Crypto Basics

Top ZK Rollup Projects in 2024 - Token Metrics Moon Awards

Uncover the top ZK Rollup technology of 2024 with the Token Metrics Moon Awards. Discover the future of scaling solutions.
Token Metrics Team
8 Minutes
MIN

Welcome to the Token Metrics Moon Awards, a prestigious cryptocurrency industry accolade that recognizes platforms, projects, and initiatives that have significantly impacted the industry. The latest addition to the Moon Awards is the Top ZK Rollup in 2024.

Selection Process

At Token Metrics, we emphasize our audience, considering them the foundation of our operations. Our selection process is firmly rooted in engaging with the community, ensuring that our awards' results authentically reflect crypto enthusiasts' sentiments and experiences.

Through engagement with our community members, we have compiled a comprehensive list of the Top ZK Rollup in 2024 based on extensive survey data and user votes.

This guide aims to explore ZK Rollups in-depth, highlighting their advantages and considerations, alongside an overview of top ZK rollup projects slated to dominate in 2024.

What are ZK Rollups?

ZK Rollup is a transformative layer-2 scaling solution that enhances blockchain scalability and efficiency by moving computation and state storage off the main chain. They operate by:

  • Bundling Transactions: Transactions are aggregated into batches and processed off-chain. This method significantly reduces the on-chain footprint, lowering gas costs and increasing throughput.
  • Zero-Knowledge Proofs: A core feature of ZK Rollups is using zero-knowledge proofs to validate transactions off-chain before finalizing them on the main chain. This ensures that all transactions are legitimate without revealing any underlying data, thus preserving privacy and security.
  • On-Chain Data Storage: ZK Rollups store transaction data on the layer-1 network while the computation is done off-chain. This approach maintains the integrity and security of the blockchain, leveraging the robustness of the base-layer network for settlement purposes.

Operators play a crucial role in managing these rollups, which can be either a centralized sequencer or a decentralized proof-of-stake system with validators. 

This flexibility allows for different governance models, further enhancing the adaptability of ZK Rollups to various blockchain ecosystems. 

Moreover, advancements like the zero-knowledge EVM (zkEVM) are pushing the boundaries of what's possible, enabling more complex computations and applications to benefit from the scalability and efficiency of ZK Rollups.

List of Top ZK Rollups in 2024

As the blockchain ecosystem evolves, ZK rollup projects are at the forefront of addressing scalability and efficiency challenges. 

Here's a closer look at some of the top ZK rollup projects set to make significant impacts in 2024:

Top ZK Rollups
Image Source - Token Metrics Moon Awards

1. zkSync

In the Moon Awards survey, zkSync secured the top position with 49.8% of the total votes.

zkSync Era emerges as a leading ZK rollup, revolutionizing Ethereum transactions through scalable, low-cost solutions. Its design closely mirrors Ethereum, ensuring a seamless experience for developers and users. Here's a breakdown of its standout features:

Compatibility and User Experience:

  • Smart contracts in Solidity/Vyper are fully compatible with EVM.
  • Supports familiar Ethereum clients and wallets like Metamask and TrustWallet.
  • Web3 API compatibility, easing the transition for Ethereum developers.

Innovative Features and Security:

  • Transitioning towards decentralization for enhanced security.
  • Native account abstraction and support for ECDSA signatures.
  • zkPorter mode offers a balance between high security and reduced fees.

Development and Transaction Efficiency:

  • Instant confirmations and rapid finality on L1.
  • Extremely low transaction fees, payable with ERC20 tokens.
  • Hardhat plugin and custom compilers (zksolc and zkvyper) for streamlined smart contract development.

zkSync Era stands out for its Ethereum-like environment, decentralization roadmap, and innovative features like zkPorter, making it a top choice for those seeking efficient, secure blockchain transactions.

2. Polygon zkEVM

In the Moon Awards survey, Polygon zkEVM secured the 2nd position with 26.7% of the total votes.

Polygon zkEVM emerges as a beacon in the landscape of zk rollup projects, heralding a new era of scalability and security for Ethereum. 

This open-source, EVM-equivalent zk-Rollup is not just live but thriving, powered by the cutting-edge Polygon Zero technology. Here's a closer look at its defining attributes:

Key Features:

  • EVM Equivalence: Maintains full compatibility with Ethereum, allowing existing smart contracts, developer tools, and wallets to operate without any modifications.
  • Low Cost: Leverages ZK proofs to drastically reduce transaction costs, making it an economical choice for developers and users.
  • High Performance: Achieves fast network finality and employs the world's fastest ZK-proof technology for swift and efficient transaction processing.

Security and Scalability:

  • Inherits Ethereum's robust security at Layer 2, enhanced by L2 batching capabilities.
  • Utilizes ZK proofs to ensure the validity of transactions, safeguarding user funds against potential threats.

Polygon zkEVM Stats and Resources:

  • Metrics such as average gas fees, total value locked (TVL), and active wallets are readily available, offering insights into its growing ecosystem.
  • Developers and enthusiasts can access many resources, including technical documentation, GitHub repositories, and educational materials from Polygon University.

Polygon zkEVM stands out for its technical prowess and commitment to a secure, scalable, and developer-friendly environment, setting a new standard for zk rollup projects.

3. Starknet

In the Moon Awards survey, Starknet secured the 3rd position with 12% of the total votes.

Starknet, a prominent player in the ZK rollup arena, has consistently demonstrated its commitment to enhancing Ethereum's scalability and efficiency. 

Notably, Starknet was EIP-4844 ready from the get-go, swiftly enabling the blob function post-Dencun upgrade, dramatically lowering transaction fees to an average of $0.017. This move underscores Starknet's agility and foresight in adapting to Ethereum's evolving landscape.

Innovations and Upgrades:

  • V0.13.2: Introduces concurrent execution of independent transactions, boosting throughput and minimizing latency.
  • V0.13.3: Incorporates Cairo Native project by LambdaClass into the Starknet sequencer, facilitating direct execution on x86 architecture. This accelerates transaction execution significantly.
  • Data Availability (DA) Enhancements: These upgrades enable hybrid DA on Starknet, allowing dApps to store data directly on Starknet rather than Ethereum. This shift reduces end-user transaction costs and optimizes the batching of L1 costs.

Starknet's roadmap reveals a strategic focus on reducing fees and enhancing network performance. Also, Starknet's exploration into Data Availability Compression and the introduction of parallel transaction functionality highlight its dedication to achieving a scalable, efficient, and user-friendly platform. 

These advancements are expected to position Starknet as a powerhouse in zk rollup technology, significantly outpacing Ethereum's computational capabilities by the end of 2024.

4. Linea

In the Moon Awards survey, Linea secured the 4th position with 6.3% of the total votes.

Developed by Consensys, Linea is a ZK-Rollup designed to significantly enhance Ethereum's scalability by processing transactions off-chain. 

This innovative approach reduces the data each transaction records on-chain and employs zero-knowledge proofs (ZKPs) to verify the validity of transactions without revealing their contents. Here's a closer look at Linea's key features:

EVM Compatibility & User Experience:

  • Fully EVM-compatible, allowing developers to use the same code for Linea's Layer-2 as they would for Ethereum's Layer-1.
  • Integration with popular Web3 products such as MetaMask and Infura, ensuring a seamless user experience akin to Ethereum's mainnet but with faster speeds and significantly lower transaction costs.

Scalability & Security Enhancements:

  • Utilizes lattice-based cryptography for ZKPs, believed to resist quantum computer attacks, providing a secure foundation for transactions.
  • Offers instant transaction finality with a multi-prover approach to minimize implementation risks, further securing the network.

Innovative Technology & Community Engagement:

  • Features a new outer proof system, Vortex, for fast proof generation and self-recursion, enhancing transaction privacy and efficiency.
  • Engages the developer community with initiatives like a major NFT collection launch and a hackathon with prizes up to $50,000, fostering innovation and participation.

Linea's approach to enhancing Ethereum's scalability, security, and user experience positions it as a leading project in ZK Rollup technology, promising a more efficient and scalable blockchain ecosystem.

5. Scroll

In the Moon Awards survey, Scroll secured the 5th position with 3% of the total votes.

Scroll is a pioneering Layer 2 network meticulously crafted by Ethereum developers for their peers, aiming to extend Ethereum's capabilities through cutting-edge zero-knowledge technology and seamless EVM compatibility. 

This initiative ensures that existing Ethereum applications can transition to Scroll with minimal friction and at reduced costs, fostering a more efficient blockchain ecosystem. Here's a snapshot of Scroll's standout features:

EVM Compatibility and Ease of Migration:

  • Bytecode-level compatibility with Ethereum, ensuring a plug-and-play experience for developers.
  • The simplified migration process for Ethereum apps significantly cut down operational costs.

Innovative Zero-Knowledge Proof Technology:

  • Utilizes advanced ZK proofs and battle-tested EVM models for enhanced security and reliability.
  • Regular audits and a multi-layered security approach underscore its commitment to maintaining a secure network.

Community-Centric Development and Scalability:

  • Open development ethos, closely involving the Ethereum community from the outset.
  • Plans for decentralized proof and multiple validators to democratize network governance.
  • It aims to halve cross-chain costs, support EIP 1559 transaction types, and enable parallel EVM execution for superior scalability.

Scroll's architecture, embracing a settlement, sequencing, and proving layer and the possibility of anyone becoming a roller by staking SCR, its native token, highlights its innovative approach to reducing proving costs and ensuring decentralized network participation.

Conclusion

As the blockchain ecosystem continues to grow and encounter new challenges, the advancements in ZK Rollup technology showcased by projects detailed in this guide present a promising path forward.

Projects like zkSync, Polygon zkEVM, Starknet, Linea, and Scroll have been spotlighted not only for their innovative approach to addressing Ethereum's scalability challenges but also for their contributions to a more efficient, secure, and user-friendly blockchain environment.

Their developments mark a pivotal moment in the evolution of layer-2 solutions, reinforcing the essential role of ZK Rollups in the broader adoption and optimization of blockchain technology.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Mastering Google APIs: Practical Developer Guide

Token Metrics Team
5
MIN

APIs from Google power a huge portion of modern applications, from location-aware mobile apps to automated data workflows in the cloud. Understanding how Google API endpoints, authentication, quotas, and client libraries fit together helps developers build reliable, maintainable integrations that scale. This guide breaks down the most practical aspects of working with Google APIs and highlights research and AI tools that can streamline development.

Overview: What the term “Google API” covers

"Google API" is an umbrella term for a wide range of services offered by Google, including but not limited to Google Cloud APIs (Compute, Storage, BigQuery), Maps and Places, OAuth 2.0 identity, Drive, Sheets, and machine learning APIs like Vision and Translation. Each service exposes RESTful endpoints and often provides SDKs in multiple languages (Node.js, Python, Java, Go, and more).

Key dimensions to evaluate when selecting a Google API:

  • Functionality: Does the API provide the exact data or operation you need (e.g., geocoding vs. routing)?
  • Authentication model: API keys, OAuth 2.0, or service accounts (server-to-server).
  • Rate limits and quotas: per-minute or per-day limits, and how to monitor them.
  • Pricing and billing: free tier limits, billing account requirements, and potential cost drivers.

Core Google API services and common use cases

Popular categories and what developers commonly use them for:

  • Maps & Places — interactive maps, geocoding, places search, routing for location-based apps.
  • Cloud Platform APIs — storage (Cloud Storage), analytics (BigQuery), compute (Compute Engine, Cloud Run) for backend workloads.
  • Identity & Access — OAuth 2.0 and OpenID Connect for user sign-in; service accounts for server-to-server authentication.
  • Workspace APIs — Drive, Sheets, and Gmail automation for productivity integrations.
  • AI & Vision — Vision API, Natural Language, and Translation for content analysis and enrichment.

Choosing the right API often starts with mapping product requirements to the available endpoints. For example, if you need user authentication and access to Google Drive files, combine OAuth 2.0 with the Drive API rather than inventing a custom flow.

Best practices for integration, authentication, and error handling

Follow these practical steps to reduce friction and improve reliability:

  1. Use official client libraries where available — they implement retries, backoff, and serialization conventions that keep your code simpler.
  2. Prefer OAuth or service accounts over long-lived API keys for sensitive operations. Use short-lived tokens and rotate credentials regularly.
  3. Implement exponential backoff for rate-limited operations and surface clear error messages when requests fail.
  4. Monitor quotas and billing with Google Cloud Console alerts and programmatic checks so you can detect spikes before they affect users.
  5. Design for idempotency if your operation may be retried — include request tokens or use idempotent endpoints.

These patterns reduce operational surprises and make integrations more maintainable over time.

Security, quotas, and governance considerations

Security and quota constraints often shape architecture decisions:

  • Least privilege — grant the minimum IAM roles needed. For service accounts, avoid broad roles like owner.
  • Auditing — enable Cloud Audit Logs to trace who accessed which APIs and when.
  • Quota planning — understand per-minute and per-day limits. For high-throughput needs, request quota increases with a clear justification.
  • Data residency and compliance — check where data is stored and whether it meets your regulatory requirements.

Secure-by-design implementations and proactive quota management reduce operational risk when moving from prototype to production.

Building apps with Google APIs and AI workflows

Combining Google APIs with AI tooling unlocks new workflows: use Vision API to extract entities from images, then store structured results in BigQuery for analytics; call Translation or Natural Language for content normalization before indexing. When experimenting with AI-driven pipelines, maintain traceability between raw inputs and transformed outputs to support auditing and debugging.

AI-driven research platforms like Token Metrics can help developers prototype analytics and compare signal sources by aggregating on-chain and market datasets; such tools may inform how you prioritize data ingestion and model inputs when building composite systems that include external data alongside Google APIs.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a Google API and how does it differ from other APIs?

Google APIs are a collection of RESTful services and SDKs that grant programmatic access to Google products and cloud services. They differ in scope and SLAs from third-party APIs by integrating with Google Cloud's IAM, billing, and monitoring ecosystems.

FAQ: Which authentication method should I use?

Use OAuth 2.0 for user-level access where users must grant permission. For server-to-server calls, use service accounts with short-lived tokens. API keys are acceptable for public, limited-scope requests like simple Maps access but carry higher security risk if exposed.

FAQ: How do I monitor and request higher quotas?

Monitor quotas in Google Cloud Console under the "IAM & Admin" and "APIs & Services" sections. If you need more capacity, submit a quota increase request with usage patterns and justification; Google evaluates requests based on scope and safety.

FAQ: How can I estimate costs for Google API usage?

Cost depends on API type and usage volume. Use the Google Cloud Pricing Calculator for services like BigQuery or Cloud Storage, and review per-request pricing for Maps and Vision APIs. Track costs via billing reports and set alerts to avoid surprises.

FAQ: Are client libraries necessary?

Client libraries are not strictly necessary, but they simplify authentication flows, retries, and response parsing. If you need maximum control or a minimal runtime, you can call REST endpoints directly with standard HTTP libraries.

Disclaimer

This article is educational and technical in nature. It does not provide financial, legal, or investment advice. Evaluate APIs and third-party services against your own technical, security, and compliance requirements before use.

Research

API Management Essentials for Teams

Token Metrics Team
5
MIN

APIs are the connective tissue of modern software. As organizations expose more endpoints to partners, internal teams and third-party developers, effective api management becomes a competitive and operational imperative. This article breaks down practical frameworks, governance guardrails, and monitoring strategies that help teams scale APIs securely and reliably without sacrificing developer velocity.

Overview: What API management solves

API management is the set of practices, tools and processes that enable teams to design, publish, secure, monitor and monetize application programming interfaces. At its core it addresses three recurring challenges: consistent access control, predictable performance, and discoverability for developers. Well-managed APIs reduce friction for consumers, decrease operational incidents, and support governance priorities such as compliance and data protection.

Think of api management as a lifecycle discipline: from design and documentation to runtime enforcement and iterative refinement. Organizations that treat APIs as products—measuring adoption, latency, error rates, and business outcomes—are better positioned to scale integrations without accumulating technical debt.

Governance & Security: Policies that scale

Security and governance are non-negotiable for production APIs. Implement a layered approach:

  • Access control: Use token-based authentication (OAuth 2.0, JWT) and centralize identity validation at the gateway to avoid duplicating logic across services.
  • Rate limiting & quotas: Protect backend services and control cost by enforcing per-key or per-tenant limits. Different tiers can align with SLAs for partners.
  • Input validation & schema contracts: Define explicit contracts using OpenAPI/JSON Schema and validate at the edge to reduce injection and integration errors.
  • Audit & compliance: Log authentication events, data access, and configuration changes. Retain logs in a way that maps to regulatory obligations.

Combining automated policy enforcement at an API gateway with a governance framework (ownerable APIs, review gates, and versioning rules) ensures changes are controlled without slowing legitimate feature delivery.

Developer experience & the API product model

Developer experience (DX) determines adoption. Treat APIs as products by providing clear documentation, SDKs and a self-service developer portal. Key practices include:

  • Interactive docs: Publish OpenAPI-driven docs that allow developers to try endpoints in a sandbox.
  • Onboarding flows: Provide quick start guides, sample payloads and error explanations to reduce time-to-first-call.
  • Versioning strategy: Use semantic versioning and deprecation notices to minimize breaking changes.
  • Feedback loops: Instrument usage and surface developer issues to product owners so APIs evolve with consumer needs.

Metrics to track DX include signups, first successful call time, and repeat usage per key. These are leading indicators of whether an API is fulfilling its product intent.

Monitoring, observability & reliability

Operational visibility is essential for api management. Implement monitoring at multiple layers—gateway, service, and database—to triangulate causes when issues occur. Core telemetry includes:

  • Traffic metrics: requests per second, latency percentiles (p50/p95/p99), and throughput.
  • Error rates: HTTP 4xx/5xx breakdowns, client-specific failure patterns, and circuit-breaker triggers.
  • Business KPIs: API calls tied to revenue, conversions, or key workflows to prioritize fixes that have impact.

Observability practices—distributed tracing, structured logs, and context propagation—help teams move from alert fatigue to actionable incident response. Build runbooks that map common alerts to remediation steps and owners.

Implementation roadmap & tooling choices

Adopt an incremental roadmap rather than a big-bang rollout. A pragmatic sequence looks like:

  1. Inventory existing endpoints and annotate owners.
  2. Standardize contracts with OpenAPI and publish baseline docs.
  3. Introduce an API gateway for auth, rate limiting, and basic WAF rules.
  4. Instrument telemetry, set SLAs, and define retention for logs and traces.
  5. Launch a developer portal and iterate based on usage signals.

Choose tools that match team maturity: managed API platforms accelerate setup for companies lacking infra resources, while open-source gateways provide control for those with specialized needs. Evaluate vendors on extensibility, observability integrations, and policy-as-code support to avoid lock-in.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is API management and why does it matter?

API management encompasses the processes and tools required to publish, secure, monitor, and monetize APIs. It matters because it enables predictable, governed access to services while maintaining developer productivity and operational reliability.

Which components make up an API management stack?

Common components include an API gateway (auth, routing, rate limiting), developer portal (docs, keys), analytics and monitoring systems (metrics, traces), and lifecycle tooling (design, versioning, CI/CD integrations).

How should teams approach API security?

Implement defense-in-depth: centralized authentication, token validation, input schema checks, rate limits, and continuous auditing. Shift security left by validating contracts and scanning specs before deployment.

What metrics are most useful for API health?

Track latency percentiles, error rates, traffic patterns, and consumer-specific usage. Pair operational metrics with business KPIs (e.g., API-driven signups) to prioritize work that affects outcomes.

How do teams manage breaking changes?

Use explicit versioning, deprecation windows, and dual-running strategies where consumers migrate incrementally. Communicate changes via the developer portal and automated notifications tied to API keys.

When should an organization introduce an API gateway?

Introduce a gateway early when multiple consumers, partners, or internal teams rely on APIs. A gateway centralizes cross-cutting concerns and reduces duplicated security and routing logic.

Disclaimer

This article is for educational and informational purposes only. It provides neutral, analytical information about api management practices and tools and does not constitute professional or investment advice.

Research

How Modern Web APIs Power Connected Apps

Token Metrics Team
5
MIN

APIs are the connective tissue of modern software: they expose functionality, move data, and enable integrations across services, devices, and platforms. A well-designed web API shapes developer experience, system resilience, and operational cost. This article breaks down core concepts, common architectures, security and observability patterns, and practical steps to build and maintain reliable web APIs without assuming a specific platform or vendor.

What is a Web API and why it matters

A web API (Application Programming Interface) is an HTTP-accessible interface that lets clients interact with server-side functionality. APIs can return JSON, XML, or other formats and typically define a contract of endpoints, parameters, authentication requirements, and expected responses. They matter because they enable modularity: front-ends, mobile apps, third-party integrations, and automation tools can all reuse the same backend logic.

When evaluating or designing an API, consider the consumer experience: predictable endpoints, clear error messages, consistent versioning, and comprehensive documentation reduce onboarding friction for integrators. Think of an API as a public product: its usability directly impacts adoption and maintenance burden.

Design patterns and architectures

There are several architectural approaches to web APIs. RESTful (resource-based) design emphasizes nouns and predictable HTTP verbs. GraphQL centralizes query flexibility into a single endpoint and lets clients request only the fields they need. gRPC is used for low-latency, binary RPC between services.

Key design practices:

  • Model your resources to reflect domain concepts; avoid ad-hoc endpoints that duplicate behavior.
  • Keep contracts stable and use semantic versioning or evolving schema techniques (e.g., deprecation headers, feature flags) to handle changes.
  • Document thoroughly using OpenAPI/Swagger, GraphQL schemas, or similar—machine-readable specs enable client generation and automated testing.

Choose the pattern that aligns with your performance, flexibility, and developer ergonomics goals, and make that decision explicit in onboarding docs.

Security, authentication, and rate limiting

Security must be built into an API from day one. Common controls include TLS for transport, OAuth 2.0 / OpenID Connect for delegated authorization, API keys for service-to-service access, and fine-grained scopes for least-privilege access. Input validation, output encoding, and strict CORS policies guard against common injection and cross-origin attacks.

Operational protections such as rate limiting, quotas, and circuit breakers help preserve availability if a client misbehaves or a downstream dependency degrades. Design your error responses to be informative to developers but avoid leaking internal implementation details. Centralized authentication and centralized secrets management (vaults, KMS) reduce duplication and surface area for compromise.

Performance, monitoring, and testing

Performance considerations span latency, throughput, and resource efficiency. Use caching (HTTP cache headers, CDN, or in-memory caches) to reduce load on origin services. Employ pagination, partial responses, and batch endpoints to avoid overfetching. Instrumentation is essential: traces, metrics, and logs help correlate symptoms, identify bottlenecks, and measure SLAs.

Testing should be layered: unit tests for business logic, contract tests against API schemas, integration tests for end-to-end behavior, and load tests that emulate real-world usage. Observability tools and APMs provide continuous insight; AI-driven analytics platforms such as Token Metrics can help surface unusual usage patterns and prioritize performance fixes based on impact.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between REST and GraphQL?

REST exposes multiple endpoints that represent resources and rely on HTTP verbs for operations. It is simple and maps well to HTTP semantics. GraphQL exposes a single endpoint where clients request precisely the fields they need, which reduces overfetching and can simplify mobile consumption. GraphQL adds complexity in query planning and caching; choose based on client needs and team expertise.

How should I approach API versioning?

Prefer backward-compatible changes over breaking changes. Use semantic versioning for major releases, and consider header-based versioning or URI version prefixes when breaking changes are unavoidable. Maintain deprecation schedules and communicate timelines in documentation and response headers so clients can migrate predictably.

Which authentication method is best for my API?

OAuth 2.0 and OpenID Connect are standard for delegated access and single-sign-on. For machine-to-machine communication, use short-lived tokens issued by a trusted authorization server. API keys can be simple to implement but should be scoped, rotated regularly, and never embedded in public clients without additional protections.

How do I test and monitor an API in production?

Implement synthetic monitoring for critical endpoints, collect real-user metrics (latency percentiles, error rates), and instrument distributed tracing to follow requests across services. Run scheduled contract tests against staging and production-like environments, and correlate incidents with deployment timelines and dependency health.

How do I design for backward compatibility?

Make additive, non-breaking changes where possible: add new fields rather than changing existing ones, and preserve default behaviors. Document deprecated fields and provide feature flags to gate new behavior. Maintain versioned client libraries to give consumers time to upgrade.

Disclaimer

This article is educational and technical in nature. It does not provide legal, financial, or investment advice. Implementations should be evaluated with respect to security policies, compliance requirements, and operational constraints specific to your organization.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products