Crypto Basics

Top Upcoming Crypto Coins - 14 High Potential Altcoins Not Trading Yet

Check 14 high potential upcoming crypto altcoins that are not trading yet. Stay ahead in the cryptocurrency market with these upcoming coins in 2024.
Token Metrics Team
11 Minutes
MIN

Welcome to this comprehensive guide on upcoming crypto coins that have not yet started trading. In this article, we will explore 14 high-potential altcoins carefully selected by Ian Balina, the founder and CEO of Token Metrics. Ian has an impressive track record in the crypto space and has invested in numerous successful projects.

With a background in computer engineering and experience working at top tech companies, Ian brings a wealth of knowledge and insights to the table. His past investments include projects like Gameswift and Pixels, which have delivered significant returns for investors.

Why Listen to Token Metrics?

Token Metrics is a reputable platform that provides in-depth research and analysis of various blockchain projects. The team at Token Metrics has invested in over 30 different projects, carefully selecting those with the potential to provide substantial returns. 

Their research has consistently delivered alpha in the form of hidden gems and early-stage investments.

Selection Criteria

The 14 projects featured in this article have been carefully chosen based on specific criteria. These criteria include a high tech score of 75% or above, strong fundamentals, long-term staying power, and the potential to enter the top 100 market cap. 

It's important to note that investing in early-stage projects carries inherent risks, and individuals should conduct their own research and exercise caution.

How to Manage Risk?

Managing risk is crucial when investing in cryptocurrencies. One key strategy is to diversify your portfolio and not invest more than 5% of your total portfolio into any single project. 

Token Metrics Ventures, for example, only allocates a maximum of 1% of its portfolio to early-stage projects. This ensures that the overall impact on the portfolio is minimized even if a project fails.

It's also important to stay updated on the latest market trends, news, and developments within the crypto industry. Also, setting realistic expectations and understanding that investing in early-stage projects carries both high potential rewards and high risks is essential. 

Conducting thorough research and analyzing the team, technology, and market conditions can somewhat mitigate risks.

List of 14 Upcoming Altcoins Not Trading Yet

Now, let's delve into the 14 high-potential altcoins that have not yet started trading.

1. Gravity (GRVT)

Gravity, also known as GRVT, is a next-generation hybrid ZK Sync crypto exchange that aims to bring together decentralized finance (DeFi) and centralized finance (C-Fi). It offers self-custody with low fees, making it easy for users to trade. Gravity's key narratives include ZK Sync, DeFi, and DEXes.

One of the reasons why Token Metrics is excited about Gravity is its backing by a strong list of market makers, including QCP, Susquehanna Group, and Dolphy Digital. These institutional backers provide credibility and support to the project. 

The vibe of Gravity is reminiscent of GMX from the previous cycle, which saw significant success. There is a confirmed airdrop for Gravity, making it an attractive option for potential investors.

2. Nillion

Nillion is a highly technical project that aims to build a blind computer for decentralized trust. It focuses on sharing secure data storage and privacy for AI, Deepin, and IoT applications. With a tech score of 77%, Nillion is a project that stands out due to its technical capabilities.

The key narrative for Nillion revolves around computing, privacy, AI, and Deepin. It competes with projects like Chainlink, Render, Ocean, and Marlin. Nillion's team comprises experienced professionals from major tech companies like Google, Facebook, Apple, and Uber. This expertise contributes to the project's strong technical foundation. 

The vibes of Nillion are similar to those of Chainlink, a project that has proven its long-term staying power. Nillion's probable airdrop makes it an intriguing option for investors looking to capitalize on its potential.

3. My Pet Hooligan

My Pet Hooligan is an exciting gaming project that allows users to adopt and train digital pets in an interactive world. Players can engage in various activities, including fighting and gaming. With a fundamental score of 77%, My Pet Hooligan has received positive feedback and has already generated over $60 million in NFT sales.

The gaming industry has experienced significant growth in recent years, and My Pet Hooligan aims to tap into this market. The project's confirmed airdrop and play-to-earn game mechanics make it an attractive opportunity for investors. 

The vibes of My Pet Hooligan are reminiscent of Axie Infinity, a project that has seen tremendous success and has become a major player in the gaming sector.

4. Parcl

Parcl is a unique project that aims to create a platform for trading real estate market values using city indexes. It effectively creates a derivatives market for real estate indices, allowing users to go long or short on different markets without directly owning the physical assets. With a fundamental score of 77%, Parcl stands out as a project with long-term staying power.

One of the reasons why Token Metrics is bullish on Parcl is its ability to survive bear markets. Similar to how Synthetix performed well during a bear market, Parcl provides an on-ramp for investors to trade real estate markets. 

The vibes of Parcl are reminiscent of Helium Network, a project that has demonstrated long-term growth and resilience. There is a confirmed airdrop for Parcl, making it an intriguing opportunity for investors.

5. Nibiru

Nibiru is a proof-of-stake blockchain that powers decentralized applications (dApps). It focuses on DeFi, and real-world assets and acts as a layer-one solution for the Cosmos ecosystem. With a tech score of 81%, Nibiru competes with projects like Solana, Sey, Injective, Neutron, and Archway.

Token Metrics is excited about Nibiru due to its competitive advantages over similar projects. For instance, Nibiru has a higher tech score than Neutron, a project with a current valuation of $1.5 billion. This suggests that Nibiru can potentially achieve a higher valuation in the future. 

The vibes of Nibiru are reminiscent of Injective, a successful project that focuses on being an L1 for DeFi. Nibiru has a confirmed airdrop, adding to its appeal to potential investors.

6. ReadyGG

Ready or ReadyGG is a Web3 gaming ecosystem that aims to onboard Web2 games into the Web3 world. The project provides tools and an SDK for game developers to add Web3 components to their games. With a tech score of 81%, Ready or ReadyGG competes with projects like Gainswift and Immutable X.

One of the reasons why Token Metrics is bullish on Ready or ReadyGG is its strong business development team and rapid onboarding of gaming studios. 

The project's vibes are reminiscent of Immutable X, a successful project focusing on bringing scalability to the gaming industry. Ready or ReadyGG has a probable airdrop, making it an attractive option for investors looking to capitalize on the future growth of the gaming sector.

7. Dolomite

Dolomite is a unique project that combines the strengths of a decentralized exchange (DEX) and a lending protocol. Built on Arbitrum, a layer two solution, Dolomite aims to provide a capital-efficient modular protocol for users. With a tech score of 85%, Dolomite competes with projects like DYDX, Synthetix, and GMX.

Token Metrics is excited about Dolomite due to its capital efficiency and ability to provide both DEX and lending functionalities. The project is backed by Coinbase Ventures, providing additional credibility and support. 

The vibes of Dolomite are reminiscent of DYDX, a successful project that focuses on being an L1 for DeFi. Dolomite has a confirmed airdrop, making it an intriguing option for potential investors.

8. Movement Labs

Movement Labs is a project that aims to build a modular blockchain network for the Move language. By making Move available on other layer two solutions like Ethereum and Avalanche, Movement Labs enables developers to code and run Move applications on various blockchains. With a tech score of 85%, Movement Labs competes with projects like Eclipse and Ethereum's rollup solutions.

Token Metrics is bullish on Movement Labs due to its potential to become a move-based ZK layer two on Ethereum. The project's vibes are reminiscent of Stacks, a successful L2 project on Bitcoin. Movement Labs has a confirmed airdrop, making it an attractive opportunity for investors looking to capitalize on the future of blockchain development.

9. Ola

Ola is a ZK virtual machine that enables secure private computations using zero-knowledge knowledge proofs. By bringing secure and private computations to the blockchain, Ola aims to provide users with enhanced privacy and security. With a tech score of 87%, Ola competes with projects like Elio, Aztec, and Ten (formerly known as Obscuro).

Token Metrics is excited about Ola due to its strong team, which includes former members of the Qtum project. The team's experience and expertise contribute to Ola's technical foundation. 

The vibes of Ola are reminiscent of Phantom, a successful project focusing on GPU computing for AI. Ola has a probable airdrop, making it an intriguing option for potential investors.

10. Lurk

Lurk is a highly technical project that aims to build a ZK compute platform with a specialized language for developing private applications that are formally verifiable. With a tech score of 87%, Lurk competes with projects like Cardano, Risk Zero, and PeliHedra.

Token Metrics is bullish on Lurk due to its ability to formally verify ZK proofs, similar to Cardano's approach to formal verification. 

The vibes of Lurk are reminiscent of Cardano, a project known for its focus on formal verification and strong team. Lurk has a probable airdrop, making it an attractive opportunity for investors looking to capitalize on the potential of formal verification in blockchain applications.

11. Nimble

Nimble is an exciting AI project that aims to democratize AI by allowing decentralized composable AI models and data for developers. With a tech score of 87%, Nimble competes with projects like BitTensor and Fetch.

Token Metrics is excited about Nimble due to its strong team, which includes engineers from major tech companies like Google, Facebook, Apple, and Uber. The team's expertise in machine learning and AI adds credibility to the project. 

The vibes of Nimble are reminiscent of Render Network, a successful AI project focusing on GPU computing. Nimble has a probable airdrop, making it an intriguing option for investors looking to capitalize on the future of AI.

12. Ten

Ten, formerly known as Obscuro, is a layer two roll-up solution that focuses on encrypting Ethereum transactions. With a tech score of 89%, Ten competes with projects like Aztec, Alio, Ola, Secret Network, and Railgun.

Token Metrics is bullish on Ten due to its strong team, which includes professionals from R3 and Koda. This enterprise blockchain background adds credibility to the project. 

The vibes of Ten are reminiscent of Algorand, a successful project known for its focus on enterprise adoption. Ten has a confirmed airdrop and plans to launch in Q2, making it an attractive opportunity for potential investors.

13. Dojima Network

Dojima Network aims to build an Omni-Chain Layer 1 platform for various applications like Web3, DeFi, NFTs, and gaming. With a tech score of 89%, Dojima Network competes with projects like ZetaChain, Pokedat, and Cosmos.

Token Metrics is excited about Dojima Network due to its under-the-radar potential. The project is still relatively unknown, allowing investors to get in early. 

The vibes of Dojima Network are reminiscent of Polygon, a project that started small but has grown into a major player in the blockchain space. Dojima Network has confirmed airdrop makes it an intriguing option for potential investors.

14. Peaq Network

Peaq Network is an L1 blockchain platform for real-world applications, particularly Deepin. With a tech score of 89%, Peaq Network competes with projects like Solana and IoTeX.

Token Metrics is bullish on Peaq Network due to its booming ecosystem and strong support from companies like Tesla, Sony, Bosch, and Jaguar. The project aims to provide a comprehensive solution for developers building Deepin applications. 

The vibes of Peaq Network are reminiscent of Solana, a successful project that has achieved significant market cap growth. Peaq Network has a confirmed airdrop, making it an attractive opportunity for potential investors.

Conclusion

In this article, we have explored 14 high-potential altcoins that have not yet started trading. These projects have been carefully selected based on their tech scores, fundamentals, long-term staying power, and potential to enter the top 100 market cap. 

However, conducting thorough research and exercising caution before making investment decisions is crucial. Investing in cryptocurrencies carries risks, and it is important to consult with professionals and make informed choices.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Essential Strategies to Prevent Replay Attacks in API Requests

Token Metrics Team
6
MIN

As the backbone of modern digital communication, APIs are a prime target for cyber threats—especially in crypto, DeFi, and AI-powered applications. One of the most pernicious attacks? The replay attack, in which valid data transmissions are maliciously or fraudulently repeated. For API providers and developers, preventing replay attacks isn’t an option—it's an absolute necessity for robust security.

What Is a Replay Attack?

A replay attack occurs when a malicious actor intercepts a valid data packet and then retransmits it to trick a system into performing unauthorized operations. In API contexts, attackers may reuse valid requests (often containing authentication details) to perform duplicate transactions or gain unauthorized access. Because the replayed request was originally valid, servers without adequate safeguards may not detect the threat.

  • Example: An attacker intercepts a signed transaction request to transfer tokens, then resubmits it, draining user assets, unless prevention mechanisms exist.
  • Implications: Data loss, financial theft, and loss of trust—all of which are critical risks in sensitive environments like crypto APIs, trading bots, or financial data providers.

Core Techniques for Preventing Replay Attacks

Robust replay attack prevention begins with understanding core technical methods. The following are widely accepted best practices—often used together for comprehensive protection.

  1. Nonces (Number Used Once): Each API request includes a unique, unpredictable number or value (a nonce). The server validates that each nonce is used only once; any repeated value is rejected. Nonces are the industry standard for thwarting replay attacks in both crypto APIs and general web services.
  2. Timestamps: Requiring all requests to carry a current timestamp enables servers to reject old or delayed requests. Combined with a defined validity window (e.g., 30 seconds), this thwarts attackers who attempt to replay requests later.
  3. Cryptographic Signatures: Using asymmetric (public/private key) or HMAC signatures, each request encodes not only its payload but also its nonce and timestamp. Servers can verify that the message hasn't been tampered with, and can validate the uniqueness and freshness of each request.
  4. Session Tokens: Sending temporary, single-use session tokens issued via secure authentication flows prevents replay attacks by binding each transaction to a session context.
  5. Sequence Numbers: In some systems, incrementing sequence numbers associated with a user or token ensure API requests occur in order. Repeated or out-of-order numbers are rejected.

Scenario Analysis: How Crypto APIs Mitigate Replay Attacks

Leading crypto APIs, such as those used for trading, price feeds, or on-chain analytics, deploy multiple techniques in tandem. Here’s an analytical walkthrough of practical implementation:

  • API Auth Workflows: When users call sensitive endpoints (like placing trades or moving funds), API providers require a nonce and a signature. For example, a crypto trading API may require:
    • Nonce: The client generates a random or incrementing number per request.
    • Timestamp: The request timestamp ensures freshness.
    • Signature: The user signs the payload (including the nonce, timestamp, and body data) using their API secret or private key.
  • Server Validation: The server verifies the signature, then checks that both nonce and timestamp are valid. It stores a database of recent nonces per API key/user to reject any reuse.
  • Replay Protection in Event Webhooks: Webhook endpoints receiving data from trusted sources also require verification of both signature and uniqueness to prevent attackers from submitting repeated or altered webhook notifications.

Importantly, the combination of these techniques not only prevents replay attacks but also helps authenticate requests and ensure integrity—critical for the high-value operations typical in crypto environments.

Best Practices for Implementing Replay Prevention in Your API

Developers and security architects must employ a layered defense. Consider adopting the following practical steps:

  • Enforce Nonce Uniqueness: Track previous nonces (or a hash) for each API key/user within a sliding time window to avoid excessive data storage, but ensure no nonce repeats are accepted.
  • Define a Validity Window: Restrict requests to a strict timeframe (typically 30–120 seconds) to limit attacker flexibility and reduce server load.
  • Secure Key Management: Use secure HSMs (Hardware Security Modules) or vaults to protect private keys and secrets used for signing API requests.
  • Automated Monitoring: Monitor for patterns such as duplicate nonces, out-of-sequence requests, or multiple failures—these can indicate attempted replay or credential stuffing attacks.
  • Comprehensive Testing and Audits: Regularly test API endpoints for replay attack vulnerabilities, particularly after making changes to authentication or data transmission logic.

By following these best practices, API providers can significantly reduce the risk of replay attacks—even in the fast-paced, high-stakes environment of crypto and AI-powered platforms.

AI-Powered Analytics for API Security

Modern API infrastructure benefits from AI-driven monitoring tools that can detect and flag anomalies—such as repeated requests, abnormal traffic spikes, or suspicious timestamp patterns—suggesting a potential replay attack in progress. By integrating machine learning with traditional security controls, application teams can spot sophisticated threats that might slip past static rules, ensuring a more resilient API ecosystem.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: How to Prevent Replay Attacks in API Requests

What is the difference between a replay attack and a man-in-the-middle attack?

A replay attack involves resending valid data to trick an API, while a man-in-the-middle attack intercepts and can alter communication between two parties. Both can be used in tandem, but replay attacks specifically exploit a system’s inability to detect previously valid requests being repeated.

How do nonces help prevent replay attacks?

Nonces ensure each API request is unique. If an attacker tries to repeat a request using the same nonce, the server recognizes the duplicate and rejects it, preventing unauthorized operations.

Do TLS or HTTPS protect against replay attacks?

TLS/HTTPS encrypt communications but do not inherently prevent replay attacks. Replay prevention requires application-level controls like nonces or timestamps, as encrypted packets can still be captured and resent if no additional safeguards exist.

How can APIs detect replay attacks in real time?

APIs can log incoming requests’ nonces, timestamps, and signatures. If a duplicate nonce or old timestamp appears, the server detects and blocks the replay. Real-time monitoring and alerting further reduce risks.

Are there industry standards for replay attack prevention?

Yes. OAuth 2.0, OpenID Connect, and major crypto API specs recommend nonces, timestamp validation, and signatures as standard practices to prevent replay attacks. Following established security frameworks ensures better protection.

Disclaimer

This blog is for educational purposes only. It does not constitute investment, legal, or other professional advice. Please conduct your own research or consult experts before implementing security practices in critical systems. Token Metrics does not offer investment services or guarantees of performance.

Research

Mastering Key Management for Secure Crypto API Services

Token Metrics Team
5
MIN

In the fast-moving world of crypto, robust security isn’t just an option—it’s essential. With countless applications powered by APIs exchanging sensitive data, managing cryptographic keys effectively is a foundational pillar for trust and protection. But what exactly does strong key management look like for a crypto API service, and why does it matter so much?

What Makes Key Management Critical in Crypto API Services?

APIs are arteries of modern crypto platforms. They power everything from automated trading to blockchain analytics, moving sensitive data such as user credentials, wallet addresses, and real-time transaction histories. Cryptographic keys serve as the gatekeepers to this data—enabling authentication, encrypting requests and responses, and regulating who can interact with a service.

If keys fall into the wrong hands due to inadequate management, the repercussions are significant: data breaches, unauthorized withdrawals, reputational damage, and regulatory penalties. With rising cyberattacks targeting API endpoints and credentials, the standard for key management in crypto APIs is more rigorous than ever.

Core Principles of Crypto API Key Management

Effective key management goes beyond simple storage. The following principles are vital for any crypto API provider or developer:

  • Confidentiality: Keys must only be accessible to authorized entities, at the right time, under the right circumstances.
  • Integrity: Detect and prevent any unauthorized modifications to keys.
  • Availability: Keys should be accessible for legitimate operations, preventing disruptions or lock-outs.
  • Accountability: Activity involving keys should be logged and reviewed to support audits.
  • Non-repudiation: Users and services must not be able to deny actions performed with their credentials.

Every aspect—from onboarding to deprovisioning an API key—should reinforce these pillars.

Best Practices for Crypto API Key Lifecycle Management

Securing a crypto API requires a disciplined approach throughout the key’s lifecycle: from its generation and distribution to rotation and retirement. Here’s a best-practices checklist for each stage:

  1. Secure Generation: Keys should be generated using strong, cryptographically secure random number generators. Avoid hard-coding keys in source code or sharing them in plaintext.
  2. Protected Storage: Store keys in dedicated hardware security modules (HSMs) or encrypted key vaults. Operating system-level protections and access controls should also be enforced.
  3. Controlled Distribution: Distribute API keys only over secure channels (such as TLS-enabled connections). For multi-party access, use role-based access control (RBAC) to restrict scope.
  4. Regular Rotation and Expiration: Keys should have defined expiration dates. Rotate them automatically or on-demand (for example, after personnel changes or suspected compromise).
  5. Revoke and Audit: Provide robust mechanisms to instantly revoke compromised or unused keys. Maintain detailed audit logs of key issuance, use, and deactivation for compliance reviews.

These best practices not only minimize the window of exposure but also simplify legal and regulatory compliance, such as with GDPR or SOC 2 obligations.

Implementing API Secrets Management and Access Control

API secrets, including API keys, tokens, and passphrases, are prime targets for attackers. Here are proven approaches for secrets management and enforcing secure access control:

  • Environment Separation: Use separate API keys for development, testing, and production environments to limit risk.
  • Minimal Permissions: Issue keys and tokens with the least privilege necessary (for example, read-only vs. read-write access).
  • Zero Trust Design: Assume no default trust; authenticate and validate every request, regardless of source.
  • Automated Secrets Discovery: Regularly scan codebases, repositories, and cloud resources for accidentally exposed keys.
  • Multi-Factor Authentication (MFA): Pair API keys with additional forms of authentication where possible for critical operations.

Modern cloud-based API management platforms—and frameworks for zero trust security—can streamline these controls and offer centralized monitoring for potential threats.

Incident Response, Monitoring, and Continuous Improvement

No security system is infallible. Continuous monitoring and rapid incident response are essential components of key management for crypto APIs:

  • Real-Time Monitoring: Deploy tools to monitor API usage, flagging anomalous patterns that could indicate abuse or compromise (e.g., high-frequency requests or atypical geolocations).
  • Incident Playbooks: Have pre-defined processes for rotating/revoking keys and communicating incidents to stakeholders.
  • Regular Audits: Schedule internal and third-party audits to assess key management processes, patch vulnerabilities, and validate compliance.
  • Continuous Education: Train developers and administrators on emerging threats, social engineering tricks, and evolving best practices.

Adopting a proactive, improvement-focused mindset helps API providers stay resilient as attacker techniques grow more sophisticated.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What are Key Management Best Practices for a Crypto API Service?

How do I safely store crypto API keys?

Store keys in dedicated, encrypted vaults or hardware security modules (HSMs). Avoid keeping them in plaintext or hard coding them in application code or configuration files. Limit access via permissions and strong identity controls.

How often should API keys be rotated?

API keys should be rotated regularly (e.g., every 3–6 months) and immediately if there is any sign of compromise, personnel changes, or as part of a scheduled security protocol. Automation can streamline this process for large deployments.

What is the 'least privilege' principle for crypto APIs?

Issuing API keys with only the permissions absolutely necessary for a given user or system—such as read-only vs. write access—limits potential damage if a key is compromised. This approach helps reduce risk exposure and aligns with zero trust models.

Can API key management support regulatory compliance?

Yes. Proper key management practices, such as audit trails, incident response, and robust access controls, are essential components for demonstrating compliance with data protection and integrity standards like GDPR, SOC 2, or ISO 27001.

What happens if an API key is compromised?

If an API key is exposed, it should be revoked or rotated immediately. Monitor system logs for unauthorized activity, conduct a root cause analysis to determine how the key was compromised, and update protocols to prevent recurrence.

Disclaimer

This content is for educational and informational purposes only and should not be interpreted as legal, security, or investment advice. Always consult relevant professionals when implementing crypto security protocols or designing API services.

Research

A Practical Guide to HMAC Authentication for REST API Endpoints

Token Metrics Team
6
MIN

Securing REST API endpoints has become a fundamental concern for developers, especially as sensitive data and critical operations traverse the web. Choosing the right authentication process is vital, and one approach—HMAC (Hash-Based Message Authentication Code)—provides a robust mechanism to ensure secure and tamper-proof communications. But how exactly do you implement HMAC authentication for a REST API endpoint in practice?

What is HMAC Authentication?

HMAC, or Hash-Based Message Authentication Code, is a cryptographic technique that combines a secret key with a message (such as an HTTP request) and then hashes the combination using a secure hash algorithm (like SHA-256). The output hash, called the HMAC signature, is sent along with the API request. On the server side, the same process is repeated to confirm the authenticity and integrity of the request.

This approach protects against request tampering and eavesdropping because only someone with the shared secret key can generate a valid HMAC signature. Unlike basic authentication, which sends credentials with every request, HMAC signatures help defend APIs against replay attacks and man-in-the-middle threats. Additionally, as requested data is included in the signature, any changes during transit will invalidate the signature and trigger security alerts.

Why Use HMAC for REST API Authentication?

REST APIs are widely adopted due to their scalability, simplicity, and statelessness. However, such characteristics make them attractive targets for unauthorized actors. The benefits of using HMAC authentication for REST APIs include:

  • Integrity & Authenticity: Every request is verified using a unique signature, ensuring that data has not been altered in transit.
  • Replay Attack Protection: HMAC implementations often incorporate timestamps or unique nonces, preventing reuse of intercepted requests.
  • Credential Privacy: With HMAC, the secret key is never transmitted over the network, reducing exposure risk.
  • Lightweight Security: HMAC is computationally efficient compared to more resource-intensive methods like asymmetric cryptography, making it suitable for high-throughput applications or microservices.

Financial institutions, crypto APIs, and enterprise SaaS solutions often favor HMAC as a standard defense mechanism for their public endpoints.

Step-by-Step: Implementing HMAC Authentication

Below is a practical workflow to implement HMAC authentication on your REST API endpoint:

  1. Generate and Distribute API Keys: Each client receives a unique API key and secret. The secret must be safely stored on the client and never exposed.
  2. Prepare HTTP Request Data: Define the data included in the signature, typically a combination of HTTP method, endpoint, query string, body, timestamp, and sometimes a nonce for uniqueness.
  3. Create the HMAC Signature: The client concatenates the necessary request elements in a specific order, hashes them with the secret key using an algorithm like HMAC-SHA-256, and produces a signature.
  4. Send the Request with Signature: The client places the resulting HMAC signature and related headers (API key, timestamp, nonce) into each API request—commonly within HTTP headers or the Authorization field.
  5. Server-Side Verification: Upon receiving the request, the server retrieves the API secret (based on the provided API key), reconstructs the signing string, computes its own HMAC signature, and compares it to the one sent by the client.
  6. Grant or Deny Access: If the signatures and provided timestamps match and the request falls within an acceptable window, the request is processed. Otherwise, it is rejected as unauthorized.

An example Authorization header might look like:

Authorization: HMAC apiKey="abc123", signature="d41d8cd98f00b204e9800998ecf8427e", timestamp="1660000000", nonce="fGh8Kl"

Always use time-based mechanisms and nonces to prevent replay. For REST APIs built in Python, Node.js, or Java, popular libraries are available to generate and validate HMAC signatures. Ensure secure storage of all secrets and keys—never hard-code them in source files or share them over email.

HMAC Implementation Best Practices

Even well-designed authentication processes can be vulnerable if not properly managed. To maximize HMAC's security benefits, follow these best practices:

  • Rotate Keys Regularly: Implement a lifecycle for API secrets and automate rotation policies to mitigate risks from key compromise.
  • Use Secure Algorithms: Stick to industry standards like SHA-256; avoid outdated hash functions such as MD5 or SHA-1.
  • HTTPS Only: Transmit all API traffic over HTTPS to further protect against network-level attacks—even though the secret is never sent directly.
  • Implement Rate Limiting: Guard against brute-force attempts or webhook floods by capping request rates per user or IP.
  • Comprehensive Logging & Monitoring: Track failed authentication attempts and alert on anomalies for early incident response.

Furthermore, document the required signature format and header structure for your API consumers to minimize implementation errors.

HMAC in the Crypto API Landscape

HMAC authentication is standard in the world of cryptocurrency APIs, where secure and rapid access to on-chain data and market signals is paramount. Leading blockchain data providers, crypto trading platforms, and analytic tools incorporate some variant of HMAC to manage authentication and authorization.

For developers building trading bots, portfolio trackers, or AI-driven analysis platforms, HMAC-protected REST endpoints are both flexible and secure. They allow granular control of permissions and can support high-frequency interactions without the heavy computational load of asymmetric encryption systems.

As the crypto ecosystem evolves, API authentication standards must adapt. Devs should look for providers and platforms—like Token Metrics—that offer transparent, HMAC-secured endpoints and clear implementation guidelines.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Frequently Asked Questions

What different algorithms can I use for HMAC?

The most common algorithms are HMAC-SHA-256 and HMAC-SHA-512, both providing strong security. Avoid using outdated algorithms like MD5 or SHA-1 due to known vulnerabilities. HMAC's flexibility allows other hash functions, but always prioritize well-supported, secure industry standards.

How are HMAC secrets shared and stored?

API secrets are typically generated and securely shared out-of-band (e.g., within a secure dashboard or encrypted email during onboarding). On the client, store secrets in environment variables or encrypted secrets managers; on the server, keep secrets in secure databases and never log them.

Is HMAC better than OAuth or JWT for APIs?

HMAC and OAuth/JWT are different approaches. HMAC is simpler, faster, and well-suited for service-to-service API authentication. OAuth and JWT, meanwhile, support more sophisticated user-based access or delegated authorization. The best choice depends on your use case and security goals.

Can HMAC protect against all types of API attacks?

HMAC is excellent for ensuring integrity and authenticity, but is not a complete solution against all attacks. Use it in combination with HTTPS, strict input validation, throttle policies, and regular security reviews. Comprehensive threat protection requires defense in depth.

How do I test my HMAC implementation?

Test both client and server components by intentionally altering requests to ensure invalid signatures are rejected. Use available unit tests, API mocking tools, and logging to confirm signatures are computed and validated as expected. Rotate secrets during testing to check for proper handling.

Disclaimer

This content is for informational and educational purposes only. It does not constitute security advice or endorse any provider. Implementation details may vary by project and threat model. Always consult with professional security experts to ensure compliance and best practices.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products