Back to blog
Crypto Basics

Top Layer 2 Blockchain in 2024 - Token Metrics Moon Awards

Explore the top Layer 2 blockchain technology with Token Metrics Moon Awards 2024. Uncover the future of scalable and efficient blockchain.
Token Metrics Team
6 Minutes
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

Welcome to the Token Metrics Moon Awards, a prestigious cryptocurrency industry accolade recognizing platforms, projects, and initiatives with significant impact.

Today, we are thrilled to announce the addition of a new Moon Awards category for 2024 - the Top Layer 2 Blockchain.

Selection Process

At Token Metrics, we highly value our audience as the cornerstone of our operations. Our selection process is deeply rooted in community engagement, ensuring that our awards' results authentically mirror crypto enthusiasts' sentiments and experiences.

Amplifying Community Insights

The Moon Awards by Token Metrics are designed to amplify the community's voice, providing a clear and focused evaluation of the entities driving progress in the sector.

Through interaction with our community members and user voting, we have compiled a comprehensive list of the Top Layer 2 Blockchains for 2024 based on extensive survey data and user votes.

In this article, we will explore the concept of Layer 2 blockchain, how it works, and the top Layer 2 blockchain projects of 2024.

What is Layer 2 Blockchain?

A Layer 2 blockchain refers to a collection of scaling solutions designed to improve the performance and scalability of Layer-1 blockchains such as Ethereum. 

These Layer-2 protocols operate on top of the primary blockchain, alleviating congestion, reducing transaction costs, and boosting throughput.

To understand Layer 2 blockchain, let's imagine a highway where traffic flows smoothly, transactions are processed at lightning speed, and fees are almost negligible. 

Layer 2 protocols in the crypto world can be compared to express lanes built on top of Layer-1 blockchains, supercharging their performance and scalability.

How Does Layer 2 Blockchain Work?

At the core of Layer 2 networks is the principle of off-chain transaction processing. Instead of directly processing each transaction on the main blockchain, Layer-2 protocols divert transactions off the main chain, process them separately, and then consolidate them into a summary transaction on the main blockchain. 

This approach significantly reduces network congestion, processing time, and transaction costs. Layer-2 protocols act as dedicated traffic management systems, diverting transactions away from the main blockchain and processing them on secondary networks. 

This offloading process leads to faster transactions, lower fees, and increased throughput, ultimately enhancing the scalability and efficiency of the blockchain network.

List of Top Layer 2 Blockchain Projects

Here are some of the top Layer 2 blockchain projects to watch in 2024:

top Layer 2 blockchain
Image Source - Token Metrics Moon Awards

Polygon (MATIC)

In the Moon Awards survey, Polygon secured the top position with 57.3% of the total votes.

Polygon is a multichain ecosystem offering several Layer-2 solutions to scale Ethereum. It utilizes technologies like zkRollups for high-speed, privacy-focused transactions and Proof-of-Stake consensus mechanisms for sidechains. 

With a throughput exceeding 65,000 TPS, Polygon significantly outperforms Ethereum's mainnet regarding transaction speed and cost-effectiveness. It has a thriving DeFi scene and is popular among NFT enthusiasts.

Arbitrum

In the Moon Awards survey, Arbitrum secured the 2nd position with 22.8% of the total votes.

Arbitrum, built on Optimistic Rollups, offers a peak throughput of 4,000 TPS, processing transactions up to 10x faster than Ethereum's mainnet. It reduces gas costs by up to 95% and provides a developer-friendly environment. 

With a robust ecosystem of DeFi protocols, NFT marketplaces, and gaming platforms, Arbitrum is positioned as a key contender in the Layer 2 space.

Optimism

In the Moon Awards survey, Optimism secured the 3rd position with 6.1% of the total votes.

Optimism is a Layer-2 scaling solution for Ethereum, offering high throughput and reduced gas costs. With a peak throughput of 2,000 TPS, Optimism processes transactions up to 26x faster than Ethereum's mainnet. 

It is committed to becoming a self-governing community and hosts a growing array of DeFi protocols, NFT marketplaces, and DAOs.

Manta Network

In the Moon Awards survey, Manta Network secured the 4th position with 3.3% of the total votes.

Manta Network is a privacy-focused ecosystem for Ethereum, providing anonymous transactions and confidential smart contracts. 

It comprises two modules: Manta Pacific, an EVM-compatible Layer-2 for efficient transactions, and Manta Atlantic, which handles private identity management using zkSBTs. 

Manta Network promises high scalability, developer-friendliness, and strong interoperability with Ethereum and other blockchains.

Immutable X

In the Moon Awards survey, Immutable X secured the 5th position with 2.8% of the total votes.

Immutable X is a Layer-2 network on Ethereum designed to provide speed, scalability, and adaptability for the next era of crypto gaming. It offers a robust network equipped with tools and infrastructure for developing NFT projects. 

Immutable X incorporates Ethereum's security, zero gas fees, and user-friendly APIs. It hosts an immersive marketplace for trading and collecting NFTs.

SKALE

In the Moon Awards survey, SKALE secured the 6th position with 2.4% of the total votes.

SKALE takes a distinctive approach to enhancing Ethereum scalability by utilizing a network of independent "sidechains" built atop the Ethereum blockchain. 

These sidechains, known as SKALE Chains, provide tailored environments for specific applications, accommodating diverse requirements in terms of security, privacy, and transaction fees. SKALE offers flexibility and innovation within the Ethereum ecosystem.

Metis

In the Moon Awards survey, Metis secured the 7th position with 1.5% of the total votes.

Metis is a Layer-2 network aiming to provide scalable and accessible infrastructure for decentralized applications (dApps). 

It offers a user-friendly environment for developers to create, deploy, and manage dApps efficiently. Metis focuses on empowering individuals and businesses to build decentralized economies and communities.

Base

In the Moon Awards survey, Base secured the 8th position with 1.3% of the total votes.

Base is a Layer-2 protocol developed by Coinbase to enhance Ethereum's potential by increasing transaction speed and reducing fees. It targets a throughput of 2,000 TPS and aims to cut Ethereum's gas costs by up to 95%. 

Base leverages Ethereum's security while processing transactions off-chain, ensuring asset safety. It offers a developer-friendly environment and benefits from Coinbase's security expertise and large user base.

These Layer 2 blockchain projects represent the cutting edge of blockchain scalability and efficiency. They offer solutions to the scalability challenges faced by Layer-1 blockchains, enabling faster transactions, lower fees, and improved user experiences.

Conclusion

Layer-2 blockchain solutions are revolutionizing the scalability and efficiency of blockchain networks. These innovative protocols, such as Polygon, Arbitrum, Optimism, Manta, and others, are addressing the limitations of Layer-1 blockchains and unlocking the full potential of blockchain technology. 

As the adoption of cryptocurrencies and decentralized applications continues to grow, Layer-2 solutions will play a crucial role in driving mainstream blockchain adoption and powering diverse industries beyond finance.

Investors and developers should closely monitor the progress of these Layer 2 blockchain projects and conduct thorough research before making any investment or development decisions. The future of blockchain technology is bright, and Layer-2 solutions are at the forefront of this exciting evolution.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

APIs Explained: How They Power Modern Apps

Token Metrics Team
5

APIs (Application Programming Interfaces) are the invisible connectors that let software systems talk to each other. Whether you open a weather app, embed a payment form, or fetch crypto market data, APIs are doing the behind-the-scenes work. This guide explains what an API is, how APIs function, common types, practical use cases, and how to evaluate them securely and effectively.

What is an API?

An API is a defined set of rules and protocols that allows one software component to request services or data from another. Think of an API as a waiter in a restaurant: you (the client) request a dish, the waiter (the API) passes the order to the kitchen (the server), and then returns the prepared meal. APIs standardize interactions so developers can integrate external functionality without understanding internal implementation details.

How APIs Work: Basic Mechanics

At a technical level, most modern APIs use web protocols over HTTP/HTTPS. A client sends a request (GET, POST, PUT, DELETE) to a defined endpoint URL. The server processes the request, optionally interacts with databases or other services, and returns a response, often in JSON or XML format. Key components:

  • Endpoint: The URL where the API listens for requests.
  • Method: Defines the action (e.g., GET to read, POST to create).
  • Headers: Metadata such as authentication tokens and content type.
  • Payload: Data sent to the server (for POST/PUT).
  • Response: Data returned by the server, with status codes like 200 (OK) or 404 (Not Found).

Types of APIs You’ll Encounter

APIs come in several architectural styles and transport patterns. Understanding differences helps pick the right integration model.

  • REST APIs: Representational State Transfer is the most common style. REST uses standard HTTP methods and stateless requests, typically with JSON payloads. It’s simple and broadly supported.
  • GraphQL: A query language that lets clients request exactly the fields they need. Useful for complex data models and reducing over-fetching.
  • WebSocket APIs: Provide persistent two-way communication, enabling low-latency streaming—useful for live market feeds or chat applications.
  • gRPC: A high-performance, binary RPC framework well suited for microservices and internal communication.
  • Third-party and SDK APIs: Many platforms expose endpoints plus language-specific SDKs to simplify integration.

APIs in Crypto and AI: Practical Use Cases

In crypto and AI contexts, APIs are central to tooling and research workflows:

  • Market data: Price, volume, order book snapshots and historical candles from exchanges or aggregators via REST or WebSocket.
  • On-chain data: Blockchain explorers expose endpoints to query transactions, addresses, and contract state.
  • Trading execution: Exchanges provide authenticated endpoints to place orders and manage positions.
  • AI model inference: ML providers offer APIs to run models or pipelines without exposing underlying infrastructure.

AI-driven research platforms and analytics services can combine multiple API feeds to produce indicators, signals, or summaries. Platforms like Token Metrics illustrate how aggregated datasets and models can be exposed via APIs to power decision-support tools.

Evaluating and Using APIs: A Practical Framework

Before integrating an API, apply a simple due-diligence framework:

  1. Documentation quality: Clear, versioned docs and examples reduce integration time and prevent unexpected behavior.
  2. Latency & throughput: Measure response times and rate limits to ensure they meet your application’s needs.
  3. Data coverage & freshness: Verify supported assets, historical depth, and update frequency—especially for time-sensitive use cases.
  4. Authentication & permissions: Check available auth methods (API keys, OAuth) and least-privilege controls.
  5. Reliability & SLAs: Look for uptime guarantees, status pages, and error handling patterns.
  6. Cost model: Understand free tiers, rate-limited endpoints, and pricing for higher throughput.

Security Best Practices for API Integrations

APIs introduce attack surfaces. Adopt defensive measures:

  • Use HTTPS and verify certificates to prevent man-in-the-middle attacks.
  • Store API keys securely (environment variables, secrets managers) and rotate them periodically.
  • Implement rate limit handling and exponential backoff to avoid cascading failures.
  • Limit permissions—use API keys scoped to necessary endpoints only.
  • Monitor logs and set alerts for unusual patterns like spikes in failed requests.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

Q: What is the simplest way to describe an API?
A: An API is an interface that defines how software components communicate—standardized requests and responses that let systems share data and functionality.

FAQ: How do API types differ?

Q: When should I use REST vs WebSocket or GraphQL?
A: REST is suitable for standard CRUD operations. WebSocket is appropriate for real-time bidirectional needs like live feeds. GraphQL is useful when clients need flexible queries to minimize data transfer.

FAQ: Are APIs secure to use?

Q: What are common API security concerns?
A: Major concerns include credential leakage, insufficient authorization, unencrypted transport, and abuse due to inadequate rate limiting. Following best practices reduces these risks.

FAQ: Can I build production apps with free APIs?

Q: Are free APIs viable for production?
A: Free tiers can be useful for prototypes and low-traffic apps, but evaluate limits, reliability, and support before relying on them for critical production workloads.

FAQ: How to choose the best API for my project?

Q: What factors matter most when selecting an API?
A: Prioritize data relevance, latency, reliability, documentation quality, security controls, and cost. Prototype early to validate assumptions about performance and coverage.

Disclaimer

This article is educational and informational only. It does not provide financial, legal, or investment advice. Evaluate tools and services independently and consult professionals where appropriate.

Research

APIs Explained: How They Power Apps and AI

Token Metrics Team
5

APIs are the invisible glue connecting modern software — from mobile apps and cloud services to AI agents and crypto dashboards. Understanding what an API is, how it works, and how to evaluate one is essential for builders, analysts, and product managers who need reliable data and interoperable systems. This guide breaks down APIs into practical components, shows common real-world use cases, and outlines security and integration best practices without jargon.

What an API Is and Why It Matters

API stands for "Application Programming Interface." At its core, an API is a contract between two software systems that defines how they exchange information. Instead of sharing raw databases or duplicating functionality, systems expose endpoints (URL patterns or function calls) that clients can use to request specific data or actions.

APIs matter because they enable modularity and reuse. Developers can consume services—such as authentication, payments, mapping, or market data—without rebuilding them. For example, a crypto portfolio app might fetch price feeds, on-chain metrics, and historical candles via multiple APIs rather than maintaining every data pipeline internally.

APIs also power automation and AI: machine learning models and AI agents frequently call APIs to retrieve fresh data, trigger workflows, or enrich decision-making pipelines. Tools like Token Metrics use APIs to combine price feeds, signals, and on-chain indicators into research products.

How APIs Work: Requests, Responses, and Data Formats

Most web APIs follow a simple request–response pattern over HTTP(S). A client sends a request to an endpoint and receives a response containing status information and payload data. Key elements to understand:

  • Endpoints: Specific URLs or routes that expose functionality, e.g., /v1/prices or /v1/orders.
  • Methods: HTTP verbs such as GET (read), POST (create), PUT/PATCH (update), and DELETE.
  • Authentication: API keys, OAuth tokens, or signed requests ensure only authorized clients can access certain endpoints.
  • Response codes: 200 for success, 4xx for client errors, 5xx for server errors—useful for error handling.
  • Data formats: JSON is the most common for modern APIs; XML and protocol buffers appear in legacy or high-performance systems.

Understanding these primitives helps teams design robust clients: retry logic for transient errors, pagination for large datasets, and schema validation for payload integrity.

Common Types of APIs and Real-World Use Cases

APIs come in several flavors depending on their design and purpose. Recognizing the differences helps you pick the right integration model.

  • REST APIs: Resource-oriented, stateless, and commonly use JSON. They’re widely adopted for web services.
  • GraphQL: A query language that allows clients to request only the fields they need, reducing over-fetching in complex data models.
  • WebSocket / Streaming APIs: For real-time updates (e.g., live price ticks, notifications). Useful in trading dashboards and live analytics.
  • gRPC / Protocol Buffers: High-performance binary RPCs for low-latency microservices.
  • On-chain / Blockchain APIs: Specialized endpoints that return transaction history, token balances, and contract events for blockchain analysis.

Use-case examples:

  1. A mobile app calls a REST API to authenticate users and load personalized content.
  2. An AI agent queries a streaming API to receive real-time signals for model inference (without polling).
  3. A crypto analytics platform aggregates multiple market and on-chain APIs to produce composite indicators.

Security, Rate Limits, and Best Practices for Integration

When integrating any external API, consider availability and trustworthiness alongside features. Key operational and security practices include:

  • Authentication & Secrets Management: Store API keys and tokens securely (secrets manager or environment variables), rotate credentials periodically, and avoid embedding keys in client-side code.
  • Rate Limiting & Throttling: Respect provider limits and implement exponential backoff and jitter to handle 429 responses gracefully.
  • Data Validation: Validate and sanitize incoming data to prevent schema drift or malicious payloads.
  • Monitoring & SLAs: Track error rates, latency, and uptime. Investigate providers’ SLA and status pages for critical dependencies.
  • Privacy & Compliance: Ensure data handling aligns with legal requirements and your organization’s policies, especially when personal or financial data is involved.

Selecting the right provider often requires scenario analysis: trade off latency vs. cost, historical depth vs. real-time freshness, and breadth of endpoints vs. ease of use. Well-documented APIs with client SDKs, clear versioning, and robust support reduce integration risk.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

Q1: What’s the difference between an API and a web service?

An API is a broader concept: a set of rules for interacting with software. A web service is a type of API that specifically uses web protocols (HTTP) to exchange data between systems.

FAQ: How do I authenticate with an API?

Authentication methods vary: API keys for simple use cases, OAuth for delegated access, or HMAC signatures for high-security endpoints. Always follow the provider’s recommended flow and protect credentials.

FAQ: When should I use GraphQL over REST?

GraphQL is useful when clients need flexible queries and should avoid over- or under-fetching. REST is simpler and often sufficient for straightforward resource-based designs. Choose based on data complexity and client requirements.

FAQ: How do rate limits affect integrations?

Rate limits control how many requests you can make in a given window. Plan batching, caching, and backoff strategies to stay within limits while maintaining performance and reliability.

FAQ: Can APIs be used for real-time data?

Yes. Real-time needs are typically met with WebSocket or streaming APIs that push updates to clients. Polling REST endpoints frequently is possible but less efficient and may hit rate limits.

FAQ: How do I evaluate an API provider?

Look at documentation quality, authentication options, latency, historical data availability, SDKs, support channels, and uptime history. Proof-of-concept integrations and small-scale performance tests reveal practical fit.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or investment advice. Evaluate APIs and providers based on your organization’s technical requirements, compliance needs, and risk tolerance before integrating.

Research

APIs Explained: How They Connect Apps and Data

Token Metrics Team
5

APIs power modern software by letting systems talk to one another. Whether you use a mobile app, connect a trading bot, or plug an AI model into a data feed, APIs are the plumbing that moves data and requests. This guide explains what an API is, how APIs work, common types and protocols, practical crypto and AI use cases, and design and security practices you should know as a developer or analyst.

What an API Is and How It Works

API stands for Application Programming Interface. Broadly, it is a contract that defines how one software component requests services or data from another. An API specifies:

  • Available endpoints or functions (what you can ask for)
  • Input and output formats (how to send and receive data)
  • Authentication and rate limits (who can use it and how often)

At runtime a client (for example, a web app) sends a request to an API endpoint on a server. The server validates the request, executes logic, and returns a response—usually structured data like JSON or XML. Think of an API as a standardized messenger that abstracts internal complexity and enforces clear expectations between systems.

Common API Types and Protocols

APIs differ by style and protocol. Key varieties include:

  • REST: Resource-oriented, uses HTTP methods (GET/POST/PUT/DELETE) and JSON. Widely adopted for web services.
  • GraphQL: Client-specified queries that can reduce over- or under-fetching by letting clients request exactly what they need.
  • gRPC: High-performance RPC framework using Protocol Buffers; common for internal microservices.
  • Webhooks: Server-to-client callbacks that push events instead of polling, useful for real-time notifications.

Protocol selection depends on latency, payload size, developer ergonomics, and whether the API is public, private, or internal to an organization.

APIs in Crypto and AI: Practical Use Cases

APIs are foundational in crypto and AI workflows. Examples include:

  • Market data: Endpoints that return prices, orderbook snapshots, and historical candles for trading and backtesting.
  • On-chain data: APIs that expose blockchain state, transactions, token balances, and smart contract events.
  • Execution: Trading APIs that allow order placement, cancellations, and account management (note: focus on technical integration, not trading advice).
  • AI model inputs: Data pipelines that feed structured market or on-chain data into models and agents for feature generation or monitoring.

For teams building crypto analytics or AI agents, structured and timely data is essential. For example, Token Metrics provides research tools that combine on-chain and market signals behind an API-friendly interface, illustrating how analytics platforms expose data and insights for downstream tools.

Design, Security, and Best Practices for APIs

Robust API design balances usability, performance, and safety. Key best practices include:

  1. Clear documentation: Describe endpoints, parameters, examples, and error codes to speed onboarding.
  2. Versioning: Use explicit versioning (v1, v2) to avoid breaking client integrations when you change behavior.
  3. Authentication & Authorization: Implement API keys, OAuth, or signed requests and scope keys to limit access.
  4. Rate limits & quotas: Protect backend systems and ensure fair use by enforcing sensible limits.
  5. Input validation & sanitization: Prevent injection attacks and ensure predictable behavior.
  6. Monitoring & observability: Track latency, error rates, and usage patterns to detect anomalies early.

Security is especially important for crypto-related endpoints that can expose sensitive account or on-chain actions. Design your API assuming adversaries will attempt to abuse endpoints and validate responses on the client side as well.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API — Common Questions

How does an API differ from a library or SDK?

An API defines how to communicate with a service; a library is code you include in a project. An SDK bundles libraries, documentation, and tools to help developers use an API more easily.

What is the difference between REST and GraphQL?

REST exposes fixed endpoints for resources and often returns entire objects, while GraphQL lets clients specify exact fields to fetch. GraphQL can reduce data transfer for complex UIs but adds server-side complexity.

Are public APIs safe to use for production systems?

Public APIs can be used in production if they meet reliability, latency, and security requirements. Verify SLAs, implement retries and fallbacks, and isolate credentials using secure storage patterns.

How do I authenticate with most APIs?

Common methods include API keys, OAuth 2.0, JWTs, and signed requests. Choose mechanisms that match your threat model: short-lived tokens and scoped keys reduce exposure compared to long-lived secrets.

How can I test and monitor an API integration?

Use unit and integration tests with mocked responses, postman or curl for ad-hoc tests, and observability tools to monitor latency, error rates, and unexpected schema changes. Deploy health checks and alarming for critical endpoints.

What are typical rate limits and how should clients handle them?

Rate limits vary by provider; common patterns include requests-per-minute and burst allowances. Clients should implement exponential backoff, respect Retry-After headers, and cache responses where appropriate.

How does an API support AI agents?

APIs supply structured, machine-readable data that AI agents can ingest for feature generation, state tracking, or decision-making. Consistent schemas, timestamps, and low-latency endpoints improve model reliability.

Conclusion

APIs are the connective tissue of modern software, enabling modular design, data sharing, and integration across web, crypto, and AI systems. Understanding API types, security practices, and operational patterns helps teams design robust integrations and choose the right tooling for scale.

Disclaimer

This article is for educational purposes only. It provides technical explanations and practical guidance about APIs and related technologies. It does not constitute investment, legal, or professional advice.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products