Research

Top Derivatives Platforms for Futures & Options (2025)

See the best crypto derivatives platforms for 2025—futures, options, and perps—ranked by liquidity, security, costs, and coverage. Pick the right venue for your region.
Sam Monac
5 min
MIN

If you trade crypto futures and options, picking the right derivatives platforms can make or break your results. In this guide, we sort the top exchanges and on-chain venues by liquidity, security, costs, and product depth so you can match your strategy to the right venue—fast. You’ll find quick answers near the top, deeper context below, and links to official resources. We cover crypto futures, crypto options, and perpetual swaps for both centralized and decentralized platforms.

Quick answer: The best platform for you depends on region/eligibility, contract types (perps, dated futures, options), fee structure, margin system, and support quality. Below we score each provider and map them to common use cases.

How We Picked (Methodology & Scoring)

We scored each provider using the weights below (0–100 total):

  • Liquidity (30%) – Depth, spreads, and market resilience during volatility.

  • Security (25%) – Operational history, custody model, risk controls, and disclosures.

  • Coverage (15%) – Contract variety (BTC/ETH majors, alt perps, dated futures, options).

  • Costs (15%) – Trading/withdrawal fees, funding rates context, rebates.

  • UX (10%) – Execution workflow, APIs, mobile, analytics/tools.

  • Support (5%) – Docs, status pages, client service, institutional access.

Sources: Official platform pages, help centers, and product docs; public disclosures and product catalogs; our hands-on review and long-term coverage of derivatives venues. Last updated September 2025.

Top 10 Derivatives Platforms in September 2025

Each summary includes why it stands out, who it’s best for, and what to consider. Always check regional eligibility.

1. Binance Futures — Best for global liquidity at scale Binance+2Binance+2

Why Use It: Binance Futures offers some of the deepest books and widest perp listings, with robust APIs and portfolio margin. It’s a go-to for active traders who need speed and breadth.
Best For: High-frequency/active traders; systematic/API users; altcoin perp explorers.
Notable Features: Perpetuals and dated futures, options module, copy trading, portfolio margin.
Consider If: You need U.S.-regulated access—availability may vary by region.
Alternatives: OKX, Bybit.

2. OKX — Best for breadth + toolset OKX+2OKX+2

Why Use It: Strong product coverage (perps, dated futures, options) with solid liquidity and a polished interface. Good balance of features for discretionary and API traders.
Best For: Multi-instrument traders; users wanting options + perps under one roof.
Notable Features: Unified account, options chain, pre-market perps, apps and API.
Consider If: Region/eligibility and KYC rules may limit access.
Alternatives: Binance Futures, Bybit.

3. Bybit Derivatives — Best for active perps traders Bybit+2Bybit+2

Why Use It: Competitive fees, broad perp markets, solid tooling, and a large user base make Bybit attractive for day traders and swing traders alike.
Best For: Perps power users; copy-trading and mobile-first traders.
Notable Features: USDT/USDC coin-margined perps, options, demo trading, OpenAPI.
Consider If: Check your local rules—service availability varies by region.
Alternatives: Binance Futures, Bitget.

4. Deribit — Best for BTC/ETH options liquidity deribit.com+1

Why Use It: Deribit is the reference venue for crypto options on BTC and ETH, with deep liquidity across maturities and strikes; it also offers futures.
Best For: Options traders (directional, spreads, volatility) and institutions.
Notable Features: Options analytics, block trading tools, test environment, 24/7 support.
Consider If: Regional access may be limited; primarily majors vs. broad alt coverage.
Alternatives: Aevo (on-chain), CME (regulated futures/options).

5. CME Group — Best for U.S.-regulated institutional futures Reuters+3CME Group+3CME Group+3

Why Use It: For institutions needing CFTC-regulated access, margin efficiency, and robust market infrastructure, CME is the standard for BTC/ETH futures and options.
Best For: Funds, corporates, and professionals with FCM relationships.
Notable Features: Standard and micro contracts, options, benchmarks, data tools.
Consider If: Requires brokerage/FCM onboarding; no altcoin perps.
Alternatives: Coinbase Derivatives (U.S.), Kraken Futures (institutions).

6. dYdX — Best decentralized perps (self-custody) dYdX Chain+2dydx.xyz+2

Why Use It: dYdX v4 runs on its own chain with on-chain settlement and pro tooling. Traders who want non-custodial perps and transparent mechanics gravitate here.
Best For: DeFi-native traders; users prioritizing self-custody and transparency.
Notable Features: On-chain orderbook, staking & trading rewards, API, incentives.
Consider If: Wallet/key management and gas/network dynamics add complexity.
Alternatives: Aevo (options + perps), GMX (alt DEX perps).

7. Kraken Futures — Best for compliance-minded access incl. U.S. roll-out Kraken+2Kraken+2

Why Use It: Kraken offers crypto futures for eligible regions, with a growing U.S. footprint via Kraken Derivatives US and established institutional services.
Best For: Traders who value brand trust, support, and clear documentation.
Notable Features: Pro interface, institutional onboarding, status and support resources.
Consider If: Product scope and leverage limits can differ by jurisdiction.
Alternatives: Coinbase Derivatives, CME.

8. Coinbase Derivatives — Best for U.S.-regulated access + education AP News+3Coinbase+3Coinbase+3

Why Use It: NFA-supervised futures for eligible U.S. customers and resources that explain contract types. Outside the U.S., Coinbase also offers derivatives via separate entities.
Best For: U.S. traders needing regulated access; Coinbase ecosystem users.
Notable Features: Nano BTC/ETH contracts, 24/7 trading, learn content, FCM/FCM-like flows.
Consider If: Contract lineup is narrower than global offshore venues.
Alternatives: CME (institutional), Kraken Futures.

9. Bitget — Best for alt-perps variety + copy trading Bitget+3Bitget+3Bitget+3

Why Use It: Bitget emphasizes a wide perp catalog, social/copy features, and frequent product updates—useful for traders rotating across narratives.
Best For: Altcoin perp explorers; copy-trading users; mobile-first traders.
Notable Features: USDT/USDC-margined perps, copy trading, frequent listings, guides.
Consider If: Check eligibility and risk—breadth can mean uneven depth in tail assets.
Alternatives: Bybit, OKX.

10. Aevo — Best on-chain options + perps with unified margin Aevo Documentation+3Aevo+3Aevo Documentation+3

Why Use It: Aevo runs a custom L2 (OP-stack based) and offers options, perps, and pre-launch futures with unified margin—bridging CEX-like speed with on-chain settlement.
Best For: Options/perps traders who want DeFi custody with pro tools.
Notable Features: Unified margin, off-chain matching + on-chain settlement, pre-launch markets, detailed docs and fee specs.
Consider If: On-chain workflows (bridging, gas) and product scope differ from CEXs.
Alternatives: Deribit (options liquidity), dYdX (perps DEX).

Decision Guide: Best By Use Case

How to Choose the Right Platform (Checklist)

  • Region & Eligibility: Confirm KYC/AML rules and whether your country is supported.

  • Coverage & Liquidity: Check your contract list (majors vs. alts), order-book depth, and spreads.

  • Custody & Security: Decide CEX custody vs. self-custody (DEX). Review incident history and controls.

  • Costs: Compare maker/taker tiers, funding mechanics, and rebates across your actual volumes.

  • Margin & Risk: Portfolio margin availability, liquidation engine design, circuit breakers.

  • UX & API: If you automate, verify API limits and docs; assess mobile/desktop parity.

  • Support & Docs: Look for status pages, live chat, and clear product specs.

  • Red flags: Vague disclosures; no status page; no detail on risk/liquidation systems.

Use Token Metrics With Any Derivatives Platform

  • AI Ratings & Signals: Spot changing trends before the crowd.
  • Narrative Detection: Track sectors and catalysts that may drive perp flows.

  • Portfolio Optimization: Size positions with risk-aware models and scenario tools.

  • Alerts: Get notified on grade moves, momentum changes, and volatility spikes.

Workflow (1–4): Research with Token Metrics → Pick venue(s) above → Execute perps/options → Monitor with alerts and refine.

Primary CTA: Start free trial

Security & Compliance Tips

  • Enable 2FA, withdrawal allow-lists, and API key scopes/rotations.

  • For DEXs, practice wallet hygiene (hardware wallet, clean approvals).

  • Use proper KYC/AML where required; understand tax obligations.

  • If using options or leverage, set pre-trade max loss and test position sizing.

  • For block/OTC execution, compare quotes and confirm settlement instructions.

This article is for research/education, not financial advice.

Beginner Mistakes to Avoid

  • Trading perps without understanding funding and how it impacts P&L.

  • Ignoring region restrictions and onboarding to non-eligible venues.

  • Oversizing positions without a liquidation buffer.

  • Mixing custodial and self-custodial workflows without a key plan.

  • Chasing low-liquidity alts where slippage can erase edge.

FAQs

What’s the difference between perps and traditional futures?
Perpetual swaps have no expiry, so you don’t roll contracts; instead, a funding rate nudges perp prices toward spot. Dated futures expire and may require roll management. Binance+1

Where can U.S. traders access regulated crypto futures?
Through CFTC/NFA-supervised venues like CME (via FCMs) and Coinbase Derivatives for eligible customers; availability and contract lists vary by account type. CME Group+2Coinbase+2

What’s the leading venue for BTC/ETH options liquidity?
Deribit has long been the primary market for BTC/ETH options liquidity used by pros and market makers. deribit.com

Which DEXs offer serious perps trading?
dYdX is purpose-built for on-chain perps with a pro workflow; Aevo blends options + perps with unified margin on a custom L2. dYdX Chain+1

How do I keep fees under control?
Use maker orders where possible, seek fee tier discounts/rebates, and compare funding rates over your expected holding time. Each venue publishes fee schedules and specs.

Conclusion + Related Reads

If you want deep global perps, start with Binance, OKX, or Bybit. For BTC/ETH options, Deribit remains the benchmark. If you need U.S.-regulated access, look at CME via an FCM or Coinbase Derivatives; Kraken is expanding its futures footprint. Prefer self-custody? dYdX and Aevo are solid on-chain choices. Match the venue to your region, contracts, and risk process—then let Token Metrics surface signals and manage the watchlist.

Related Reads

  • Best Cryptocurrency Exchanges 2025

  • Top Derivatives Platforms 2025

  • Top Institutional Custody Providers 2025

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How They Work and Why They Matter

Token Metrics Team
5
MIN

APIs power modern software: they let apps talk to each other, enable data sharing, and underpin many AI and crypto services. Whether you use a weather widget, connect to a payment gateway, or build an AI agent that queries market data, understanding what an API is will make you a smarter builder and researcher.

What is an API? A concise definition

An API, or application programming interface, is a set of rules and contracts that lets one software component request services or data from another. Think of an API as a menu at a restaurant: it lists operations you can ask for (endpoints), the inputs required (parameters), and the outputs you’ll receive (responses). The menu hides the kitchen’s complexity while enabling reliable interactions.

At a technical level, APIs define:

  • Endpoints: addressable paths (e.g., /v1/price) that expose functionality.
  • Methods: actions (GET, POST, PUT, DELETE) that describe intent.
  • Payloads and formats: how data is sent and returned (JSON, XML, protobuf).
  • Authentication and rate limits: controls that protect providers and consumers.

How APIs work: protocols, formats, and patterns

APIs come in many flavors, but several common patterns and technologies recur. HTTP-based REST APIs are ubiquitous: clients send HTTP requests to endpoints, and servers return structured responses. GraphQL provides a flexible query language so clients request exactly the data they need. gRPC and protobuf offer high-performance binary protocols suited for internal systems.

Key technical considerations include:

  • Authentication: API keys, OAuth 2.0, and signed requests verify identity.
  • Data formats: JSON is common for public APIs; compact formats (protobuf) are used for efficiency.
  • Versioning: /v1/, /v2/ patterns prevent breaking changes for consumers.
  • Error handling: HTTP status codes and descriptive error bodies aid debugging.

From a user perspective, well-designed APIs are predictable, documented, and testable. Tools like Postman, curl, and OpenAPI (Swagger) specs help developers explore capabilities and simulate workflows before writing production code.

Types of APIs and common use cases

APIs fall into categories by audience and purpose: public (open) APIs available to external developers, partner APIs for trusted integrations, and private/internal APIs for microservices inside an organization. Use cases span virtually every industry:

  • Web and mobile apps: fetch user data, manage authentication, or render dynamic content.
  • Payments and identity: integrate payment processors or single-sign-on providers.
  • AI and data services: call model inference endpoints, fetch embeddings, or retrieve labeled datasets.
  • Crypto and Web3: query blockchain state, streaming market data, or execute on-chain reads via node and indexer APIs.

For crypto developers, specialized endpoints like on-chain transaction lookups, token metadata, and real-time price feeds are common. Choosing the right API type and provider depends on latency, data freshness, cost, and reliability requirements.

How to evaluate and use an API effectively

Selecting an API is a mix of technical and operational checks. Use a framework to compare candidates across functionality, quality, and governance:

  1. Functional fit: Does the API expose the endpoints and data shapes you need? Can it filter, paginate, or aggregate appropriately?
  2. Performance: Measure latency, throughput, and SLA guarantees. For real-time systems, prefer providers with streaming or websocket options.
  3. Data quality & provenance: Verify how data is sourced and updated. For analytical work, consistent timestamps and clear versioning are critical.
  4. Security & compliance: Check authentication methods, encryption in transit, and data-handling policies.
  5. Cost & rate limits: Understand pricing tiers, request quotas, and backoff strategies.
  6. Documentation & community: Good docs, SDKs, and examples reduce integration time and maintenance risk.

When building prototypes, use sandbox or free tiers to validate assumptions. Instrument usage with logging and observability so you can detect schema changes or degraded data quality quickly. For AI agents, prefer APIs that return structured, consistent responses to reduce post-processing needs.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is an API?

An API is a contract that allows software components to interact. It specifies endpoints, request formats, authentication, and expected responses so different systems can communicate reliably.

How do I start using an API?

Begin by reading the provider’s documentation, obtain any required credentials (API key or OAuth token), and make simple test calls with curl or Postman. Use SDKs if available to accelerate development.

What’s the difference between REST and GraphQL?

REST exposes fixed endpoints returning predefined data structures, while GraphQL lets clients query for exactly the fields they need. REST is simple and cache-friendly; GraphQL provides flexibility at the cost of more complex server logic.

Are APIs secure to use for sensitive data?

APIs can be secure if they use strong authentication (OAuth, signed requests), TLS encryption, access controls, and proper rate limiting. Review the provider’s security practices and compliance certifications for sensitive use cases.

How are APIs used with AI and agents?

AI systems call APIs to fetch data, request model inferences, or enrich contexts. Stable, well-documented APIs with predictable schemas reduce the need for complex parsing and improve reliability of AI agents.

Disclaimer

This article is for educational purposes only. It explains technical concepts and evaluation frameworks but is not investment advice or a recommendation to use any specific API for financial decisions. Always review terms of service and data governance policies before integrating third-party APIs.

Research

APIs Explained: How They Work and Why They Matter

Token Metrics Team
5
MIN

APIs power modern software: they let apps talk to each other, enable mobile experiences, connect to cloud services, and feed AI agents. Understanding what an API is and how it operates helps product builders, researchers, and technical decision-makers evaluate integrations with clarity.

What is an API?

An API, or application programming interface, is a set of rules and contracts that defines how software components communicate. At its core an API exposes functionality or data so that another program can consume it without needing to understand internal implementation. Think of an API as a menu in a restaurant: you don’t need to know how the chef cooks — you just place an order and receive a result according to the menu’s options.

APIs come in many shapes: web APIs (HTTP-based), library or framework APIs (functions callable within code), and system APIs (operating system calls). In web and cloud contexts, developers most often work with REST, GraphQL, gRPC, and WebSocket APIs.

How APIs work: common patterns and protocols

At a technical level, an API defines the request and response pattern. For web APIs this typically involves:

  • Endpoint: a URL that represents a resource or action.
  • Method: an operation such as GET, POST, PUT, DELETE (for REST) or query/mutation in GraphQL.
  • Payload: the data sent with a request (JSON, XML, binary).
  • Response: the data returned, status codes, and error information.

APIs also incorporate metadata: authentication tokens, rate limits, and versioning headers. Protocol choice matters: REST is simple and widely supported; GraphQL offers flexible queries; gRPC is efficient for high-throughput, typed services; WebSockets suit bidirectional, low-latency streams. The right pattern depends on latency, payload size, and developer ergonomics.

API use cases: where APIs add value

APIs are the connective tissue across many domains. Typical use cases include:

  • Web and mobile apps: fetching user profiles, syncing data, and processing payments.
  • Microservices: internal services communicate via APIs to form scalable systems.
  • Data platforms: exposing analytical results, telemetry, and ETL endpoints.
  • AI and agents: models consume APIs for context, data enrichment, and action execution.
  • Crypto and on-chain tooling: price feeds, on-chain analytics, and wallet services often expose crypto APIs so applications can read ledger data and market signals.

These examples highlight how APIs abstract complexity and enable composability: a developer can integrate capabilities from third parties without rebuilding them.

Design and security: best practices to consider

Designing an API involves functionality, but security and reliability are equally important. Key practices include:

  • Authentication and authorization: use tokens, scopes, and role-based access control to limit what callers can do.
  • Input validation: validate and sanitize inputs to prevent injection and abuse.
  • Rate limiting and quotas: protect backends from spikes and enforce fair use.
  • Clear versioning: avoid breaking changes by introducing versioned endpoints or compatibility layers.
  • Observability: log requests, measure latency, and expose metrics to detect failures early.

Security hardening often includes transport encryption (TLS), secure key management, and routine audits. For APIs that touch financial or sensitive data, layered controls and monitoring are essential to reduce operational risk.

How to evaluate and choose an API

When comparing APIs, use a practical checklist:

  1. Documentation quality: clear examples and error descriptions reduce implementation friction.
  2. Latency and throughput: test typical response times and how the API behaves under load.
  3. Data freshness and coverage: confirm how often data updates and whether it covers required assets or regions.
  4. Security model: ensure authentication mechanisms and compliance posture meet your requirements.
  5. Cost and quotas: consider pricing tiers, rate limits, and overage behavior for production use.

For AI-driven workflows, examine whether the API supports batch access, streaming, and programmatic filtering so models can retrieve relevant context efficiently.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API is a defined interface that allows software components to communicate. It specifies how to request data or services and what responses to expect, enabling integration without exposing internal code.

FAQ: What are REST, GraphQL, and gRPC?

REST is a resource-oriented, HTTP-based approach. GraphQL lets clients request precisely the data they need via queries. gRPC uses binary protocols and strongly typed contracts for efficient inter-service communication—each fits different performance and flexibility needs.

FAQ: How do APIs handle authentication?

Common methods include API keys, OAuth 2.0 tokens, JWTs (JSON Web Tokens), and mutual TLS. Each balances security and developer convenience differently; choose based on threat model and integration scope.

FAQ: Can APIs be used for AI agents?

Yes. AI agents consume APIs for data enrichment, action execution, and orchestration. APIs that provide structured, low-latency data are particularly useful for agent workflows and real-time decision processes.

FAQ: What are common API failure modes?

Failures include rate-limit rejections, timeouts, partial data, authentication errors, and schema changes. Robust clients implement retries with backoff, graceful degradation, and schema validation to handle such scenarios.

FAQ: How should I test an API before integrating?

Perform functional tests, load tests, and end-to-end scenarios. Validate error handling, latency under expected traffic, and behavior at quota limits. Use sandbox keys when available to avoid impacting production systems.

Disclaimer

This article is for educational and informational purposes only and does not constitute financial, legal, or professional advice. Evaluate technologies and services in the context of your own requirements and constraints.

Research

What Is an API? A Practical Guide

Token Metrics Team
4
MIN

APIs power modern software, enabling apps to share data, automate workflows, and connect services. Whether you use a weather feed, social login, or a crypto data stream, understanding what an API is helps you design, evaluate, and integrate digital products more effectively.

What is an API?

An API, or application programming interface, is a defined set of rules that lets one software system communicate with another. At its simplest, an API specifies how requests are structured, which methods are available, and how responses are returned. Developers use APIs to access functionality or data without needing to know internal implementation details.

Think of an API as a contract: it tells you the inputs required, the outputs to expect, and any constraints or error cases. This separation of concerns enables modular development, third-party integrations, and scalable ecosystems.

How APIs work: components and protocols

Most modern APIs expose endpoints—URLs or functions—that accept requests and return responses. Key components include:

  • Endpoints: Specific URLs or methods that provide a capability or data set.
  • Methods: Actions such as GET, POST, PUT, DELETE in HTTP-based APIs.
  • Payloads: Structured request and response bodies (commonly JSON).
  • Authentication: Keys, tokens, or OAuth flows that control access.
  • Rate limits: Constraints on usage to protect service availability.

Different protocols influence API behavior. REST uses resource-oriented URLs and standard HTTP verbs; GraphQL offers flexible queries over a single endpoint; gRPC supports high-performance, binary-protocol calls suitable for microservices. Choosing a protocol depends on latency requirements, payload complexity, and developer experience.

Common API use cases: web, mobile, and crypto

APIs underpin many real-world scenarios:

  • Web and mobile apps: Fetching user data, processing payments, or embedding maps.
  • Microservices: Internal APIs let services communicate within distributed systems.
  • Third-party integrations: Social logins, analytics platforms, and CRM synchronization.
  • Data feeds and analytics: Market prices, news, and on-chain metrics delivered via APIs enable automated research pipelines.

In the crypto space, APIs expose on-chain data, aggregated price feeds, and derived indicators. Developers can combine multiple APIs to build dashboards, bots, or AI research agents. When evaluating crypto APIs, consider latency, historical coverage, and data provenance.

For example, research teams often use AI-driven platforms to enrich raw feeds with signals and insights. One such platform, Token Metrics, integrates data and models to support comparative analysis and idea generation.

Choosing and evaluating APIs: practical criteria

When selecting an API, use a structured evaluation framework:

  1. Functionality — Does the API provide required endpoints and historical coverage?
  2. Reliability — Look at uptime SLAs, error rates, and redundancy.
  3. Data quality — Verify schemas, sample payloads, and provenance.
  4. Performance — Measure latency and throughput relevant to your use case.
  5. Security and access control — Inspect auth models, encryption, and rate limits.
  6. Costs and licensing — Understand pricing tiers and any usage restrictions.
  7. Documentation and SDKs — Clear docs and client libraries speed integration.

Combine quantitative tests (latency, success rate) with qualitative checks (docs clarity, community support). For complex builds, sandbox environments and trial keys help validate assumptions before full integration.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

An API (application programming interface) is a specification that allows software systems to request and exchange data or trigger actions without exposing internal code. It defines endpoints, parameters, and response formats.

FAQ: How is a REST API different from GraphQL?

REST organizes interactions around resources and uses multiple endpoints; clients request predefined payloads. GraphQL exposes a single endpoint where clients define the shape of the response, reducing over- or under-fetching in many scenarios.

FAQ: What security measures should APIs use?

Common measures include HTTPS/TLS, API keys or OAuth tokens, rate limiting, input validation, and monitoring for unusual patterns. Secure defaults and least-privilege access reduce attack surface.

FAQ: Can I use public APIs for production applications?

Many public APIs are production-ready if they provide SLAs, reliable documentation, and appropriate rate limits. Validate through trials and consider failover strategies and caching for resilience.

FAQ: How do APIs support automation and AI?

APIs provide structured, machine-readable data and endpoints that automation tools and AI agents can call programmatically. Combining APIs with model inference enables workflows like signal generation, backtesting, and report automation.

FAQ: What are rate limits and why do they matter?

Rate limits control how many requests a client can make in a time window to ensure fair usage and protect service availability. Exceeding limits typically leads to temporary blocking or throttled responses.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or investment advice. Readers should perform their own research and consult appropriate professionals before making decisions.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products