wins on broad metadata coverage. Token Metrics wins on intelligence and strategic utility.

🛠 Developer Experience

One of the biggest barriers in Web3 is getting devs from “idea” to “prototype” without friction. Token Metrics makes that easy.

Token Metrics API Includes:

  • SDKs for Python, Node.js, and Postman
  • Quick-start guides and GitHub sample projects
  • Integrated usage dashboard to track limits and history
  • Conversational agent to explore data interactively
  • Clear, logical endpoint structure across 21 data types

CoinGecko:

  • Simple REST API
  • JSON responses
  • Minimal docs
  • No SDKs
  • No built-in tooling (must build from scratch)

Winner: Token Metrics — Serious devs save hours with ready-to-go SDKs and utilities.

📊 Monitoring, Quotas & Support

CoinGecko Free Tier:

  • 10–30 requests/min
  • No API key needed
  • Public endpoints
  • No email support
  • Rate limiting enforced via IP

Token Metrics Free Tier:

  • 5,000 requests/month
  • 1 request/min
  • Full access to AI signals, grades, rankings
  • Telegram & email support
  • Upgrade paths to 20K–500K requests/month

While CoinGecko’s no-login access is beginner-friendly, Token Metrics offers far more power per call. With just a few queries, your app can determine which tokens are gaining momentum, which are losing steam, and how portfolios should be adjusted.

Winner: Token Metrics — Better for sustained usage, scaling, and production reliability.

💸 Pricing & Value

Plan Feature                CoinGecko Pro            Token Metrics API

Entry Price                  ~$150/month                $99/month

AI Grades & Signals            ❌                               ✅ 

Sentiment Analytics            ❌                               ✅

Sector Index Insights          ❌                               ✅

NLP Token Summaries       ❌                                ✅

Developer SDKs                  ❌                                ✅

Token-Based Discounts     ❌                                ✅ (up to 35% with $TMAI)

For what you pay, Token Metrics delivers quant models and intelligent signal streams — not just raw price.

Winner: Token Metrics — Cheaper entry, deeper value.

🧠 Use Cases Where Token Metrics API Shines

  • Trading Bots
    Use Trader Grade and Signal endpoints to enter/exit based on AI triggers.
  • GPT Agents
    Generate conversational answers for “What’s the best AI token this week?” using structured summaries.
  • Crypto Dashboards
    Power sortable, filtered token tables by grade, signal, or narrative.
  • Portfolio Rebalancers
    Track real-time signals for tokens held, flag risk zones, and show sector exposure.
  • LLM Plugins
    Build chat-based investment tools with explainability and score-based logic.

🧠 Final Verdict: CoinGecko for Info, Token Metrics for Intelligence

If you're building a crypto price tracker, NFT aggregator, or exchange overview site, CoinGecko is a solid foundation. It’s reliable, broad, and easy to get started.

But if your product needs to think, adapt, or help users make better decisions, then Token Metrics API is in another class entirely.

You're not just accessing data — you're integrating AI, machine learning, and predictive analytics into your app. That’s the difference between showing the market and understanding it.

🔗 Ready to Build Smarter?

  • ✅ 5,000 free API calls/month
  • 🤖 Trader & Investor Grades
  • 📊 Live Bull/Bear signals
  • 🧠 AI-powered summaries and GPT compatibility
  • ⚡ 21 endpoints + Python/JS SDKs

👉 Start with Token Metrics API

Research

Python Quick-Start with Token Metrics: The Ultimate Crypto Price API

Token Metrics Team
10 min
MIN

If you’re a Python developer looking to build smarter crypto apps, bots, or dashboards, you need two things: reliable data and AI-powered insights. The Token Metrics API gives you both. In this tutorial, we’ll show you how to quickly get started using Token Metrics as your Python crypto price API, including how to authenticate, install the SDK, and run your first request in minutes.

Whether you’re pulling live market data, integrating Trader Grades into your trading strategy, or backtesting with OHLCV data, this guide has you covered.

🚀 Quick Setup for Developers in a Hurry

Install the official Token Metrics Python SDK:

pip install tokenmetrics

Or if you prefer working with requests directly, no problem. We’ll show both methods below.

🔑 Step 1: Generate Your API Key

Before anything else, you’ll need a Token Metrics account.

  1. Go to app.tokenmetrics.com/en/api
  2. Log in and navigate to the API Keys Dashboard
  3. Click Generate API Key
  4. Name your key (e.g., “Development”, “Production”)
  5. Copy it immediately — keep it secret.

You can monitor usage, rate limits, and quotas right from the dashboard. Track each key’s status, last used date, and revoke access at any time.

📈 Step 2: Retrieve Crypto Prices in Python

Here’s a simple example to fetch the latest price data for Ethereum (ETH):

import requests

API_KEY = "YOUR_API_KEY"

headers = {"x-api-key": API_KEY}

url = "https://api.tokenmetrics.com/v2/daily-ohlcv?symbol=ETH&startDate=<YYYY-MM-DD>&endDate=<YYYY-MM-DD>"

response = requests.get(url, headers=headers)

data = response.json()

for candle in data['data']:

    print(f"Date: {candle['DATE']} | Close: ${candle['CLOSE']}")

You now have a working python crypto price API pipeline. Customize startDate or endDate to get specific range of historical data.

📊 Add AI-Powered Trader Grades

Token Metrics’ secret sauce is its AI-driven token ratings. Here’s how to access Trader Grades for ETH:

grade_url = "https://api.tokenmetrics.com/v2/trader-grades?symbol=ETH&limit=30d"

grades = requests.get(grade_url, headers=headers).json()['data']

for day in grades:

    print(f"{day['DATE']} — Trader Grade: {day['TA_GRADE']}")

Use this data to automate trading logic (e.g., enter trades when Grade > 85) or overlay on charts.

🔁 Combine Data for Backtesting

Want to test a strategy? Merge OHLCV and Trader Grades for any token:

import pandas as pd

ohlcv_df = pd.DataFrame(data['data'])

grades_df = pd.DataFrame(grades)

combined_df = pd.merge(ohlcv_df, grades_df, on="DATE")

print(combined_df.head())

Now you can run simulations, build analytics dashboards, or train your own models.

⚙️ Endpoint Coverage for Python Devs

  • /daily-ohlcv: Historical price data
  • /trader-grades: AI signal grades (0–100)
  • /trading-signals: Bullish/Bearish signals for short and long positions.
  • /sentiment: AI-modeled sentiment scores
  • /tmai: Ask questions in plain English

All endpoints return structured JSON and can be queried via requests, axios, or any modern client.

🧠 Developer Tips

  • Each request = 1 credit (tracked in real time)
  • Rate limits depend on your plan (Free = 1 req/min)
  • Use the API Usage Dashboard to monitor and optimize
  • Free plan = 5,000 calls/month — perfect for testing and building MVPs

💸 Bonus: Save 35% with $TMAI

You can reduce your API bill by up to 35% by staking and paying with Token Metrics’ native token, $TMAI. Available via the settings → payments page.

🌐 Final Thoughts

If you're searching for the best python crypto price API with more than just price data, Token Metrics is the ultimate choice. It combines market data with proprietary AI intelligence, trader/investor grades, sentiment scores, and backtest-ready endpoints—all in one platform.

✅ Real-time & historical data
✅ RESTful endpoints
✅ Python-ready SDKs and docs
✅ Free plan to start building today

Start building today → tokenmetrics.com/api

Looking for SDK docs? Explore the full Python Quick Start Guide

Research

Crypto API to Google Sheets in 5 Minutes: How to Use Token Metrics API with Apps Script

Token Metrics Team
6 min
MIN

If you're a trader, data analyst, or crypto enthusiast, chances are you've wanted to pull live crypto data directly into Google Sheets. Whether you're tracking prices, building custom dashboards, or backtesting strategies, having real-time data at your fingertips can give you an edge.

In this guide, we'll show you how to integrate the Token Metrics API — a powerful crypto API with free access to AI-powered signals — directly into Google Sheets in under 5 minutes using Google Apps Script.

📌 Why Use Google Sheets for Crypto Data?

Google Sheets is a flexible, cloud-based spreadsheet that:

  • Requires no coding to visualize data
  • Can be shared and updated in real time
  • Offers formulas, charts, and conditional formatting
  • Supports live API connections with Apps Script

When combined with the Token Metrics API, it becomes a powerful dashboard that updates live with Trader Grades, Bull/Bear Signals, historical OHLCV data, and more.

🚀 What Is Token Metrics API?

The Token Metrics API provides real-time and historical crypto data powered by AI. It includes:

  • Trader Grade: A score from 0 to 100 showing bullish/bearish potential
  • Bull/Bear Signal: A binary signal showing market direction
  • OHLCV: Open-High-Low-Close-Volume price history
  • Token Metadata: Symbol, name, category, market cap, and more

The best part? The free Basic Plan includes:

  • 5,000 API calls/month
  • Access to core endpoints
  • Hourly data refresh
  • No credit card required

👉 Sign up for free here

🛠️ What You’ll Need

  • A free Token Metrics API key
  • A Google account
  • Basic familiarity with Google Sheets

⚙️ How to Connect Token Metrics API to Google Sheets

Here’s how to get live AI-powered crypto data into Sheets using Google Apps Script.

🔑 Step 1: Generate Your API Key

  1. Visit: https://app.tokenmetrics.com/en/api
  2. Click “Generate API Key”
  3. Copy it — you’ll use this in the script

📄 Step 2: Create a New Google Sheet

  1. Go to Google Sheets
  2. Create a new spreadsheet
  3. Click Extensions > Apps Script

💻 Step 3: Paste This Apps Script

const TOKEN_METRICS_API_KEY = 'YOUR_API_KEY_HERE';

async function getTraderGrade(symbol) {

  const url = `https://api.tokenmetrics.com/v2/trader-grades?symbol=${symbol.toUpperCase()}`;

  const options = {

    method: 'GET',

    contentType: 'application/json',

    headers: {

      'accept': 'application/json',

      'x-api-key': TOKEN_METRICS_API_KEY,

    },

    muteHttpExceptions: true

  };

  

  const response = UrlFetchApp.fetch(url, options);

  const data = JSON.parse(response.getContentText() || "{}")

  

  if (data.success && data.data.length) {

    const coin = data.data[0];

    return [

      coin.TOKEN_NAME,

      coin.TOKEN_SYMBOL,

      coin.TA_GRADE,

      coin.DATE

    ];

  } else {

    return ['No data', '-', '-', '-'];

  }

}

async function getSheetData() {

  const sheet = SpreadsheetApp.getActiveSpreadsheet().getActiveSheet();

  const symbols = sheet.getRange('A2:A').getValues().flat().filter(Boolean);

  const results = [];

  results.push(['Name', 'Symbol', 'Trader Grade', 'Date']);

  for (const symbol of symbols) {

    if (symbol) {

      const row = await getTraderGrade(symbol);

      results.push(row);

    }

  }

  sheet.getRange(2, 2, results.length, results[0].length).setValues(results);

}

🧪 Step 4: Run the Script

  1. Replace 'YOUR_API_KEY_HERE' with your real API key.
  2. Save the project as TokenMetricsCryptoAPI.
  3. In your sheet, enter a list of symbols (e.g., BTC, ETH, SOL) in Column A.
  4. Go to the script editor and run getSheetData() from the dropdown menu.

Note: The first time, Google will ask for permission to access the script.

✅ Step 5: View Your Live Data

After the script runs, you’ll see:

  • Coin name and symbol
  • Trader Grade (0–100)
  • Timestamp

You can now:

  • Sort by Trader Grade
  • Add charts and pivot tables
  • Schedule automatic updates with triggers (e.g., every hour)

🧠 Why Token Metrics API Is Ideal for Google Sheets Users

Unlike basic price APIs, Token Metrics offers AI-driven metrics that help you:

  • Anticipate price action before it happens
  • Build signal-based dashboards or alerts
  • Validate strategies against historical signals
  • Keep your data fresh with hourly updates

And all of this starts for free.

🏗️ Next Steps: Expand Your Sheet

Here’s what else you can build:

  • A portfolio tracker that pulls your top coins’ grades
  • A sentiment dashboard using historical OHLCV
  • A custom screener that filters coins by Trader Grade > 80
  • A Telegram alert system triggered by Sheets + Apps Script + Webhooks

You can also upgrade to the Advanced Plan to unlock 21 endpoints including:

  • Investor Grades
  • Smart Indices
  • Sentiment Metrics
  • Quantitative AI reports
  • 60x API speed

🔐 Security Tip

Never share your API key in a public Google Sheet. Use script-level access and keep the sheet private unless required.

🧩 How-To Schema Markup (for SEO)

{

  "@context": "https://schema.org",

  "@type": "HowTo",

  "name": "Crypto API to Google Sheets in 5 Minutes",

  "description": "Learn how to connect the Token Metrics crypto API to Google Sheets using Google Apps Script and get real-time AI-powered signals and prices.",

  "totalTime": "PT5M",

  "supply": [

    {

      "@type": "HowToSupply",

      "name": "Google Sheets"

    },

    {

      "@type": "HowToSupply",

      "name": "Token Metrics API Key"

    }

  ],

  "tool": [

    {

      "@type": "HowToTool",

      "name": "Google Apps Script"

    }

  ],

  "step": [

    {

      "@type": "HowToStep",

      "name": "Get Your API Key",

      "text": "Sign up at Token Metrics and generate your API key from the API dashboard."

    },

    {

      "@type": "HowToStep",

      "name": "Create a New Google Sheet",

      "text": "Open a new sheet and list crypto symbols in column A."

    },

    {

      "@type": "HowToStep",

      "name": "Add Apps Script",

      "text": "Go to Extensions > Apps Script and paste the provided code, replacing your API key."

    },

    {

      "@type": "HowToStep",

      "name": "Run the Script",

      "text": "Execute the getSheetData function to pull data into the sheet."

    }

  ]

}

✍️ Final Thoughts

If you're serious about crypto trading or app development, integrating live market signals into your workflow can be a game-changer. With the Token Metrics API, you can get institutional-grade AI signals — right inside Google Sheets.

This setup is simple, fast, and completely free to start. Try it today and unlock a smarter way to trade and build in crypto.

👉 Get Your API Key & Start for Free

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products