Back to blog
Crypto Basics

What is Tokenomics? - Complete Guide for Investors

Explore the concept of tokenomics and its significance in the crypto world. Get insights into how token economics impacts investments.
S. Vishwa
8 Minutes
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

Tokenomics is a buzzword in the crypto industry that has many investors, both seasoned and newcomers, scratching their heads. 

In this comprehensive guide, we'll unravel the complexities of tokenomics and simplify it into an actionable framework. By the time you're done reading, you'll not only understand what tokenomics is but also how to evaluate it for your investment decisions.

What is Tokenomics?

Tokenomics combines the words "token" and "economics." It refers to the financial structure of a cryptocurrency. Like the rules of a game, tokenomics defines how tokens work within a particular blockchain ecosystem. If you're an investor, understanding tokenomics is key to making informed decisions.

Simple Definition - Tokenomics involves understanding the purpose, functionality, and the strategic design of a token within a blockchain ecosystem. 

It's like understanding the DNA of a cryptocurrency. By knowing the details of how a token works, you can decide if it's a wise investment.

Importance of Tokenomics - Tokenomics impacts everything from the total supply of tokens to how they're distributed, secured, and used. Poor tokenomics can lead to loss of investment, while thoughtful design might provide a roadmap to success.

Key Components of Tokenomics

1. Total Supply - The total supply refers to the maximum number of tokens that will ever exist for a particular cryptocurrency. This aspect is crucial because it introduces the concept of scarcity. 

Just like precious metals, if a token has a limited supply, it might increase its demand, and subsequently, its value. Some cryptocurrencies, like Bitcoin, have a capped supply (21 million), while others might have an unlimited supply. Knowing the total supply can give insights into how rare or abundant a token might be in the market.

2. Distribution - Distribution outlines how tokens are allocated among different stakeholders, such as developers, investors, the community, and even reserve funds. 

This distribution model needs to be transparent and fair to maintain trust within the ecosystem. An uneven distribution might lead to a concentration of power or wealth, potentially making the token more susceptible to manipulation. 

For instance, initial coin offerings (ICOs) often detail how the tokens will be distributed, and this information can be vital in assessing the token's long-term viability.

3. Utility - Utility describes the functionality and purpose of a token within its ecosystem. Is the token simply a store of value, or does it have a specific use within a decentralized application? Understanding a token's utility can provide insights into its intrinsic value. 

For example, some tokens might grant voting rights in the project's development decisions, while others might be used to pay for services within the network. A token with clear and compelling utility is often seen as a positive indicator for investors.

4. Security - The security component of tokenomics involves understanding the measures in place to protect the token and the overall network. This can include the consensus mechanism used (Proof of Work or Proof of Stake), how the network guards against attacks, and the security of wallets and exchanges where the tokens are held. 

Security is paramount, as vulnerabilities can lead to loss of funds or trust in the network. Assessing the security measures in place and ensuring they meet high standards can save an investor from potential pitfalls.

These key components of tokenomics are integral to understanding how a token operates within its blockchain ecosystem. Analyzing these factors allows an investor to make well-informed decisions, aligning investments with risk tolerance, and potential rewards. 

How to Analyze Tokenomics?

Understanding these intricate details is vital for any investor who aims to make informed decisions. Here's how you can analyze tokenomics:

Research Whitepapers - Most crypto projects outline their tokenomics in a document known as a whitepaper. This is often the primary source for understanding a token's supply, distribution, utility, and security. 

By thoroughly reading and comprehending a project's whitepaper, investors can discern the intentions behind the token and its potential value. This isn't just a cursory glance; it requires a careful examination to understand the philosophy, technology, and mechanics behind the token.

Check Community Engagement - Community engagement is a vital sign of a project's health. A vibrant and engaged community often signifies strong support and belief in the project's mission. 

Investors can explore forums, social media channels, and even physical meet-ups to gauge the pulse of the community. By interacting with community members or simply observing the discussions, one can get insights into how the project is perceived, potential concerns, and the overall sentiment.

Evaluate Utility and Demand - Understanding a token's utility means discerning its purpose and functionality within the ecosystem. Is it merely a speculative asset, or does it serve a unique function? Evaluating the real-world application and demand for the token can provide clues to its intrinsic value. 

For instance, if a token is required to access a service within a popular decentralized application, it likely has tangible utility. Coupling this with an assessment of the demand for that service can provide a solid foundation for investment decisions.

Consider the Economic Models - Different projects may employ various economic models, which could include elements like inflation, deflation, or even a hybrid approach. 

Understanding these models helps in predicting how the token's value might behave over time. For instance, a token with a deflationary model may increase in value as the supply decreases, while inflationary models might have the opposite effect.

Examine the Regulatory Compliance - Compliance with local and international regulations is a factor that should not be overlooked. Ensuring that the project adheres to legal requirements can minimize potential legal risks and contribute to its legitimacy.

Examples of Tokenomics

Bitcoin (BTC)

Total Supply: 21 million

Distribution: Mining

Utility: Currency

Security: Proof of Work (PoW)

Ethereum (ETH)

Total Supply: No hard cap

Distribution: Mining, also pre-mined

Utility: Smart Contracts

Security: Transitioning from PoW to Proof of Stake (PoS)

Mistakes to Avoid

Investing without understanding tokenomics can lead to losses. Avoid these common mistakes:

Ignoring the Whitepaper: Always read and understand the project's whitepaper.

Following the Crowd: Don't just follow trends; make decisions based on sound analysis.

Overlooking Security: Ensure the project has robust security measures.

Actionable Steps for Investors

Study the Whitepaper: Get details of the tokenomics from the project's official documents.

Engage with the Community: Participate in forums and social media to understand the community's view.

Evaluate Real-World Utility: Ensure the token has a clear purpose and demand.

Consult with a Financial Expert if Needed: Crypto investments are risky, and professional advice can be invaluable.

Frequently Asked Questions

Q1. Can tokenomics change after a project’s launch? How does this impact investors?

Yes, tokenomics can change through updates to the project's protocol or governance decisions. Such changes may impact token value, utility, or distribution. Investors should stay informed by following the project's official channels to understand any changes and assess their potential impact.

Q2. How can I verify the authenticity of the information on a project's tokenomics?

Always refer to official sources like the project's whitepaper, website, and credible crypto analysis platforms. Beware of misinformation from unofficial channels. Participating in community forums and reaching out to the team directly can also help verify information.

Q3. How do forks in a blockchain project affect tokenomics?

Forks can create new tokens with different tokenomics. This might affect supply, demand, utility, and overall value. Understanding the reasons for the fork and the new tokenomics can guide investment decisions post-fork.

Q4. How do token burning and minting fit into tokenomics?

Token burning (destroying tokens) and minting (creating new tokens) can be part of a project's economic model. Burning can increase scarcity, potentially raising value, while minting may increase supply, possibly lowering value. Both mechanisms are used to maintain control over a token's supply and demand dynamics.

Q5. What's the difference between a token's circulating supply and total supply in tokenomics?

Total supply refers to all tokens created, while circulating supply refers to tokens currently available in the market. Understanding the difference helps investors gauge scarcity and potential market saturation, influencing investment strategies.

Q6. How does staking fit into the tokenomics of a project?

Staking involves locking up tokens to support network operations like validation. It can be a vital part of the economic model, affecting supply and demand, providing incentives to holders, and enhancing network security.

Q7. How do governance tokens and tokenomics interact?

Governance tokens allow holders to participate in decision-making within a project. Their inclusion in tokenomics reflects a commitment to decentralization and community involvement, and they can be essential in shaping the project's direction, including changes to tokenomics itself.

Q8. Can tokenomics help in identifying scams or fraudulent projects?

Analyzing tokenomics can uncover red flags like unfair distribution, lack of clear utility, or non-transparent practices. Investors should use tokenomics as part of a broader due diligence process to assess legitimacy and avoid potential scams.

Conclusion

Tokenomics is a complex but essential part of evaluating crypto investments. By understanding the total supply, distribution, utility, and security, you'll be empowered to make informed decisions.

Investing without understanding tokenomics can lead to losses. Remember, do your research, stay updated with current market trends and invest wisely by applying these principles.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Mastering Google Maps API: A Practical Developer Guide

Token Metrics Team
5

Location data powers modern products: discovery, logistics, analytics, and personalized experiences all lean on accurate mapping services. The Google Maps API suite is one of the most feature-rich options for embedding maps, geocoding addresses, routing vehicles, and enriching UX with Places and Street View. This guide breaks the platform down into practical sections—what each API does, how to get started securely, design patterns to control costs and latency, and where AI can add value.

Overview: What the Google Maps API Suite Provides

The Maps Platform is modular: you enable only the APIs and SDKs your project requires. Key components include:

  • Maps JavaScript API — interactive web maps, custom markers, overlays, styling, and event hooks for client-side experiences.
  • Maps SDKs for Android & iOS — native map views, offline handling patterns, and performance controls on mobile devices.
  • Places API — POI lookup, autocomplete, place details, and user-generated content such as reviews and photos.
  • Geocoding & Reverse Geocoding — translate addresses to coordinates and back; useful for onboarding, search, and analytics.
  • Directions & Distance Matrix — routing, multi-stop optimization, travel time estimates, and matrix computations for fleet logistics.
  • Street View & Static Maps — embed photographic context or low-overhead map images for thumbnails and emails.

Each API exposes different latency, quota, and billing characteristics. Plan around the functional needs (display vs. heavy batch geocoding vs. real-time routing).

Getting Started: Keys, Enabling APIs, and Security

Begin in the Google Cloud Console: create or select a project, enable the specific Maps Platform APIs your app requires, and generate an API key. Key operational steps:

  • Restrict keys by HTTP referrer (web), package name + SHA-1 (Android), or bundle ID (iOS) to limit abuse.
  • Use separate keys for development, staging, and production to isolate usage and credentials.
  • Prefer server-side calls for sensitive operations (batch geocoding, billing-heavy tasks) where you can protect API secrets and implement caching.
  • Monitor quotas and set alerts in Cloud Monitoring to detect anomalies quickly.

Authentication and identity management are foundational—wider access means higher risk of unexpected charges and data leakage.

Design Patterns & Best Practices

Successful integrations optimize performance, cost, and reliability. Consider these patterns:

  • Client vs. Server responsibilities: Use client-side map rendering for interactivity, but delegate heavy or billable tasks (bulk geocoding, route computations) to server-side processes.
  • Cache geocoding results where addresses are stable. This reduces repeat requests and lowers bills.
  • Use Static Maps for thumbnails instead of full interactive maps when you need small images in lists or emails.
  • Handle rate limits gracefully by implementing exponential backoff and queuing to avoid throttling spikes.
  • Map styling & lazy loading keep initial payloads light; load map tiles or libraries on user interaction to improve perceived performance.
  • Privacy-first design: minimize retention of precise location data unless required, and document retention policies for compliance.

Pricing, Quotas & Cost Management

The Maps Platform uses a pay-as-you-go model with billing tied to API calls, SDK sessions, or map loads depending on the product. To control costs:

  • Audit which APIs are enabled and remove unused ones.
  • Implement caching layers for geocoding and place lookups.
  • Prefer batch jobs outside peak hours and consolidate requests server-side when possible.
  • Set programmatic alerts for unexpected usage spikes and daily budget caps to avoid surprises.

Budgeting requires monitoring real usage patterns and aligning product behavior (e.g., map refresh frequency) with cost objectives.

Use Cases & AI Integration

Combining location APIs with machine learning unlocks advanced features: predictive ETA models, demand heatmaps, intelligent geofencing, and dynamic routing that accounts for historic traffic patterns. AI models can also enrich POI categorization from Places API results or prioritize search results based on user intent.

For teams focused on research and signals, AI-driven analytical tools can help surface patterns from large location datasets, cluster user behavior, and integrate external data feeds for richer context. Tools built for crypto and on-chain analytics illustrate how API-driven datasets can be paired with models to create actionable insights in other domains—similarly, map and location data benefit from model-driven enrichment that remains explainable and auditable.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Is the Google Maps API free to use?

Google offers a free usage tier and a recurring monthly credit for Maps Platform customers. Beyond the free allocation, usage is billed based on API calls, map loads, or SDK sessions. Monitor your project billing and set alerts to avoid unexpected charges.

Which Maps API should I use for address autocomplete?

The Places API provides address and place autocomplete features tailored for UX-focused address entry. For server-side address validation or bulk geocoding, pair it with Geocoding APIs and implement server-side caching.

How do I secure my API key?

Apply application restrictions (HTTP referrers for web, package name & SHA-1 for Android, bundle ID for iOS) and limit the key to only the required APIs. Rotate keys periodically and keep production keys out of client-side source control when possible.

Can I use Google Maps API for heavy routing and fleet optimization?

Yes—the Directions and Distance Matrix APIs support routing and travel-time estimates. For large-scale fleet optimization, consider server-side batching, rate-limit handling, and hybrid solutions that combine routing APIs with custom optimization logic to manage complexity and cost.

What are common pitfalls when integrating maps?

Common issues include unbounded API keys, lack of caching for geocoding, excessive map refreshes that drive costs, and neglecting offline/mobile behavior. Planning for quotas, testing under realistic loads, and instrumenting telemetry mitigates these pitfalls.

Disclaimer

This article is for educational and technical information only. It does not constitute financial, legal, or professional advice. Evaluate features, quotas, and pricing on official Google documentation and consult appropriate professionals for specific decisions.

Research

Mastering Discord Integrations: API Essentials

Token Metrics Team
5

Discord's API is the backbone of modern community automation, moderation, and integrations. Whether you're building a utility bot, connecting an AI assistant, or streaming notifications from external systems, understanding the Discord API's architecture, constraints, and best practices helps you design reliable, secure integrations that scale.

Overview: What the Discord API Provides

The Discord API exposes two main interfaces: the Gateway (a persistent WebSocket) for real-time events and the REST API for one-off requests such as creating messages, managing channels, and configuring permissions. Together they let developers build bots and services that respond to user actions, post updates, and manage server state.

Key concepts to keep in mind:

  • Gateway (WebSocket): Streams events like messages, reactions, and presence updates. It's designed for low-latency, event-driven behavior.
  • REST API: Handles CRUD operations and configuration changes. Rate limits apply per route and globally.
  • OAuth2: Used to authorize bots and request application-level scopes for users and servers.
  • Intents: Selective event subscriptions that limit the data your bot receives for privacy and efficiency.

Authentication, Bot Accounts, and Intents

Authentication is based on tokens. Bots use a bot token (issued in the Discord Developer Portal) to authenticate both the Gateway and REST calls. When building or auditing a bot, treat tokens like secrets: rotate them when exposed and store them securely in environment variables or a secrets manager.

Intents let you opt-in to categories of events. For example, message content intent is required to read message text in many cases. Use the principle of least privilege: request only the intents you need to reduce data exposure and improve performance.

Practical steps:

  1. Register your application in the Developer Portal and create a bot user.
  2. Set up OAuth2 scopes (bot, applications.commands) and generate an install link.
  3. Enable required intents and test locally with a development server before wide deployment.

Rate Limits, Error Handling, and Scaling

Rate limits are enforced per route and per global bucket. Familiarize yourself with the headers returned by the REST API (X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-Reset) and adopt respectful retry strategies. For Gateway connections, avoid rapid reconnects; follow exponential backoff and obey the recommended identify rate limits.

Design patterns to improve resilience:

  • Rate-limit-aware clients: Use libraries or middleware that queue and throttle REST requests based on returned headers.
  • Idempotency: For critical actions, implement idempotent operations to safely retry failed requests.
  • Sharding: For large bots serving many servers, shard the Gateway connection to distribute event load across processes or machines.
  • Monitoring & alerting: Track error rates, latency, and reconnect frequency to detect regressions early.

Webhooks, Interactions, and Slash Commands

Webhooks are lightweight for sending messages into channels without a bot token and are excellent for notifications from external systems. Interactions and slash commands provide structured, discoverable commands that integrate naturally into the Discord UI.

Best practices when using webhooks and interactions:

  • Validate inbound interaction payloads using the public key provided by Discord.
  • Use ephemeral responses for sensitive command outputs to avoid persistent exposure.
  • Prefer slash commands for user-triggered workflows because they offer parameter validation and autocomplete.

Security, Compliance, and Privacy Considerations

Security goes beyond token handling. Consider these areas:

  • Permission hygiene: Grant the minimum permission set and use scoped OAuth2 invites.
  • Data minimization: Persist only necessary user data, and document retention policies.
  • Encryption & secrets: Store tokens and credentials in secret stores and avoid logging sensitive fields.
  • Third-party integrations: Vet external services you connect; restrict webhook targets and audit access periodically.

Integrating AI and External APIs

Combining Discord bots with AI or external data APIs can produce helpful automation, moderation aids, or analytics dashboards. When integrating, separate concerns: keep the Discord-facing layer thin and stateless where possible, and offload heavy processing to dedicated services.

For crypto- and market-focused integrations, external APIs can supply price feeds, on-chain indicators, and signals which your bot can surface to users. AI-driven research platforms such as Token Metrics can augment analysis by providing structured ratings and on-chain insights that your integration can query programmatically.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: How do I start building a bot?

Begin by creating an application in the Discord Developer Portal, add a bot user, and generate a bot token. Choose a client library (for example discord.js, discord.py alternatives) to handle Gateway and REST interactions. Test in a private server before inviting to production servers.

FAQ: What are Gateway intents and when should I enable them?

Intents are event categories that determine which events the Gateway will send to your bot. Enable only the intents your features require. Some intents, like message content, are privileged and require justification for larger bots or those in many servers.

FAQ: How can I avoid hitting rate limits?

Respect rate-limit headers, use client libraries that implement request queues, batch operations when possible, and shard your bot appropriately. Implement exponential backoff for retries and monitor request patterns to identify hotspots.

FAQ: Are webhooks better than bots for notifications?

Webhooks are simpler for sending messages from external systems because they don't require a bot token and have a low setup cost. Bots are required for interactive features, slash commands, moderation, and actions that require user-like behavior.

FAQ: How do I secure incoming interaction requests?

Validate interaction signatures using Discord's public key. Verify timestamps to prevent replay attacks and ensure your endpoint only accepts expected request types. Keep validation code in middleware for consistency.

Disclaimer

This article is educational and technical in nature. It does not provide investment, legal, or financial advice. Implementations described here focus on software architecture, integration patterns, and security practices; adapt them to your own requirements and compliance obligations.

Research

API Explained: What 'API' Stands For & How It Works

Token Metrics Team
5

APIs power much of the software and services we use every day, but the acronym itself can seem abstract to newcomers. This guide answers the simple question "what does API stand for," explains the main types and patterns, and shows how developers, analysts, and researchers use APIs—especially in data-rich fields like crypto and AI—to access information and automate workflows.

What does API stand for and a practical definition

API stands for Application Programming Interface. In practice, an API is a set of rules and protocols that lets one software component request services or data from another. It defines how requests should be formatted, what endpoints are available, what data types are returned, and which authentication methods are required.

Think of an API as a contract between systems: the provider exposes functionality or data, and the consumer calls that functionality using an agreed syntax. This contract enables interoperability across languages, platforms, and teams without sharing internal implementation details.

Common API types and architectural styles

APIs come in several flavors depending on purpose and architecture. Understanding these helps you choose the right integration approach:

  • REST (Representational State Transfer): The most widespread style for web APIs. Uses HTTP methods (GET, POST, PUT, DELETE) and typically exchanges JSON. REST is stateless and often organized around resources.
  • GraphQL: A query language and runtime that allows clients to request precisely the data they need in a single request. Useful when clients require flexible access patterns.
  • gRPC: A high-performance RPC framework using protocol buffers. Favored for low-latency internal services.
  • WebSocket and Streaming APIs: For real-time, bidirectional data flows such as live price feeds or telemetry.
  • Library/SDK APIs: Language-specific interfaces that wrap lower-level HTTP calls into idiomatic functions.

In domains like crypto, API types often include REST endpoints for historical data, WebSocket endpoints for live market updates, and specialized endpoints for on-chain data and analytics.

How APIs are used: workflows and practical examples

APIs unlock automation and integration across many workflows. Typical examples include:

  • Data pipelines: scheduled API pulls ingested into analytics systems or data warehouses.
  • Automation: triggering events, notifications, or trades from software agents (when permitted by policy and regulation).
  • Embedding functionality: maps, payment processing, or identity services added to products without rebuilding them.
  • AI and model inputs: APIs provide training and inference data streams for models, or let models query external knowledge.

For researchers and developers in crypto and AI, APIs enable programmatic access to prices, on-chain metrics, and model outputs. Tools that combine multiple data sources through APIs can accelerate analysis while maintaining reproducibility.

Security, rate limits, and best-practice design

APIs must be designed with security and reliability in mind. Key considerations include:

  • Authentication and authorization: API keys, OAuth, and signed requests limit access and define permissions.
  • Rate limiting: Prevents abuse and ensures fair usage across clients; consumers should implement exponential backoff and caching.
  • Input validation and error handling: Clear error codes and messages make integrations robust and diagnosable.
  • Versioning: Maintain compatibility for existing users while enabling iterative improvements.

Designing or choosing APIs with clear documentation, sandbox environments, and predictable SLAs reduces integration friction and downstream maintenance effort.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common questions about APIs

What does API stand for?

API stands for Application Programming Interface. It is a defined set of rules that enables software to communicate and exchange data or functionality with other software components.

How does an API differ from a library or SDK?

An API is a specification for interaction; a library or SDK is an implementation that exposes an API in a specific programming language. Libraries call APIs internally or provide convenience wrappers for API calls.

When should I use REST vs GraphQL?

Use REST for simple, resource-oriented endpoints and predictable cacheable interactions. Use GraphQL when clients require flexible, tailored queries and want to minimize round trips for composite data needs.

How do rate limits affect integrations?

Rate limits cap how many requests a client can make in a given period. Respecting limits with caching and backoff logic prevents service disruption and helps maintain reliable access.

Can APIs provide real-time data for AI models?

Yes. Streaming and WebSocket APIs can deliver low-latency data feeds that serve as inputs to real-time models, while REST endpoints supply bulk or historical datasets used for training and backtesting.

What tools help manage multiple API sources?

Integration platforms, API gateways, and orchestration tools manage authentication, rate limiting, retries, and transformations. For crypto and AI workflows, data aggregation services and programmatic APIs speed analysis.

How can I discover high-quality crypto APIs?

Evaluate documentation, uptime reports, data coverage, authentication methods, and community usage. Platforms that combine market, on-chain, and research signals are especially useful for analytical workflows.

Where can I learn more about API best practices?

Official style guides, API design books, and public documentation from major providers (Google, GitHub, Stripe) offer practical patterns for versioning, security, and documentation.

Disclaimer: This article is educational and informational only. It does not constitute financial, legal, or investment advice. Readers should perform independent research and consult appropriate professionals for their specific needs.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products