Crypto Basics

Top ZK Rollup Projects in 2024 - Token Metrics Moon Awards

Uncover the top ZK Rollup technology of 2024 with the Token Metrics Moon Awards. Discover the future of scaling solutions.
Token Metrics Team
8 Minutes
MIN

Welcome to the Token Metrics Moon Awards, a prestigious cryptocurrency industry accolade that recognizes platforms, projects, and initiatives that have significantly impacted the industry. The latest addition to the Moon Awards is the Top ZK Rollup in 2024.

Selection Process

At Token Metrics, we emphasize our audience, considering them the foundation of our operations. Our selection process is firmly rooted in engaging with the community, ensuring that our awards' results authentically reflect crypto enthusiasts' sentiments and experiences.

Through engagement with our community members, we have compiled a comprehensive list of the Top ZK Rollup in 2024 based on extensive survey data and user votes.

This guide aims to explore ZK Rollups in-depth, highlighting their advantages and considerations, alongside an overview of top ZK rollup projects slated to dominate in 2024.

What are ZK Rollups?

ZK Rollup is a transformative layer-2 scaling solution that enhances blockchain scalability and efficiency by moving computation and state storage off the main chain. They operate by:

  • Bundling Transactions: Transactions are aggregated into batches and processed off-chain. This method significantly reduces the on-chain footprint, lowering gas costs and increasing throughput.
  • Zero-Knowledge Proofs: A core feature of ZK Rollups is using zero-knowledge proofs to validate transactions off-chain before finalizing them on the main chain. This ensures that all transactions are legitimate without revealing any underlying data, thus preserving privacy and security.
  • On-Chain Data Storage: ZK Rollups store transaction data on the layer-1 network while the computation is done off-chain. This approach maintains the integrity and security of the blockchain, leveraging the robustness of the base-layer network for settlement purposes.

Operators play a crucial role in managing these rollups, which can be either a centralized sequencer or a decentralized proof-of-stake system with validators. 

This flexibility allows for different governance models, further enhancing the adaptability of ZK Rollups to various blockchain ecosystems. 

Moreover, advancements like the zero-knowledge EVM (zkEVM) are pushing the boundaries of what's possible, enabling more complex computations and applications to benefit from the scalability and efficiency of ZK Rollups.

List of Top ZK Rollups in 2024

As the blockchain ecosystem evolves, ZK rollup projects are at the forefront of addressing scalability and efficiency challenges. 

Here's a closer look at some of the top ZK rollup projects set to make significant impacts in 2024:

Top ZK Rollups
Image Source - Token Metrics Moon Awards

1. zkSync

In the Moon Awards survey, zkSync secured the top position with 49.8% of the total votes.

zkSync Era emerges as a leading ZK rollup, revolutionizing Ethereum transactions through scalable, low-cost solutions. Its design closely mirrors Ethereum, ensuring a seamless experience for developers and users. Here's a breakdown of its standout features:

Compatibility and User Experience:

  • Smart contracts in Solidity/Vyper are fully compatible with EVM.
  • Supports familiar Ethereum clients and wallets like Metamask and TrustWallet.
  • Web3 API compatibility, easing the transition for Ethereum developers.

Innovative Features and Security:

  • Transitioning towards decentralization for enhanced security.
  • Native account abstraction and support for ECDSA signatures.
  • zkPorter mode offers a balance between high security and reduced fees.

Development and Transaction Efficiency:

  • Instant confirmations and rapid finality on L1.
  • Extremely low transaction fees, payable with ERC20 tokens.
  • Hardhat plugin and custom compilers (zksolc and zkvyper) for streamlined smart contract development.

zkSync Era stands out for its Ethereum-like environment, decentralization roadmap, and innovative features like zkPorter, making it a top choice for those seeking efficient, secure blockchain transactions.

2. Polygon zkEVM

In the Moon Awards survey, Polygon zkEVM secured the 2nd position with 26.7% of the total votes.

Polygon zkEVM emerges as a beacon in the landscape of zk rollup projects, heralding a new era of scalability and security for Ethereum. 

This open-source, EVM-equivalent zk-Rollup is not just live but thriving, powered by the cutting-edge Polygon Zero technology. Here's a closer look at its defining attributes:

Key Features:

  • EVM Equivalence: Maintains full compatibility with Ethereum, allowing existing smart contracts, developer tools, and wallets to operate without any modifications.
  • Low Cost: Leverages ZK proofs to drastically reduce transaction costs, making it an economical choice for developers and users.
  • High Performance: Achieves fast network finality and employs the world's fastest ZK-proof technology for swift and efficient transaction processing.

Security and Scalability:

  • Inherits Ethereum's robust security at Layer 2, enhanced by L2 batching capabilities.
  • Utilizes ZK proofs to ensure the validity of transactions, safeguarding user funds against potential threats.

Polygon zkEVM Stats and Resources:

  • Metrics such as average gas fees, total value locked (TVL), and active wallets are readily available, offering insights into its growing ecosystem.
  • Developers and enthusiasts can access many resources, including technical documentation, GitHub repositories, and educational materials from Polygon University.

Polygon zkEVM stands out for its technical prowess and commitment to a secure, scalable, and developer-friendly environment, setting a new standard for zk rollup projects.

3. Starknet

In the Moon Awards survey, Starknet secured the 3rd position with 12% of the total votes.

Starknet, a prominent player in the ZK rollup arena, has consistently demonstrated its commitment to enhancing Ethereum's scalability and efficiency. 

Notably, Starknet was EIP-4844 ready from the get-go, swiftly enabling the blob function post-Dencun upgrade, dramatically lowering transaction fees to an average of $0.017. This move underscores Starknet's agility and foresight in adapting to Ethereum's evolving landscape.

Innovations and Upgrades:

  • V0.13.2: Introduces concurrent execution of independent transactions, boosting throughput and minimizing latency.
  • V0.13.3: Incorporates Cairo Native project by LambdaClass into the Starknet sequencer, facilitating direct execution on x86 architecture. This accelerates transaction execution significantly.
  • Data Availability (DA) Enhancements: These upgrades enable hybrid DA on Starknet, allowing dApps to store data directly on Starknet rather than Ethereum. This shift reduces end-user transaction costs and optimizes the batching of L1 costs.

Starknet's roadmap reveals a strategic focus on reducing fees and enhancing network performance. Also, Starknet's exploration into Data Availability Compression and the introduction of parallel transaction functionality highlight its dedication to achieving a scalable, efficient, and user-friendly platform. 

These advancements are expected to position Starknet as a powerhouse in zk rollup technology, significantly outpacing Ethereum's computational capabilities by the end of 2024.

4. Linea

In the Moon Awards survey, Linea secured the 4th position with 6.3% of the total votes.

Developed by Consensys, Linea is a ZK-Rollup designed to significantly enhance Ethereum's scalability by processing transactions off-chain. 

This innovative approach reduces the data each transaction records on-chain and employs zero-knowledge proofs (ZKPs) to verify the validity of transactions without revealing their contents. Here's a closer look at Linea's key features:

EVM Compatibility & User Experience:

  • Fully EVM-compatible, allowing developers to use the same code for Linea's Layer-2 as they would for Ethereum's Layer-1.
  • Integration with popular Web3 products such as MetaMask and Infura, ensuring a seamless user experience akin to Ethereum's mainnet but with faster speeds and significantly lower transaction costs.

Scalability & Security Enhancements:

  • Utilizes lattice-based cryptography for ZKPs, believed to resist quantum computer attacks, providing a secure foundation for transactions.
  • Offers instant transaction finality with a multi-prover approach to minimize implementation risks, further securing the network.

Innovative Technology & Community Engagement:

  • Features a new outer proof system, Vortex, for fast proof generation and self-recursion, enhancing transaction privacy and efficiency.
  • Engages the developer community with initiatives like a major NFT collection launch and a hackathon with prizes up to $50,000, fostering innovation and participation.

Linea's approach to enhancing Ethereum's scalability, security, and user experience positions it as a leading project in ZK Rollup technology, promising a more efficient and scalable blockchain ecosystem.

5. Scroll

In the Moon Awards survey, Scroll secured the 5th position with 3% of the total votes.

Scroll is a pioneering Layer 2 network meticulously crafted by Ethereum developers for their peers, aiming to extend Ethereum's capabilities through cutting-edge zero-knowledge technology and seamless EVM compatibility. 

This initiative ensures that existing Ethereum applications can transition to Scroll with minimal friction and at reduced costs, fostering a more efficient blockchain ecosystem. Here's a snapshot of Scroll's standout features:

EVM Compatibility and Ease of Migration:

  • Bytecode-level compatibility with Ethereum, ensuring a plug-and-play experience for developers.
  • The simplified migration process for Ethereum apps significantly cut down operational costs.

Innovative Zero-Knowledge Proof Technology:

  • Utilizes advanced ZK proofs and battle-tested EVM models for enhanced security and reliability.
  • Regular audits and a multi-layered security approach underscore its commitment to maintaining a secure network.

Community-Centric Development and Scalability:

  • Open development ethos, closely involving the Ethereum community from the outset.
  • Plans for decentralized proof and multiple validators to democratize network governance.
  • It aims to halve cross-chain costs, support EIP 1559 transaction types, and enable parallel EVM execution for superior scalability.

Scroll's architecture, embracing a settlement, sequencing, and proving layer and the possibility of anyone becoming a roller by staking SCR, its native token, highlights its innovative approach to reducing proving costs and ensuring decentralized network participation.

Conclusion

As the blockchain ecosystem continues to grow and encounter new challenges, the advancements in ZK Rollup technology showcased by projects detailed in this guide present a promising path forward.

Projects like zkSync, Polygon zkEVM, Starknet, Linea, and Scroll have been spotlighted not only for their innovative approach to addressing Ethereum's scalability challenges but also for their contributions to a more efficient, secure, and user-friendly blockchain environment.

Their developments mark a pivotal moment in the evolution of layer-2 solutions, reinforcing the essential role of ZK Rollups in the broader adoption and optimization of blockchain technology.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Build High-Performance APIs with FastAPI

Token Metrics Team
5
MIN

FastAPI has become a go-to framework for developers building high-performance, production-grade APIs in Python. This article explains how FastAPI achieves speed, practical patterns for building robust endpoints, how to integrate AI and crypto data, and deployment considerations that keep latency low and reliability high.

What is FastAPI and why it matters

FastAPI is a modern Python web framework designed around standard Python type hints. It uses asynchronous ASGI servers (uvicorn or hypercorn) and automatic OpenAPI documentation. The emphasis is on developer productivity, runtime performance, and clear, type-checked request/response handling.

Key technical advantages include:

  • ASGI-based async I/O: enables concurrent request handling without thread-per-request overhead.
  • Automatic validation and docs: Pydantic models generate schema and validate payloads at runtime, reducing boilerplate.
  • Type hints for clarity: explicit types make routes easier to test and maintain.

Performance patterns and benchmarks

FastAPI often performs near Node.js or Go endpoints for JSON APIs when paired with uvicorn and proper async code. Benchmarks vary by workload, but two principles consistently matter:

  1. Avoid blocking calls: use async libraries for databases, HTTP calls, and I/O. Blocking functions should run in thread pools.
  2. Keep payloads lean: minimize overfetching and use streaming for large responses.

Common performance improvements:

  • Use async ORMs (e.g., SQLModel/SQLAlchemy async or async drivers) for non-blocking DB access.
  • Cache repeated computations and database lookups with Redis or in-memory caches.
  • Use HTTP/2 and proper compression (gzip, brotli) and tune connection settings at the server or ingress layer.

Designing robust APIs with FastAPI

Design matters as much as framework choice. A few structural recommendations:

  • Modular routers: split routes into modules by resource to keep handlers focused and testable.
  • Typed request/response models: define Pydantic models for inputs and outputs to ensure consistent schemas and automatic docs.
  • Dependency injection: use FastAPI's dependency system to manage authentication, DB sessions, and configuration cleanly.
  • Rate limiting and throttling: implement per-user or per-route limits to protect downstream services and control costs.

When building APIs that drive AI agents or serve crypto data, design for observability: instrument latency, error rates, and external API call times so anomalies and regressions are visible.

Integrating AI models and crypto data securely and efficiently

Combining FastAPI with AI workloads or external crypto APIs requires careful orchestration:

  • Asynchronous calls to external APIs: avoid blocking the event loop; use async HTTP clients (httpx or aiohttp).
  • Batching and queuing: for heavy inference or rate-limited external endpoints, queue jobs with background workers (Celery, RQ, or asyncio-based workers) and return immediate task references or websockets for progress updates.
  • Model hosting: serve large AI models from separate inference services (TorchServe, Triton, or managed endpoints). Use FastAPI as a gateway to manage requests and combine model outputs with other data.

For crypto-related integrations, reliable real-time prices and on-chain signals are common requirements. Combining FastAPI endpoints with streaming or caching layers reduces repeated calls to external services and helps maintain predictable latency. For access to curated, programmatic crypto data and signals, tools like Token Metrics can be used as part of your data stack to feed analytics or agent decision layers.

Deployment and operational best practices

Deployment choices influence performance and reliability as much as code. Recommended practices:

  • Use ASGI servers in production: uvicorn with workers via Gunicorn or uvicorn's multi-process mode.
  • Containerize and orchestrate: Docker + Kubernetes or managed platforms (AWS Fargate, GCP Cloud Run) for autoscaling and rolling updates.
  • Health checks and readiness: implement liveness and readiness endpoints to ensure orchestrators only send traffic to healthy instances.
  • Observability: collect traces, metrics, and logs. Integrate distributed tracing (OpenTelemetry), Prometheus metrics, and structured logs to diagnose latency sources.
  • Security: enforce TLS, validate and sanitize inputs, limit CORS appropriately, and manage secrets with vaults or platform-managed solutions.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: How to tune FastAPI performance?

Tune performance by removing blocking calls, using async libraries, enabling connection pooling, caching hotspot queries, and profiling with tools like py-spy or OpenTelemetry to find bottlenecks.

FAQ: Which servers and deployment patterns work best?

Use uvicorn or uvicorn with Gunicorn for multiprocess setups. Container orchestration (Kubernetes) or serverless containers with autoscaling are common choices. Use readiness probes and horizontal autoscaling.

FAQ: What are essential security practices for FastAPI?

Enforce HTTPS, validate input schemas with Pydantic, use secure authentication tokens, limit CORS, and rotate secrets via a secrets manager. Keep dependencies updated and scan images for vulnerabilities.

FAQ: How should I integrate AI inference with FastAPI?

Host heavy models separately, call inference asynchronously, and use background jobs for long-running tasks. Provide status endpoints or websockets to deliver progress to clients.

FAQ: What monitoring should I add to a FastAPI app?

Capture metrics (request duration, error rate), structured logs, and traces. Use Prometheus/Grafana for metrics, a centralized log store, and OpenTelemetry for distributed tracing.

Disclaimer

This article is educational and technical in nature. It does not constitute investment, legal, or professional advice. Always perform your own testing and consider security and compliance requirements before deploying applications that interact with financial or sensitive data.

Research

Building High-Performance APIs with FastAPI

Token Metrics Team
5
MIN

FastAPI has rapidly become a go-to framework for Python developers who need fast, async-ready web APIs. In this post we break down why FastAPI delivers strong developer ergonomics and runtime performance, how to design scalable endpoints, and practical patterns for production deployment. Whether you are prototyping an AI-backed service or integrating real-time crypto feeds, understanding FastAPI's architecture helps you build resilient APIs that scale.

Overview: What Makes FastAPI Fast?

FastAPI combines modern Python type hints, asynchronous request handling, and an automatic interactive API docs system to accelerate development and runtime efficiency. It is built on top of Starlette for the web parts and Pydantic for data validation. Key advantages include:

  • Asynchronous concurrency: Native support for async/await lets FastAPI handle I/O-bound workloads with high concurrency when served by ASGI servers like Uvicorn or Hypercorn.
  • Type-driven validation: Request and response schemas are derived from Python types, reducing boilerplate and surface area for bugs.
  • Auto docs: OpenAPI and Swagger UI are generated automatically, improving discoverability and client integration.

These traits make FastAPI suitable for microservices, ML model endpoints, and real-time data APIs where latency and developer velocity matter.

Performance & Scalability Patterns

Performance is a combination of framework design, server selection, and deployment topology. Consider these patterns:

  • ASGI server tuning: Use Uvicorn with Gunicorn workers for multi-core deployments (example: Gunicorn to manage multiple Uvicorn worker processes).
  • Concurrency model: Prefer async operations for external I/O (databases, HTTP calls). Use thread pools for CPU-bound tasks or offload to background workers like Celery or RQ.
  • Connection pooling: Maintain connection pools to databases and upstream services to avoid per-request handshake overhead.
  • Horizontal scaling: Deploy multiple replicas behind a load balancer and utilize health checks and graceful shutdown to ensure reliability.

Measure latency and throughput under realistic traffic using tools like Locust or k6, and tune worker counts and max requests to balance memory and CPU usage.

Best Practices for Building APIs with FastAPI

Adopt these practical steps to keep APIs maintainable and secure:

  1. Schema-first design: Define request and response models early with Pydantic, and use OpenAPI to validate client expectations.
  2. Versioning: Include API versioning in your URL paths or headers to enable iterative changes without breaking clients.
  3. Input validation & error handling: Rely on Pydantic for validation and implement consistent error responses with clear status codes.
  4. Authentication & rate limiting: Protect endpoints with OAuth2/JWT or API keys and apply rate limits via middleware or API gateways.
  5. CI/CD & testing: Automate unit and integration tests, and include performance tests in CI to detect regressions early.

Document deployment runbooks that cover database migrations, secrets rotation, and safe schema migrations to reduce operational risk.

Integrating AI and Real-Time Data

FastAPI is commonly used to expose AI model inference endpoints and aggregate real-time data streams. Key considerations include:

  • Model serving: For CPU/GPU-bound inference, consider dedicated model servers (e.g., TensorFlow Serving, TorchServe) or containerized inference processes, with FastAPI handling orchestration and routing.
  • Batching & async inference: Implement request batching if latency and throughput profiles allow it. Use async I/O for data fetches and preprocessing.
  • Data pipelines: Separate ingestion, processing, and serving layers. Use message queues (Kafka, RabbitMQ) for event-driven flows and background workers for heavy transforms.

AI-driven research and analytics tools can augment API development and monitoring. For example, Token Metrics provides structured crypto insights and on-chain metrics that can be integrated into API endpoints for analytics or enrichment workflows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is FastAPI and when should I use it?

FastAPI is a modern Python web framework optimized for building APIs quickly using async support and type annotations. Use it when you need high-concurrency I/O performance, automatic API docs, and strong input validation for services like microservices, ML endpoints, or data APIs.

Should I write async or sync endpoints?

If your endpoint performs network or I/O-bound operations (database queries, HTTP calls), async endpoints with awaitable libraries improve concurrency. For CPU-heavy tasks, prefer offloading to background workers or separate services to avoid blocking the event loop.

What are common deployment options for FastAPI?

Common patterns include Uvicorn managed by Gunicorn for process management, containerized deployments on Kubernetes, serverless deployments via providers that support ASGI, and platform-as-a-service options that accept Docker images. Choose based on operational needs and scaling model.

How do I secure FastAPI endpoints?

Implement authentication (OAuth2, JWT, API keys), enforce HTTPS, validate inputs with Pydantic models, and apply rate limiting. Use security headers and monitor logs for suspicious activity. Consider using API gateways for centralized auth and throttling.

How should I monitor and debug FastAPI in production?

Instrument endpoints with structured logging, distributed tracing, and metrics (request latency, error rates). Use APM tools compatible with ASGI frameworks. Configure health checks, and capture exception traces to diagnose errors without exposing sensitive data.

How do I test FastAPI applications?

Use the TestClient from FastAPI (built on Starlette) for endpoint tests, and pytest for unit tests. Include schema validation tests, contract tests for public APIs, and performance tests with k6 or Locust for load characterization.

Disclaimer: This article is educational and technical in nature. It explains development patterns, architecture choices, and tooling options for API design and deployment. It is not financial, trading, or investment advice. Always conduct independent research and follow your organizations compliance policies when integrating external data or services.

Research

Building High-Performance APIs with FastAPI

Token Metrics Team
5
MIN

FastAPI has emerged as a go-to framework for building fast, scalable, and developer-friendly APIs in Python. Whether you are prototyping a machine learning inference endpoint, building internal microservices, or exposing realtime data to clients, understanding FastAPI’s design principles and best practices can save development time and operational costs. This guide walks through the technology fundamentals, pragmatic design patterns, deployment considerations, and how to integrate modern AI tools safely and efficiently.

Overview: What Makes FastAPI Fast?

FastAPI is built on Starlette for the web parts and Pydantic for data validation. It leverages Python’s async/await syntax and ASGI (Asynchronous Server Gateway Interface) to handle high concurrency with non-blocking I/O. Key features that contribute to its performance profile include:

  • Async-first architecture: Native support for asynchronous endpoints enables efficient multiplexing of I/O-bound tasks.
  • Automatic validation and docs: Pydantic-based validation reduces runtime errors and generates OpenAPI schemas and interactive docs out of the box.
  • Small, focused stack: Minimal middleware and lean core reduce overhead compared to some full-stack frameworks.

In practice, correctly using async patterns and avoiding blocking calls (e.g., heavy CPU-bound tasks or synchronous DB drivers) is critical to achieve the theoretical throughput FastAPI promises.

Design Patterns & Best Practices

Adopt these patterns to keep your FastAPI codebase maintainable and performant:

  1. Separate concerns: Keep routing, business logic, and data access in separate modules. Use dependency injection for database sessions, authentication, and configuration.
  2. Prefer async I/O: Use async database drivers (e.g., asyncpg for PostgreSQL), async HTTP clients (httpx), and async message brokers when possible. If you must call blocking code, run it in a thread pool via asyncio.to_thread or FastAPI’s background tasks.
  3. Schema-driven DTOs: Define request and response models with Pydantic to validate inputs and serialize outputs consistently. This reduces defensive coding and improves API contract clarity.
  4. Version your APIs: Use path or header-based versioning to avoid breaking consumers when iterating rapidly.
  5. Pagination and rate limiting: For endpoints that return large collections, implement pagination and consider rate-limiting to protect downstream systems.

Applying these patterns leads to clearer contracts, fewer runtime errors, and easier scaling.

Performance Tuning and Monitoring

Beyond using async endpoints, real-world performance tuning focuses on observability and identifying bottlenecks:

  • Profiling: Profile endpoints under representative load to find hotspots. Tools like py-spy or Scalene can reveal CPU vs. I/O contention.
  • Tracing and metrics: Integrate OpenTelemetry or Prometheus to gather latency, error rates, and resource metrics. Correlate traces across services to diagnose distributed latency.
  • Connection pooling: Ensure database and HTTP clients use connection pools tuned for your concurrency levels.
  • Caching: Use HTTP caching headers, in-memory caches (Redis, Memcached), or application-level caches for expensive or frequently requested data.
  • Async worker offloading: Offload CPU-heavy or long-running tasks to background workers (e.g., Celery, Dramatiq, or RQ) to keep request latency low.

Measure before and after changes. Small configuration tweaks (worker counts, keepalive settings) often deliver outsized latency improvements compared to code rewrites.

Deployment, Security, and Scaling

Productionizing FastAPI requires attention to hosting, process management, and security hardening:

  • ASGI server: Use a robust ASGI server such as Uvicorn or Hypercorn behind a process manager (systemd) or a supervisor like Gunicorn with Uvicorn workers.
  • Containerization: Containerize with multi-stage Dockerfiles to keep images small. Use environment variables and secrets management for configuration.
  • Load balancing: Place a reverse proxy (NGINX, Traefik) or cloud load balancer in front of your ASGI processes to manage TLS, routing, and retries.
  • Security: Validate and sanitize inputs, enforce strict CORS policies, and implement authentication and authorization (OAuth2, JWT) consistently. Keep dependencies updated and monitor for CVEs.
  • Autoscaling: In cloud environments, autoscale based on request latency and queue depth. For stateful workloads or in-memory caches, ensure sticky session or state replication strategies.

Combine operational best practices with continuous monitoring to keep services resilient as traffic grows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: How fast is FastAPI compared to Flask or Django?

FastAPI often outperforms traditional WSGI frameworks like Flask or Django for I/O-bound workloads because it leverages ASGI and async endpoints. Benchmarks depend heavily on endpoint logic, database drivers, and deployment configuration. For CPU-bound tasks, raw Python performance is similar; offload heavy computation to workers.

FAQ: Should I rewrite existing Flask endpoints to FastAPI?

Rewrite only if you need asynchronous I/O, better schema validation, or automatic OpenAPI docs. For many projects, incremental migration or adding new async services is a lower-risk approach than a full rewrite.

FAQ: How do I handle background tasks and long-running jobs?

Use background workers or task queues (Celery, Dramatiq) for long-running jobs. FastAPI provides BackgroundTasks for simple fire-and-forget operations, but distributed task systems are better for retries, scheduling, and scaling.

FAQ: What are common pitfalls when using async in FastAPI?

Common pitfalls include calling blocking I/O inside async endpoints (e.g., synchronous DB drivers), not using connection pools properly, and overusing threads. Always verify that third-party libraries are async-compatible or run them in a thread pool.

FAQ: How can FastAPI integrate with AI models and inference pipelines?

FastAPI is a good fit for serving model inference because it can handle concurrent requests and easily serialize inputs and outputs. For heavy inference workloads, serve models with dedicated inference servers (TorchServe, TensorFlow Serving) or containerized model endpoints and use FastAPI as a thin orchestration layer. Implement batching, request timeouts, and model versioning to manage performance and reliability.

Disclaimer

This article is educational and technical in nature. It does not provide investment, legal, or professional advice. Evaluate tools and design decisions according to your project requirements and compliance obligations.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products