Crypto Basics

Top 10 Crypto Venture Capital Funds for Investment in July 2025

Discover the top 10 crypto VC firms including Token Metrics Ventures, Polychain, and Coinbase Ventures. Learn how they invest and what makes them the best in 2025.
Token Metrics Team
8 min
MIN

Crypto venture capital (VC) is evolving rapidly, driving innovation across Web3, blockchain infrastructure, DeFi, AI, and tokenized assets. As the crypto market matures, venture capital firms that identify and back high-potential projects are shaping the future of finance and technology.

In 2025, savvy investors and founders alike are turning to leading crypto VC funds for capital, connections, and credibility. These firms are not just investors—they’re ecosystem builders.

Here are the 10 best crypto venture capital funds to watch and invest alongside in 2025, whether you’re a retail investor following their portfolio, a founder raising capital, or an institutional player tracking Web3 trends.

1. Token Metrics Ventures

Overview:
Token Metrics Ventures (TMV) stands at the intersection of AI-powered analytics and high-conviction early-stage investing. Leveraging proprietary on-chain data, predictive AI models, and investor-grade metrics, TMV identifies moonshot crypto projects long before they trend.

Why It’s Hot in 2025:

  • TMV leverages data from the Token Metrics Research and Trading Platform, giving it an unparalleled edge in scouting high-alpha investments.
  • Backed successful early-stage tokens in DePIN, AI, and L2 rollup ecosystems.
  • Offers public transparency into portfolio performance through the Token Metrics Index.

Notable Investments:
Our notable investments are, Pixels, Vana, Andrena, Peaq, My Pet Hooligans, 0G Labs and Nillion. You can also add a link to our portfolio page.

Edge:
AI-first investing methodology that rivals traditional research firms, giving TMV a futuristic edge in discovering breakout assets before the herd.

2. Digital Currency Group (DCG)

Overview:
Founded in 2015, DCG is one of the earliest and most influential crypto-focused venture capital firms. DCG is the parent company of Grayscale, Foundry, and formerly CoinDesk.

Why It’s Hot in 2025:

  • Despite facing challenges in 2023–2024, DCG has restructured and returned with a sharper focus on Layer 2s, RWA tokenization, and institutional-grade infrastructure.
  • Its strategic relationship with Grayscale offers unique exposure to regulated crypto products.

Notable Investments:
Chainalysis, Circle, Fireblocks, and Coinbase (pre-IPO).

Edge:
Massive institutional network and historical pedigree as an early mover.

3. Multicoin Capital

Overview:
Multicoin Capital is a research-driven crypto VC fund focused on long-term bets in token economies, especially around smart contract platforms and DeFi.

Why It’s Hot in 2025:

  • Multicoin doubled down on Solana ecosystem plays and modular blockchain infrastructure in 2024–2025.
  • Actively invests in open-source middleware, oracle systems, and AI x crypto crossovers.

Notable Investments:
Solana, Helium, Render, and LayerZero.

Edge:
Deep thesis development, frequent publication of detailed investment memos, and contrarian bets that often pay off big.

4. Distributed Global

Overview:
Distributed Global focuses on building out foundational blockchain infrastructure, including scalability, privacy, and cross-chain interoperability.

Why It’s Hot in 2025:

  • Quietly involved in powering modular ecosystems like Celestia, EigenLayer, and Appchains.
  • Maintains a strong technical team with deep protocol-level insight.

Notable Investments:
StarkWare, zkSync, and Arweave.

Edge:
Strong technical due diligence and early backing of scalable blockchain solutions.

5. Dragonfly Capital

Overview:
Dragonfly Capital is a global venture capital firm that bridges crypto ecosystems between the U.S., Asia, and Europe.

Why It’s Hot in 2025:

  • Strong focus on liquidity provisioning, trading infrastructure, and multi-chain development.
  • Strong ties with centralized exchanges and DeFi protocols.

Notable Investments:
1inch, Amber Group, MakerDAO, and NEAR Protocol.

Edge:
Cross-border insight and the ability to scale projects globally across diverse regulatory landscapes.

6. YZi Labs (formerly Binance Labs)

Overview:
YZi Labs emerged in 2025 following the spinout and rebranding of Binance Labs. It retains the same DNA: a hyperactive investor in seed-stage Web3 startups with a strategic exchange distribution edge.

Why It’s Hot in 2025:

  • Despite regulatory shake-ups, YZi Labs has doubled down on AI x Web3, GameFi, and Real World Assets (RWA).
  • Still benefits from exchange-native insight and product-market fit validation via Binance listings.

Notable Investments:
DODO, Dune Analytics, Trust Wallet, and numerous Binance Launchpad tokens.

Edge:
Massive retail distribution power and exchange insights few others can replicate.

7. Coinbase Ventures

Overview:
Coinbase Ventures is the venture capital arm of Coinbase, one of the world’s largest and most regulated crypto exchanges.

Why It’s Hot in 2025:

  • Continues to back strategic ecosystem plays that align with Coinbase’s product roadmap and regulatory direction.
  • Focuses on identity, compliance tooling, and tokenized securities.

Notable Investments:
OpenSea, Compound, Alchemy, and BlockFi.

Edge:
Strong synergy with Coinbase product launches and listing potential for portfolio companies.

8. NGC Ventures

Overview:
NGC (Neo Global Capital) Ventures is a globally recognized fund based in Asia with a strong track record in infrastructure and protocol-level investments.

Why It’s Hot in 2025:

  • Focus on Asia-Pacific blockchain adoption trends.
  • Strong interest in DePIN, AI-powered consensus models, and zero-knowledge cryptography.

Notable Investments:
Algorand, Oasis, and Thorchain.

Edge:
Access to emerging Asian markets and strong strategic partnerships with local governments and enterprises.

9. The Spartan Group

Overview:
The Spartan Group is an Asia-based crypto VC and advisory firm, known for high-conviction investments in DeFi and Layer 1 ecosystems.

Why It’s Hot in 2025:

  • Expanded its portfolio into permissionless AI tools, modular consensus, and tokenized derivatives.
  • Maintains a boutique, high-touch approach to investments.

Notable Investments:
dYdX, Aave, Terra (before the collapse), and Pendle.

Edge:
Highly thesis-driven and nimble with an elite advisory network.

10. Polychain Capital

Overview:
Founded by Olaf Carlson-Wee, Polychain Capital is one of the largest crypto-native VC funds and remains a powerful force in the space.

Why It’s Hot in 2025:

  • Polychain continues to double down on privacy-preserving tech, zk rollups, and cross-chain solutions.
  • Early investor in bleeding-edge projects in cryptography, AI, and DAOs.

Notable Investments:
Filecoin, Avalanche, Tezos, and Compound.

Edge:
Massive AUM, strong LP network, and deep conviction in crypto’s long-term vision.

Conclusion: How to Leverage These Funds as an Investor

You don’t need to be a millionaire LP to benefit from the research and capital allocation of top crypto venture funds. Here’s how:

  • Track their portfolio: Use tools like Token Metrics, CryptoRank, and Messari to follow what these VCs are investing in.
  • Mirror their trades: Look for public tokens in their portfolios and evaluate entry points.
  • Join their ecosystems: Many funds support incubators and hackathons—ideal for developers and builders.

In 2025, VCs will be the kingmakers of crypto. By following their moves, retail investors can gain a massive edge in identifying the next moonshot projects before they explode.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

How Modern Web APIs Power Connected Apps

Token Metrics Team
5
MIN

APIs are the connective tissue of modern software: they expose functionality, move data, and enable integrations across services, devices, and platforms. A well-designed web API shapes developer experience, system resilience, and operational cost. This article breaks down core concepts, common architectures, security and observability patterns, and practical steps to build and maintain reliable web APIs without assuming a specific platform or vendor.

What is a Web API and why it matters

A web API (Application Programming Interface) is an HTTP-accessible interface that lets clients interact with server-side functionality. APIs can return JSON, XML, or other formats and typically define a contract of endpoints, parameters, authentication requirements, and expected responses. They matter because they enable modularity: front-ends, mobile apps, third-party integrations, and automation tools can all reuse the same backend logic.

When evaluating or designing an API, consider the consumer experience: predictable endpoints, clear error messages, consistent versioning, and comprehensive documentation reduce onboarding friction for integrators. Think of an API as a public product: its usability directly impacts adoption and maintenance burden.

Design patterns and architectures

There are several architectural approaches to web APIs. RESTful (resource-based) design emphasizes nouns and predictable HTTP verbs. GraphQL centralizes query flexibility into a single endpoint and lets clients request only the fields they need. gRPC is used for low-latency, binary RPC between services.

Key design practices:

  • Model your resources to reflect domain concepts; avoid ad-hoc endpoints that duplicate behavior.
  • Keep contracts stable and use semantic versioning or evolving schema techniques (e.g., deprecation headers, feature flags) to handle changes.
  • Document thoroughly using OpenAPI/Swagger, GraphQL schemas, or similar—machine-readable specs enable client generation and automated testing.

Choose the pattern that aligns with your performance, flexibility, and developer ergonomics goals, and make that decision explicit in onboarding docs.

Security, authentication, and rate limiting

Security must be built into an API from day one. Common controls include TLS for transport, OAuth 2.0 / OpenID Connect for delegated authorization, API keys for service-to-service access, and fine-grained scopes for least-privilege access. Input validation, output encoding, and strict CORS policies guard against common injection and cross-origin attacks.

Operational protections such as rate limiting, quotas, and circuit breakers help preserve availability if a client misbehaves or a downstream dependency degrades. Design your error responses to be informative to developers but avoid leaking internal implementation details. Centralized authentication and centralized secrets management (vaults, KMS) reduce duplication and surface area for compromise.

Performance, monitoring, and testing

Performance considerations span latency, throughput, and resource efficiency. Use caching (HTTP cache headers, CDN, or in-memory caches) to reduce load on origin services. Employ pagination, partial responses, and batch endpoints to avoid overfetching. Instrumentation is essential: traces, metrics, and logs help correlate symptoms, identify bottlenecks, and measure SLAs.

Testing should be layered: unit tests for business logic, contract tests against API schemas, integration tests for end-to-end behavior, and load tests that emulate real-world usage. Observability tools and APMs provide continuous insight; AI-driven analytics platforms such as Token Metrics can help surface unusual usage patterns and prioritize performance fixes based on impact.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between REST and GraphQL?

REST exposes multiple endpoints that represent resources and rely on HTTP verbs for operations. It is simple and maps well to HTTP semantics. GraphQL exposes a single endpoint where clients request precisely the fields they need, which reduces overfetching and can simplify mobile consumption. GraphQL adds complexity in query planning and caching; choose based on client needs and team expertise.

How should I approach API versioning?

Prefer backward-compatible changes over breaking changes. Use semantic versioning for major releases, and consider header-based versioning or URI version prefixes when breaking changes are unavoidable. Maintain deprecation schedules and communicate timelines in documentation and response headers so clients can migrate predictably.

Which authentication method is best for my API?

OAuth 2.0 and OpenID Connect are standard for delegated access and single-sign-on. For machine-to-machine communication, use short-lived tokens issued by a trusted authorization server. API keys can be simple to implement but should be scoped, rotated regularly, and never embedded in public clients without additional protections.

How do I test and monitor an API in production?

Implement synthetic monitoring for critical endpoints, collect real-user metrics (latency percentiles, error rates), and instrument distributed tracing to follow requests across services. Run scheduled contract tests against staging and production-like environments, and correlate incidents with deployment timelines and dependency health.

How do I design for backward compatibility?

Make additive, non-breaking changes where possible: add new fields rather than changing existing ones, and preserve default behaviors. Document deprecated fields and provide feature flags to gate new behavior. Maintain versioned client libraries to give consumers time to upgrade.

Disclaimer

This article is educational and technical in nature. It does not provide legal, financial, or investment advice. Implementations should be evaluated with respect to security policies, compliance requirements, and operational constraints specific to your organization.

Research

API Endpoint Essentials: Design, Security & Tips

Token Metrics Team
5
MIN

APIs power modern software by exposing discrete access points called endpoints. Whether you re integrating a third-party data feed, building a microservice architecture, or wiring a WebSocket stream, understanding what an api endpoint is and how to design, secure, and monitor one is essential for robust systems.

What is an API endpoint and how it works

An api endpoint is a network-accessible URL or address that accepts requests and returns responses according to a protocol (usually HTTP/HTTPS or WebSocket). Conceptually, an endpoint maps a client intent to a server capability: retrieve a resource, submit data, or subscribe to updates. In a RESTful API, endpoints often follow noun-based paths (e.g., /users/123) combined with HTTP verbs (GET, POST, PUT, DELETE) to indicate the operation.

Key technical elements of an endpoint include:

  • URI pattern (path and optional query parameters)
  • Supported methods (verbs) and expected payloads
  • Authentication and authorization requirements
  • Response format and status codes
  • Rate limiting and throttling rules

Endpoints can be public (open to third parties) or private (internal to a service mesh). For crypto-focused data integrations, api endpoints may also expose streaming interfaces (WebSockets) or webhook callbacks for asynchronous events. For example, Token Metrics is an example of an analytics provider that exposes APIs for research workflows.

Types of endpoints and common protocols

Different application needs favor different endpoint types and protocols:

  • REST endpoints (HTTP/HTTPS): Simple, stateless, and cache-friendly, ideal for resource CRUD operations and broad compatibility.
  • GraphQL endpoints: A single endpoint that accepts queries allowing clients to request exactly the fields they need; reduces overfetching but requires careful schema design and complexity control.
  • WebSocket endpoints: Bidirectional, low-latency channels for streaming updates (market data, notifications). Useful when real-time throughput matters.
  • Webhook endpoints: Server-to-server callbacks where your service exposes a publicly accessible endpoint to receive event notifications from another system.

Choosing a protocol depends on consistency requirements, latency tolerance, and client diversity. Hybrid architectures often combine REST for configuration and GraphQL/WebSocket for dynamic data.

Design best practices for robust API endpoints

Good endpoint design improves developer experience and system resilience. Follow these practical practices:

  1. Clear and consistent naming: Use predictable URI patterns and resource-oriented paths. Avoid action-based endpoints like /getUserData in favor of /users/{id}.
  2. Versioning: Expose versioned endpoints (e.g., /v1/users) to avoid breaking changes for consumers.
  3. Input validation: Validate payloads early and return explicit error codes and messages to guide client correction.
  4. Pagination and filtering: For list-heavy endpoints, require pagination tokens or limits to protect backend resources.
  5. Documentation and examples: Provide schema samples, curl examples, and expected response bodies to accelerate integration.

API schema tools (OpenAPI/Swagger, AsyncAPI) let you define endpoints, types, and contracts programmatically, enabling automated client generation, testing, and mock servers during development.

Security, rate limits, and monitoring

Endpoints are primary attack surfaces. Security and observability are critical:

  • Authentication & Authorization: Prefer token-based schemes (OAuth2, JWT) with granular scopes. Enforce least privilege for each endpoint.
  • Transport security: Enforce TLS, HSTS, and secure ciphers to protect data in transit.
  • Rate limiting & quotas: Apply per-key and per-IP limits to mitigate abuse and preserve quality of service.
  • Input sanitization: Prevent injection attacks by whitelisting allowed fields and escaping inputs.
  • Observability: Emit structured logs, traces, and metrics per endpoint. Monitor latency percentiles, error rates, and traffic patterns to detect regressions early.

Operational tooling such as API gateways, service meshes, and managed API platforms provide built-in policy enforcement for security and rate limiting, reducing custom code complexity.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between an api endpoint and an API?

An API is the overall contract and set of capabilities a service exposes; an api endpoint is a specific network address (URI) where one of those capabilities is accessible. Think of the API as the menu and endpoints as the individual dishes.

How should I secure a public api endpoint?

Use HTTPS only, require authenticated tokens with appropriate scopes, implement rate limits and IP reputation checks, and validate all input. Employ monitoring to detect anomalous traffic patterns and rotate credentials periodically.

When should I version my endpoints?

Introduce explicit versioning when you plan to make breaking changes to request/response formats or behavior. Semantic versioning in the path (e.g., /v1/) is common and avoids forcing clients to adapt unexpectedly.

What are effective rate-limiting strategies?

Combine per-key quotas, sliding-window or token-bucket algorithms, and burst allowances. Communicate limits via response headers and provide clear error codes and retry-after values so clients can back off gracefully.

Which metrics should I monitor for endpoints?

Track request rate (RPS), error rate (4xx/5xx), latency percentiles (p50, p95, p99), and active connections for streaming endpoints. Correlate with upstream/downstream service metrics to identify root causes.

When is GraphQL preferable to REST for endpoints?

Choose GraphQL when clients require flexible field selection and you want to reduce overfetching. Prefer REST for simple resource CRUD patterns and when caching intermediaries are important. Consider team familiarity and tooling ecosystem as well.

Disclaimer

The information in this article is technical and educational in nature. It is not financial, legal, or investment advice. Implementations should be validated in your environment and reviewed for security and compliance obligations specific to your organization.

Research

Understanding REST APIs: A Practical Guide

Token Metrics Team
5
MIN

Modern web and mobile apps exchange data constantly. At the center of that exchange is the REST API — a widely adopted architectural style that standardizes how clients and servers communicate over HTTP. Whether you are a developer, product manager, or researcher, understanding what a REST API is and how it works is essential for designing scalable systems and integrating services efficiently.

What is a REST API? Core principles

A REST API (Representational State Transfer Application Programming Interface) is a style for designing networked applications. It defines a set of constraints that, when followed, enable predictable, scalable, and loosely coupled interactions between clients (browsers, mobile apps, services) and servers. REST is not a protocol or standard; it is a set of architectural principles introduced by Roy Fielding in 2000.

Key principles include:

  • Statelessness: Each request from the client contains all information needed; the server does not store client session state between requests.
  • Resource orientation: Everything is modeled as a resource (users, orders, posts), each identified by a URI (Uniform Resource Identifier).
  • Uniform interface: A standard set of operations (typically HTTP methods) operate on resources in predictable ways.
  • Client-server separation: Clients and servers can evolve independently as long as the interface contract is maintained.
  • Cacheability: Responses can be labeled cacheable or non-cacheable to improve performance and scalability.

How REST APIs work: HTTP methods, status codes, and endpoints

A REST API organizes functionality around resources and uses standard HTTP verbs to manipulate them. Common conventions are:

  • GET — retrieve a resource or list of resources.
  • POST — create a new resource under a collection.
  • PUT — replace an existing resource or create if absent (idempotent).
  • PATCH — apply partial updates to a resource.
  • DELETE — remove a resource.

Responses use HTTP status codes to indicate result state (200 OK, 201 Created, 204 No Content, 400 Bad Request, 401 Unauthorized, 404 Not Found, 500 Internal Server Error). Payloads are typically JSON but can be XML or other formats. Endpoints are structured hierarchically, for example: /api/users to list users, /api/users/123 to operate on user with ID 123.

Design patterns and best practices for reliable APIs

Designing a robust REST API involves more than choosing verbs and URIs. Adopt patterns that make APIs understandable, maintainable, and secure:

  • Consistent naming: Use plural resource names (/products, /orders), and keep endpoints predictable.
  • Versioning: Expose versions (e.g., /v1/) to avoid breaking clients when changing the contract.
  • Pagination and filtering: For large collections, support parameters for page size, cursors, and search filters to avoid large responses.
  • Error handling: Return structured error responses with codes and human-readable messages to help client debugging.
  • Rate limiting and throttling: Protect backends by limiting request rates and providing informative headers.
  • Security: Use TLS, authenticate requests (OAuth, API keys), and apply authorization checks per resource.

Following these practices improves interoperability and reduces operational risk.

Use cases, tools, and how to test REST APIs

REST APIs are used across web services, microservices, mobile backends, IoT devices, and third-party integrations. Developers commonly use tools and practices to build and validate APIs:

  • API specifications: OpenAPI (formerly Swagger) describes endpoints, parameters, responses, and can be used to generate client/server code and documentation.
  • Testing tools: Postman, curl, and automated test frameworks (JUnit, pytest) validate behavior, performance, and regression checks.
  • Monitoring and observability: Logs, distributed tracing, and metrics (latency, error rates) help identify issues in production.
  • Client SDKs and code generation: Generate typed clients for multiple languages to reduce integration friction.

AI-driven platforms and analytics can speed research and debugging by surfacing usage patterns, anomalies, and integration opportunities. For example, Token Metrics can be used to analyze API-driven data feeds and incorporate on-chain signals into application decision layers without manual data wrangling.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is REST API — common questions

What is the difference between REST and RESTful?

"REST" refers to the architectural constraints described by Roy Fielding; "RESTful" is a colloquial adjective meaning an API that follows REST principles. Not all APIs labeled RESTful implement every REST constraint strictly.

How does REST compare to SOAP and GraphQL?

SOAP is a protocol with rigid standards and built-in operations (often used in enterprise systems). GraphQL exposes a single endpoint and lets clients request precise data shapes. REST uses multiple endpoints and standard HTTP verbs. Each approach has trade-offs in flexibility, caching, and tooling.

When should I version my REST API?

Version your API before making breaking changes to request/response formats or behavior that existing clients depend on. Common strategies include URI versioning (e.g., /v1/) or header-based versioning.

Are REST APIs secure by default?

No. Security must be designed in: use HTTPS/TLS, authenticate requests, validate input, apply authorization checks, and limit rate to reduce abuse. Treat REST APIs like any other public interface that requires protection.

How do I test and document a REST API effectively?

Use API specifications (OpenAPI) to auto-generate docs and client stubs. Combine manual testing tools like Postman with automated integration and contract tests in CI pipelines to ensure consistent behavior across releases.

Can REST APIs handle streaming or real-time data?

REST is request/response oriented and not ideal for continuous real-time streams. For streaming, consider WebSockets, Server-Sent Events (SSE), or specialized protocols; REST can still be used for control operations and fallbacks.

Disclaimer: This article is educational and technical in nature. It does not provide investment or legal advice. The information is intended to explain REST API concepts and best practices, not to recommend specific products or actions.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products