Back to blog
Research

Top Crypto Prediction Markets: The Complete 2025 Guide to Trading the Future

Explore the top prediction tools for crypto in 2025, including AI-powered platforms and blockchain-based markets, to enhance your forecasting capabilities.
Token Metrics Team
8
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

The prediction revolution is transforming crypto investing in 2025. From AI-powered price prediction platforms to blockchain-based event markets, today's tools help investors forecast everything from token prices to election outcomes with unprecedented accuracy. With billions in trading volume and cutting-edge AI analytics, these platforms are reshaping how we predict, trade, and profit from future events. Whether you're forecasting the next 100x altcoin or betting on real-world outcomes, this comprehensive guide explores the top prediction tools dominating 2025.

Understanding Crypto Prediction Tools vs. Prediction Markets

Before diving in, it's crucial to distinguish between two types of prediction platforms:

  • Crypto Price Prediction Platforms (like Token Metrics) use AI and data analytics to forecast cryptocurrency price movements, identify promising tokens, and generate trading signals.
  • Event Prediction Markets (like Polymarket and Kalshi) are blockchain-powered platforms where users trade on real-world event outcomes—elections, sports, economic indicators, and yes, even crypto prices.

Both serve valuable but different purposes. Let's explore the top tools in each category.

The #1 Crypto Price Prediction Platform

Token Metrics - AI-Powered Crypto Intelligence Leader

Token Metrics stands as the premier AI-driven crypto research and investment platform, scanning over 6,000 tokens daily to provide data-backed predictions and actionable insights. With a user base of 110,000+ crypto traders and $8.5 million raised from 3,000+ investors, Token Metrics has established itself as the industry's most comprehensive prediction tool.

What Makes Token Metrics the Top Price Prediction Tool:

  • AI-Driven Analytics Engine: Token Metrics' AI and machine learning algorithms identify potential trends and predict future price movements by analyzing fundamental reports, code quality, sentiment analysis, moving averages, and support/resistance levels. The platform processes massive datasets 24/7 to spot opportunities before they go mainstream.
  • Comprehensive Scoring System: Every token receives both a Trader Grade (for short-term momentum) and Investor Grade (for long-term fundamentals) based on technical analysis, on-chain data, fundamental metrics, sentiment and social data, and exchange data.
  • Moonshot Discovery: The Moonshots feature uses AI to highlight daily tokens with 10x–100x potential before they hit major exchanges, giving investors early access to high-upside opportunities.
  • Real-Time Signals & Alerts: Get instant bullish and bearish alerts for major tokens, with custom notifications via email, Telegram, or Slack. Never miss a sudden market move or grade change.
  • Multi-Strategy Support: Whether you're HODLing long-term, swing trading, narrative investing, or hunting moonshots, Token Metrics provides tailored tools and indices for every strategy.
  • Deep Token Analytics: Access detailed insights including historical performance, wallet holder analysis, exchange listings, code quality assessments, and market sentiment tracking.

Why Token Metrics Ranks #1:

Unlike basic charting tools or single-metric analyzers, Token Metrics combines time series data, media news, regulator activities, coin events like forks, and traded volumes across exchanges to optimize forecasting results. The platform's proven track record and comprehensive approach make it indispensable for serious crypto investors in 2025.

Best For:

Investors and traders seeking AI-powered crypto price predictions, portfolio optimization, and early altcoin discovery.

Top Crypto Event Prediction Markets

1. Polymarket - The Largest Decentralized Prediction Market

Polymarket dominates the event prediction market space with unmatched liquidity and diverse betting opportunities.

  • Over $18.4 billion in trading volume, establishing market leadership
  • Built on Polygon for low fees and fast transactions
  • Trades in USDC stablecoin for price stability
  • Around 40% of sales volume from sports betting, 40% from crypto movement predictions
  • Open interest recently rose to around $170 million
  • No trading fees on transactions

What Sets It Apart: Polymarket proved its forecasting superiority when it accurately predicted election outcomes that traditional polls missed. The platform's user-friendly interface makes blockchain prediction markets accessible to mainstream audiences.

2. Kalshi - The CFTC-Regulated Powerhouse

Kalshi has surged from 3.3% market share last year to 66% by September 2025, overtaking Polymarket as the trading volume leader.

  • First CFTC-regulated prediction market in the United States
  • Monthly trading volume hit approximately $1.3 billion in September 2025
  • Accepts crypto deposits (USDC, Bitcoin, Solana, Worldcoin) via ZeroHash
  • All markets settled in U.S. dollars
  • Fees up to 5% of profit, capped at $0.85 per contract
  • Recent Developments: Kalshi hired John Wang as Head of Crypto in August 2025, plans to expand to major crypto apps, secured $185 million Series C funding, partnered with Robinhood for sports markets.

Best For: U.S. residents seeking regulated prediction markets with crypto deposit options and diverse event contracts.

3. Drift BET - Solana's Speed Champion

For traders demanding instant settlement and minimal fees, Drift BET represents the cutting edge of prediction markets on Solana.

  • Native Solana integration for near-instant finality
  • Multi-collateral support
  • Extremely low transaction costs
  • Growing ecosystem momentum

Why It Matters: Leveraging Solana's near-instant transaction finality, Drift BET solves scalability issues faced by Ethereum-based prediction markets, with low transaction fees making smaller bets feasible across a wider audience.

4. Augur - The Pioneering Protocol

Launched in 2018, Augur was the first decentralized prediction market, pioneering blockchain-based forecasting and innovative settlement methods secured by the REP token.

  • Fully decentralized platform
  • REP token for market creation, rewards, and disputes
  • Augur Turbo version on Polygon for improved efficiency
  • Supports binary, categorical, and scalar markets

Legacy Impact: Augur v1 settled around $20 million in bets—impressive for 2018-19. Though its DAO has dissolved, Augur's technological innovations influence the DeFi sphere.

5. Gnosis - The Infrastructure Powerhouse

With a market cap of $463 million, Gnosis is the biggest prediction market project by market capitalization.

  • Conditional Token Framework for outcome tokenization
  • GNO token for governance and staking
  • Gnosis Chain Layer 2 solution
  • Powers platforms like Omen and Azuro

Ecosystem Approach: Founded in 2015, Gnosis evolved into a multifaceted ecosystem covering decentralized trading, wallet services, and infrastructure tools beyond prediction markets.

6. Emerging Platforms

  • Robinhood Prediction Markets: Facilitated over 4 billion event contracts, integrated into the Robinhood app, with a $0.01 fee structure and user rewards.
  • Crypto.com Prediction Trading: CFTC-regulated, integrated with Crypto.com Derivatives North America, supporting diverse event contracts.

How These Platforms Work Together

Smart investors combine Token Metrics for identifying promising cryptocurrencies and then leverage prediction markets like Polymarket or Kalshi to hedge positions or speculate on specific events.

Example Strategy: Use Token Metrics to identify a token with strong Trader Grade and bullish AI signals. Build a position through AI trading, then use prediction markets to bet on price milestones or events, monitoring alerts for exit points. This blends AI-driven predictions with market-based event forecasting.

Why Prediction Platforms Are Exploding in 2025

  • Market Growth Trajectory: Predictions estimate the sector could reach $95.5 billion by 2035, with derivatives integrating into DeFi.
  • Key Growth Drivers: AI & Machine Learning advancements, regulatory clarity post-2024 elections, proven accuracy in forecasts, institutional interest, and expansion into sports betting.

Real-World Applications

For Crypto Investors:

  • Use Token Metrics to identify high-potential tokens early
  • Access AI-generated buy/sell signals for portfolio management
  • Discover narrative-driven opportunities ahead of the curve

For Event Traders:

  • Hedge crypto positions via prediction markets
  • Speculate on regulatory, listing, or network events
  • Trade sports and political events for diversified income

For Analysts & Institutions:

  • Aggregate market sentiment data for research
  • Access real-time forecasts on economic indicators
  • Build custom strategies with API integrations

Risks and Considerations

  • Price prediction platforms are not 100% accurate; past data isn’t a guarantee of future results.
  • AI models need quality historical data; market manipulation and black swan events can affect predictions.
  • Prediction markets face regulatory uncertainty, liquidity challenges, Oracle failures, and tax complexities.

The Future: AI + Blockchain Convergence

What’s Coming:

  • Deeper AI integration, automated portfolio management, and enhanced moonshot discovery with advanced machine learning.
  • Wider adoption of prediction markets, tokenization of positions, and cross-platform integrations blending AI and event markets.
  • Progress in DeFi integration, creating complex financial products based on collective forecast data.

Getting Started: Platform Recommendations

  • Price Prediction & Portfolio Management: Token Metrics
  • U.S. Residents (Event Betting): Kalshi, Robinhood
  • Maximum Liquidity (Event Betting): Polymarket
  • Speed & Low Fees: Drift BET
  • Developers: Gnosis
  • Maximum Decentralization: Augur

Conclusion: Predicting the Future Is Now Data-Driven

The era of blind speculation is over. Between AI-powered platforms like Token Metrics analyzing thousands of data points per second and blockchain-based prediction markets aggregating collective wisdom, today's investors have unprecedented tools for forecasting the future. Token Metrics leads the charge in crypto price prediction with its comprehensive AI-driven approach, while platforms like Polymarket and Kalshi dominate event-based forecasting. Together, they represent a new paradigm where data, algorithms, and collective intelligence converge to illuminate tomorrow's opportunities.

Whether you're hunting the next 100x altcoin or betting on real-world events, 2025's prediction platforms put the power of foresight in your hands. The question isn't whether to use these tools—it's how quickly you can integrate them into your strategy.

Disclaimer: This article is for informational purposes only and does not constitute financial advice. All investing involves risk, including potential loss of capital. Price predictions and ratings are provided for informational purposes and may not reflect actual future performance. Always conduct thorough research and consult qualified professionals before making financial decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

A Complete Guide to Writing Smart Contracts

Token Metrics Team
4

Introduction

Smart contracts are self-executing contracts with the terms of the agreement directly written into lines of code. They run on blockchain platforms, such as Ethereum, enabling decentralized, automated agreements that do not require intermediaries. Understanding how to write a smart contract involves familiarity with blockchain principles, programming languages, and best practices for secure and efficient development.

Understanding Smart Contracts

Before diving into development, it is essential to grasp what smart contracts are and how they function within blockchain ecosystems. Essentially, smart contracts enable conditional transactions that automatically execute when predefined conditions are met, providing transparency and reducing dependency on third parties.

These programs are stored and executed on blockchain platforms, making them immutable and distributed, which adds security and reliability to the contract's terms.

Choosing the Right Platform

Writing a smart contract starts with selecting an appropriate blockchain platform. Ethereum is among the most widely used platforms with robust support for smart contracts, primarily written in Solidity—a statically-typed, contract-oriented programming language.

Other platforms like Binance Smart Chain, Polkadot, and Solana also support smart contracts with differing languages and frameworks. Selecting a platform depends on the project requirements, intended network compatibility, and resource accessibility.

Learning the Programming Language

The most commonly used language for writing Ethereum smart contracts is Solidity. It is designed to implement smart contracts with syntax similar to JavaScript, making it approachable for developers familiar with web programming languages.

Other languages include Vyper, a pythonic language focusing on security and simplicity, and Rust or C++ for platforms like Solana. Learning the syntax, data types, functions, and event handling of the chosen language is foundational.

Setting Up Development Environment

Development of smart contracts typically requires a suite of tools for editing, compiling, testing, and deploying code:

  • IDEs: Integrated Development Environments such as Remix (web-based for Solidity) or Visual Studio Code with plugins.
  • Frameworks: Tools like Truffle or Hardhat enable local blockchain simulation, automated testing, and deployment scripts.
  • Node and Wallet: Connecting to blockchain networks often requires running a node or leveraging services like Infura, along with digital wallets (e.g., MetaMask) for transaction signing.

Writing the Smart Contract Code

Writing a smart contract involves structuring the code to define its variables, functions, and modifiers. Key steps include:

  1. Define the contract: Use the keyword contract to declare the contract and its name.
  2. Declare state variables: Define data stored on the blockchain, such as balances or ownership details.
  3. Write functions: Implement logic that changes state variables or triggers events.
  4. Use modifiers: Add conditional checks like access restrictions (e.g., only the owner can execute certain functions).
  5. Emit events: Use events to log significant contract operations for off-chain monitoring.

Example snippet in Solidity:

pragma solidity ^0.8.0;

contract SimpleStorage {
  uint storedData;

  function set(uint x) public {
    storedData = x;
  }

  function get() public view returns (uint) {
    return storedData;
  }
}

Testing and Debugging

Testing is crucial to ensure smart contracts operate as intended and to prevent bugs or vulnerabilities. Strategies include:

  • Writing unit tests using frameworks like Truffle or Hardhat.
  • Running tests on local blockchains (Ganache) before deploying.
  • Using linters and analysis tools to detect common security issues.

Adopting rigorous testing can reduce the risk of exploits or loss of funds caused by contract errors.

Deploying the Smart Contract

Deployment involves publishing the compiled smart contract bytecode to the blockchain. This includes:

  • Compiling the contract into bytecode.
  • Connecting to the desired blockchain network (testnet or mainnet) usually via wallet integration.
  • Submitting a deployment transaction, which requires gas fees for execution.

Using test networks like Ropsten, Rinkeby, or Goerli is recommended for initial deployment to validate functionality without incurring real costs.

Using AI Tools for Smart Contract Research

Emerging AI-driven platforms can assist developers and analysts with smart contract evaluation, security analysis, and market sentiment interpretation. For instance, tools like Token Metrics provide algorithmic research that can support understanding of blockchain projects and smart contract implications in the ecosystem.

Integrating these tools along with manual audits aids comprehensive assessments for better development decisions.

Best Practices and Security Considerations

Writing secure smart contracts requires awareness of common vulnerabilities such as reentrancy attacks, integer overflows, and improper access controls. Best practices include:

  • Following established design patterns and standards (e.g., OpenZeppelin contracts).
  • Performing thorough code reviews and external audits.
  • Keeping contracts as simple and modular as possible.

Robust security practices are critical due to the immutable nature of deployed smart contracts on blockchain.

Conclusion

Writing a smart contract involves a combination of blockchain knowledge, programming skills, and adherence to security best practices. From choosing a platform and language to coding, testing, and deploying, each step plays an important role in the development lifecycle.

Leveraging AI-powered tools like Token Metrics can add valuable insights for developers aiming to enhance their understanding and approach to smart contract projects.

Disclaimer

All information provided in this article is for educational purposes only and does not constitute financial or investment advice. Readers should conduct their own research and consult professional sources where appropriate.

Research

Understanding the Risks of AI Controlling Decentralized Autonomous Organizations

Token Metrics Team
4

Introduction

Decentralized Autonomous Organizations (DAOs) represent an innovative model for decentralized governance and decision-making in the blockchain space. With the increasing integration of artificial intelligence (AI) into DAOs for automating processes and enhancing efficiency, it is vital to understand the risks associated with allowing AI to control or heavily influence DAOs. This article provides a comprehensive analysis of these risks, exploring technical, ethical, and systemic factors. Additionally, it outlines how analytical platforms like Token Metrics can support informed research around such emerging intersections.

DAO and AI Basics

DAOs are blockchain-based entities designed to operate autonomously through smart contracts and collective governance, without centralized control. AI technologies can offer advanced capabilities by automating proposal evaluation, voting mechanisms, or resource allocation within these organizations. While this combination promises increased efficiency and responsiveness, it also introduces complexities and novel risks.

Technical Vulnerabilities

One significant category of risks involves technical vulnerabilities arising from AI integration into DAOs:

  • Smart Contract Exploits: AI-driven decision-making typically operates on smart contracts. Flaws or bugs in the smart contract code can be exploited, possibly amplified by AI’s autonomous execution.
  • Data Integrity and Quality: AI requires reliable data inputs to function correctly. Malicious actors might inject false or biased data, leading to misguided AI decisions that could harm DAO operations.
  • Algorithmic Errors: AI algorithms might contain bugs, incorrect assumptions, or be insufficiently tested, which could result in unintended behaviors or decisions with negative consequences.

Governance and Control Challenges

Integrating AI into DAO governance raises complex questions around control, transparency, and accountability:

  • Lack of Transparency: AI algorithms, especially those using complex machine learning models, can be opaque, making it difficult for stakeholders to audit decisions or understand governance processes fully.
  • Centralization Risks: AI models are often developed and maintained by specific teams or organizations, which could inadvertently introduce centralization points contrary to the decentralized ethos of DAOs.
  • Unintended Bias: AI systems trained on biased datasets may propagate or exacerbate existing biases within DAO decision-making, risking unfair or harmful outcomes.

Security and Manipulation Risks

The autonomous nature of AI presents unique security concerns:

  • Manipulation Attacks: Adversaries might target the AI’s learning process or input data channels to manipulate outcomes toward malicious goals.
  • Autonomy Exploits: An AI controlling critical DAO functions autonomously could make decisions that are difficult to reverse or disrupt, leading to lasting damage if exploited.
  • Emergent Behavior: Complex AI systems might develop unexpected behaviors in dynamic environments, creating risks hard to anticipate or control within DAO frameworks.

Ethical and Regulatory Concerns

Beyond technical risks, the interaction between AI and DAOs also introduces ethical and regulatory considerations:

  • Accountability Gaps: Determining liability for AI-driven decisions within DAOs is challenging, potentially leading to accountability voids in cases of harm or disputes.
  • Compliance Complexity: Evolving regulatory landscapes surrounding both AI and blockchain could create overlapping or conflicting requirements for AI-controlled DAOs.
  • User Consent and Autonomy: Members participating in DAOs may have concerns over how AI influences governance and whether adequate consent frameworks are in place.

Mitigating Risks with Analytical Tools

Understanding and managing these risks require robust research and analytical frameworks. Platforms such as Token Metrics provide data-driven insights supporting comprehensive evaluation of blockchain projects, governance models, and emerging technologies combining AI and DAOs.

  • Thorough Technical Reviews: Regular audits and reviews of AI algorithms and smart contracts can detect vulnerabilities early.
  • Transparency Initiatives: Employing explainable AI methods enhances trust and allows stakeholder scrutiny.
  • Scenario Analysis: Exploring potential failure modes and adversarial scenarios helps prepare for unexpected outcomes.
  • Community Engagement: Active and informed participation in DAO governance ensures more robust checks and balances.

Conclusion

The fusion of AI and DAOs promises innovative decentralized governance but comes with substantial risks. Technical vulnerabilities, governance challenges, security threats, and ethical concerns highlight the need for vigilant risk assessment and careful integration. Utilizing advanced research platforms like Token Metrics enables more informed and analytical approaches for stakeholders navigating this evolving landscape.

Disclaimer

This article is for educational purposes only and does not constitute financial, legal, or investment advice. Readers should perform their own due diligence and consult professionals where appropriate.

Research

How AI Enhances Vulnerability Detection in Smart Contracts

Token Metrics Team
4

Introduction: The Growing Concern of Smart Contract Vulnerabilities

Smart contracts are self-executing contracts with the terms directly written into code, widely used across blockchain platforms to automate decentralized applications (DApps) and financial protocols. However, despite their innovation and efficiency, vulnerabilities in smart contracts pose significant risks, potentially leading to loss of funds, exploits, or unauthorized actions.

With the increasing complexity and volume of smart contracts being deployed, traditional manual auditing methods struggle to keep pace. This has sparked interest in leveraging Artificial Intelligence (AI) to enhance the identification and mitigation of vulnerabilities in smart contracts.

Understanding Smart Contract Vulnerabilities

Smart contract vulnerabilities typically arise from coding errors, logic flaws, or insufficient access controls. Common categories include reentrancy attacks, integer overflows, timestamp dependencies, and unchecked external calls. Identifying such vulnerabilities requires deep code analysis, often across millions of lines of code in decentralized ecosystems.

Manual audits by security experts are thorough but time-consuming and expensive. Moreover, the human factor can result in missed weaknesses, especially in complex contracts. As the blockchain ecosystem evolves, utilizing AI to assist in this process has become a promising approach.

The Role of AI in Vulnerability Detection

AI techniques, particularly machine learning (ML) and natural language processing (NLP), can analyze smart contract code by learning from vast datasets of previously identified vulnerabilities and exploits. The primary roles of AI here include:

  • Automated Code Analysis: AI models can scan codebases rapidly to detect patterns indicative of security flaws.
  • Anomaly Detection: AI can recognize atypical or suspicious contract behaviors that deviate from standard practices.
  • Predictive Assessment: By using historical vulnerability data, AI can predict potential risk points in new contracts.
  • Continuous Learning: AI systems can improve over time by incorporating feedback from newly discovered vulnerabilities.

Techniques and Tools Used in AI-Driven Smart Contract Analysis

Several AI-based methodologies have been adopted to aid vulnerability detection:

  1. Static Code Analysis: AI algorithms break down smart contract code without execution, identifying syntactic and structural weaknesses.
  2. Dynamic Analysis and Fuzzing: Leveraging AI to simulate contract execution in varied scenarios to uncover hidden vulnerabilities.
  3. Graph Neural Networks (GNNs): Applied to model relational data within smart contract structures, improving detection of complex vulnerabilities.
  4. Transformer Models: Adapted from NLP, these analyze code semantics to spot nuanced issues beyond basic syntax errors.

Some emerging platforms integrate such AI techniques to provide developers and security teams with enhanced vulnerability scanning capabilities.

Advantages of AI Over Traditional Auditing Methods

Compared to manual or rule-based approaches, AI provides several notable benefits:

  • Scalability: AI can analyze thousands of contracts quickly, which manual teams cannot feasibly match.
  • Consistency: AI reduces human error and subjective assessment variability in vulnerability identification.
  • Real-Time Analysis: AI-powered systems can run continuous scans and provide rapid alerts for emerging threats.
  • Cost Efficiency: Automating portions of the audit process can reduce resource expenditure over time.

Despite these advantages, AI is complementary to expert review rather than a replacement, as audits require contextual understanding and judgment that AI currently cannot fully replicate.

Challenges and Limitations of AI in Smart Contract Security

While promising, AI application in this domain faces several hurdles:

  • Data Quality and Availability: Training AI models requires large, well-labeled datasets of smart contract vulnerabilities, which are limited due to the relative novelty of the field.
  • Complexity of Smart Contracts: Diverse programming languages and design patterns complicate uniform AI analysis.
  • False Positives/Negatives: AI may generate incorrect alerts or miss subtle vulnerabilities, requiring human validation.
  • Adversarial Adaptation: Malicious actors may develop exploits specifically designed to evade AI detection models.

How to Use AI Tools Effectively for Smart Contract Security

Developers and security practitioners can optimize the benefits of AI by:

  • Integrating AI Reviews Early: Employ AI analysis during development cycles to detect vulnerabilities before deployment.
  • Combining with Manual Audits: Use AI as a preliminary screening tool, followed by detailed human assessments.
  • Continuous Monitoring: Monitor deployed contracts with AI tools to detect emergent risks or unexpected behaviors.
  • Leveraging Platforms: Utilizing platforms such as Token Metrics that provide AI-driven analytics for comprehensive research on smart contracts and related assets.

Conclusion & Future Outlook

AI has a growing and important role in identifying vulnerabilities within smart contracts by providing scalable, consistent, and efficient analysis. While challenges remain, the combined application of AI tools with expert audits paves the way for stronger blockchain security.

As AI models and training data improve, and as platforms integrate these capabilities more seamlessly, users can expect increasingly proactive and precise identification of risks in smart contracts.

Disclaimer

This article is for educational and informational purposes only. It does not constitute financial, investment, or legal advice. Always conduct your own research and consider consulting professionals when dealing with blockchain security.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products