Crypto Basics

Top Upcoming Crypto Coins - 14 High Potential Altcoins Not Trading Yet

Check 14 high potential upcoming crypto altcoins that are not trading yet. Stay ahead in the cryptocurrency market with these upcoming coins in 2024.
Token Metrics Team
11 Minutes
MIN

Welcome to this comprehensive guide on upcoming crypto coins that have not yet started trading. In this article, we will explore 14 high-potential altcoins carefully selected by Ian Balina, the founder and CEO of Token Metrics. Ian has an impressive track record in the crypto space and has invested in numerous successful projects.

With a background in computer engineering and experience working at top tech companies, Ian brings a wealth of knowledge and insights to the table. His past investments include projects like Gameswift and Pixels, which have delivered significant returns for investors.

Why Listen to Token Metrics?

Token Metrics is a reputable platform that provides in-depth research and analysis of various blockchain projects. The team at Token Metrics has invested in over 30 different projects, carefully selecting those with the potential to provide substantial returns. 

Their research has consistently delivered alpha in the form of hidden gems and early-stage investments.

Selection Criteria

The 14 projects featured in this article have been carefully chosen based on specific criteria. These criteria include a high tech score of 75% or above, strong fundamentals, long-term staying power, and the potential to enter the top 100 market cap. 

It's important to note that investing in early-stage projects carries inherent risks, and individuals should conduct their own research and exercise caution.

How to Manage Risk?

Managing risk is crucial when investing in cryptocurrencies. One key strategy is to diversify your portfolio and not invest more than 5% of your total portfolio into any single project. 

Token Metrics Ventures, for example, only allocates a maximum of 1% of its portfolio to early-stage projects. This ensures that the overall impact on the portfolio is minimized even if a project fails.

It's also important to stay updated on the latest market trends, news, and developments within the crypto industry. Also, setting realistic expectations and understanding that investing in early-stage projects carries both high potential rewards and high risks is essential. 

Conducting thorough research and analyzing the team, technology, and market conditions can somewhat mitigate risks.

List of 14 Upcoming Altcoins Not Trading Yet

Now, let's delve into the 14 high-potential altcoins that have not yet started trading.

1. Gravity (GRVT)

Gravity, also known as GRVT, is a next-generation hybrid ZK Sync crypto exchange that aims to bring together decentralized finance (DeFi) and centralized finance (C-Fi). It offers self-custody with low fees, making it easy for users to trade. Gravity's key narratives include ZK Sync, DeFi, and DEXes.

One of the reasons why Token Metrics is excited about Gravity is its backing by a strong list of market makers, including QCP, Susquehanna Group, and Dolphy Digital. These institutional backers provide credibility and support to the project. 

The vibe of Gravity is reminiscent of GMX from the previous cycle, which saw significant success. There is a confirmed airdrop for Gravity, making it an attractive option for potential investors.

2. Nillion

Nillion is a highly technical project that aims to build a blind computer for decentralized trust. It focuses on sharing secure data storage and privacy for AI, Deepin, and IoT applications. With a tech score of 77%, Nillion is a project that stands out due to its technical capabilities.

The key narrative for Nillion revolves around computing, privacy, AI, and Deepin. It competes with projects like Chainlink, Render, Ocean, and Marlin. Nillion's team comprises experienced professionals from major tech companies like Google, Facebook, Apple, and Uber. This expertise contributes to the project's strong technical foundation. 

The vibes of Nillion are similar to those of Chainlink, a project that has proven its long-term staying power. Nillion's probable airdrop makes it an intriguing option for investors looking to capitalize on its potential.

3. My Pet Hooligan

My Pet Hooligan is an exciting gaming project that allows users to adopt and train digital pets in an interactive world. Players can engage in various activities, including fighting and gaming. With a fundamental score of 77%, My Pet Hooligan has received positive feedback and has already generated over $60 million in NFT sales.

The gaming industry has experienced significant growth in recent years, and My Pet Hooligan aims to tap into this market. The project's confirmed airdrop and play-to-earn game mechanics make it an attractive opportunity for investors. 

The vibes of My Pet Hooligan are reminiscent of Axie Infinity, a project that has seen tremendous success and has become a major player in the gaming sector.

4. Parcl

Parcl is a unique project that aims to create a platform for trading real estate market values using city indexes. It effectively creates a derivatives market for real estate indices, allowing users to go long or short on different markets without directly owning the physical assets. With a fundamental score of 77%, Parcl stands out as a project with long-term staying power.

One of the reasons why Token Metrics is bullish on Parcl is its ability to survive bear markets. Similar to how Synthetix performed well during a bear market, Parcl provides an on-ramp for investors to trade real estate markets. 

The vibes of Parcl are reminiscent of Helium Network, a project that has demonstrated long-term growth and resilience. There is a confirmed airdrop for Parcl, making it an intriguing opportunity for investors.

5. Nibiru

Nibiru is a proof-of-stake blockchain that powers decentralized applications (dApps). It focuses on DeFi, and real-world assets and acts as a layer-one solution for the Cosmos ecosystem. With a tech score of 81%, Nibiru competes with projects like Solana, Sey, Injective, Neutron, and Archway.

Token Metrics is excited about Nibiru due to its competitive advantages over similar projects. For instance, Nibiru has a higher tech score than Neutron, a project with a current valuation of $1.5 billion. This suggests that Nibiru can potentially achieve a higher valuation in the future. 

The vibes of Nibiru are reminiscent of Injective, a successful project that focuses on being an L1 for DeFi. Nibiru has a confirmed airdrop, adding to its appeal to potential investors.

6. ReadyGG

Ready or ReadyGG is a Web3 gaming ecosystem that aims to onboard Web2 games into the Web3 world. The project provides tools and an SDK for game developers to add Web3 components to their games. With a tech score of 81%, Ready or ReadyGG competes with projects like Gainswift and Immutable X.

One of the reasons why Token Metrics is bullish on Ready or ReadyGG is its strong business development team and rapid onboarding of gaming studios. 

The project's vibes are reminiscent of Immutable X, a successful project focusing on bringing scalability to the gaming industry. Ready or ReadyGG has a probable airdrop, making it an attractive option for investors looking to capitalize on the future growth of the gaming sector.

7. Dolomite

Dolomite is a unique project that combines the strengths of a decentralized exchange (DEX) and a lending protocol. Built on Arbitrum, a layer two solution, Dolomite aims to provide a capital-efficient modular protocol for users. With a tech score of 85%, Dolomite competes with projects like DYDX, Synthetix, and GMX.

Token Metrics is excited about Dolomite due to its capital efficiency and ability to provide both DEX and lending functionalities. The project is backed by Coinbase Ventures, providing additional credibility and support. 

The vibes of Dolomite are reminiscent of DYDX, a successful project that focuses on being an L1 for DeFi. Dolomite has a confirmed airdrop, making it an intriguing option for potential investors.

8. Movement Labs

Movement Labs is a project that aims to build a modular blockchain network for the Move language. By making Move available on other layer two solutions like Ethereum and Avalanche, Movement Labs enables developers to code and run Move applications on various blockchains. With a tech score of 85%, Movement Labs competes with projects like Eclipse and Ethereum's rollup solutions.

Token Metrics is bullish on Movement Labs due to its potential to become a move-based ZK layer two on Ethereum. The project's vibes are reminiscent of Stacks, a successful L2 project on Bitcoin. Movement Labs has a confirmed airdrop, making it an attractive opportunity for investors looking to capitalize on the future of blockchain development.

9. Ola

Ola is a ZK virtual machine that enables secure private computations using zero-knowledge knowledge proofs. By bringing secure and private computations to the blockchain, Ola aims to provide users with enhanced privacy and security. With a tech score of 87%, Ola competes with projects like Elio, Aztec, and Ten (formerly known as Obscuro).

Token Metrics is excited about Ola due to its strong team, which includes former members of the Qtum project. The team's experience and expertise contribute to Ola's technical foundation. 

The vibes of Ola are reminiscent of Phantom, a successful project focusing on GPU computing for AI. Ola has a probable airdrop, making it an intriguing option for potential investors.

10. Lurk

Lurk is a highly technical project that aims to build a ZK compute platform with a specialized language for developing private applications that are formally verifiable. With a tech score of 87%, Lurk competes with projects like Cardano, Risk Zero, and PeliHedra.

Token Metrics is bullish on Lurk due to its ability to formally verify ZK proofs, similar to Cardano's approach to formal verification. 

The vibes of Lurk are reminiscent of Cardano, a project known for its focus on formal verification and strong team. Lurk has a probable airdrop, making it an attractive opportunity for investors looking to capitalize on the potential of formal verification in blockchain applications.

11. Nimble

Nimble is an exciting AI project that aims to democratize AI by allowing decentralized composable AI models and data for developers. With a tech score of 87%, Nimble competes with projects like BitTensor and Fetch.

Token Metrics is excited about Nimble due to its strong team, which includes engineers from major tech companies like Google, Facebook, Apple, and Uber. The team's expertise in machine learning and AI adds credibility to the project. 

The vibes of Nimble are reminiscent of Render Network, a successful AI project focusing on GPU computing. Nimble has a probable airdrop, making it an intriguing option for investors looking to capitalize on the future of AI.

12. Ten

Ten, formerly known as Obscuro, is a layer two roll-up solution that focuses on encrypting Ethereum transactions. With a tech score of 89%, Ten competes with projects like Aztec, Alio, Ola, Secret Network, and Railgun.

Token Metrics is bullish on Ten due to its strong team, which includes professionals from R3 and Koda. This enterprise blockchain background adds credibility to the project. 

The vibes of Ten are reminiscent of Algorand, a successful project known for its focus on enterprise adoption. Ten has a confirmed airdrop and plans to launch in Q2, making it an attractive opportunity for potential investors.

13. Dojima Network

Dojima Network aims to build an Omni-Chain Layer 1 platform for various applications like Web3, DeFi, NFTs, and gaming. With a tech score of 89%, Dojima Network competes with projects like ZetaChain, Pokedat, and Cosmos.

Token Metrics is excited about Dojima Network due to its under-the-radar potential. The project is still relatively unknown, allowing investors to get in early. 

The vibes of Dojima Network are reminiscent of Polygon, a project that started small but has grown into a major player in the blockchain space. Dojima Network has confirmed airdrop makes it an intriguing option for potential investors.

14. Peaq Network

Peaq Network is an L1 blockchain platform for real-world applications, particularly Deepin. With a tech score of 89%, Peaq Network competes with projects like Solana and IoTeX.

Token Metrics is bullish on Peaq Network due to its booming ecosystem and strong support from companies like Tesla, Sony, Bosch, and Jaguar. The project aims to provide a comprehensive solution for developers building Deepin applications. 

The vibes of Peaq Network are reminiscent of Solana, a successful project that has achieved significant market cap growth. Peaq Network has a confirmed airdrop, making it an attractive opportunity for potential investors.

Conclusion

In this article, we have explored 14 high-potential altcoins that have not yet started trading. These projects have been carefully selected based on their tech scores, fundamentals, long-term staying power, and potential to enter the top 100 market cap. 

However, conducting thorough research and exercising caution before making investment decisions is crucial. Investing in cryptocurrencies carries risks, and it is important to consult with professionals and make informed choices.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

A Complete Guide to Writing Smart Contracts

Token Metrics Team
4
MIN

Introduction

Smart contracts are self-executing contracts with the terms of the agreement directly written into lines of code. They run on blockchain platforms, such as Ethereum, enabling decentralized, automated agreements that do not require intermediaries. Understanding how to write a smart contract involves familiarity with blockchain principles, programming languages, and best practices for secure and efficient development.

Understanding Smart Contracts

Before diving into development, it is essential to grasp what smart contracts are and how they function within blockchain ecosystems. Essentially, smart contracts enable conditional transactions that automatically execute when predefined conditions are met, providing transparency and reducing dependency on third parties.

These programs are stored and executed on blockchain platforms, making them immutable and distributed, which adds security and reliability to the contract's terms.

Choosing the Right Platform

Writing a smart contract starts with selecting an appropriate blockchain platform. Ethereum is among the most widely used platforms with robust support for smart contracts, primarily written in Solidity—a statically-typed, contract-oriented programming language.

Other platforms like Binance Smart Chain, Polkadot, and Solana also support smart contracts with differing languages and frameworks. Selecting a platform depends on the project requirements, intended network compatibility, and resource accessibility.

Learning the Programming Language

The most commonly used language for writing Ethereum smart contracts is Solidity. It is designed to implement smart contracts with syntax similar to JavaScript, making it approachable for developers familiar with web programming languages.

Other languages include Vyper, a pythonic language focusing on security and simplicity, and Rust or C++ for platforms like Solana. Learning the syntax, data types, functions, and event handling of the chosen language is foundational.

Setting Up Development Environment

Development of smart contracts typically requires a suite of tools for editing, compiling, testing, and deploying code:

  • IDEs: Integrated Development Environments such as Remix (web-based for Solidity) or Visual Studio Code with plugins.
  • Frameworks: Tools like Truffle or Hardhat enable local blockchain simulation, automated testing, and deployment scripts.
  • Node and Wallet: Connecting to blockchain networks often requires running a node or leveraging services like Infura, along with digital wallets (e.g., MetaMask) for transaction signing.

Writing the Smart Contract Code

Writing a smart contract involves structuring the code to define its variables, functions, and modifiers. Key steps include:

  1. Define the contract: Use the keyword contract to declare the contract and its name.
  2. Declare state variables: Define data stored on the blockchain, such as balances or ownership details.
  3. Write functions: Implement logic that changes state variables or triggers events.
  4. Use modifiers: Add conditional checks like access restrictions (e.g., only the owner can execute certain functions).
  5. Emit events: Use events to log significant contract operations for off-chain monitoring.

Example snippet in Solidity:

pragma solidity ^0.8.0;

contract SimpleStorage {
  uint storedData;

  function set(uint x) public {
    storedData = x;
  }

  function get() public view returns (uint) {
    return storedData;
  }
}

Testing and Debugging

Testing is crucial to ensure smart contracts operate as intended and to prevent bugs or vulnerabilities. Strategies include:

  • Writing unit tests using frameworks like Truffle or Hardhat.
  • Running tests on local blockchains (Ganache) before deploying.
  • Using linters and analysis tools to detect common security issues.

Adopting rigorous testing can reduce the risk of exploits or loss of funds caused by contract errors.

Deploying the Smart Contract

Deployment involves publishing the compiled smart contract bytecode to the blockchain. This includes:

  • Compiling the contract into bytecode.
  • Connecting to the desired blockchain network (testnet or mainnet) usually via wallet integration.
  • Submitting a deployment transaction, which requires gas fees for execution.

Using test networks like Ropsten, Rinkeby, or Goerli is recommended for initial deployment to validate functionality without incurring real costs.

Using AI Tools for Smart Contract Research

Emerging AI-driven platforms can assist developers and analysts with smart contract evaluation, security analysis, and market sentiment interpretation. For instance, tools like Token Metrics provide algorithmic research that can support understanding of blockchain projects and smart contract implications in the ecosystem.

Integrating these tools along with manual audits aids comprehensive assessments for better development decisions.

Best Practices and Security Considerations

Writing secure smart contracts requires awareness of common vulnerabilities such as reentrancy attacks, integer overflows, and improper access controls. Best practices include:

  • Following established design patterns and standards (e.g., OpenZeppelin contracts).
  • Performing thorough code reviews and external audits.
  • Keeping contracts as simple and modular as possible.

Robust security practices are critical due to the immutable nature of deployed smart contracts on blockchain.

Conclusion

Writing a smart contract involves a combination of blockchain knowledge, programming skills, and adherence to security best practices. From choosing a platform and language to coding, testing, and deploying, each step plays an important role in the development lifecycle.

Leveraging AI-powered tools like Token Metrics can add valuable insights for developers aiming to enhance their understanding and approach to smart contract projects.

Disclaimer

All information provided in this article is for educational purposes only and does not constitute financial or investment advice. Readers should conduct their own research and consult professional sources where appropriate.

Research

Understanding the Risks of AI Controlling Decentralized Autonomous Organizations

Token Metrics Team
4
MIN

Introduction

Decentralized Autonomous Organizations (DAOs) represent an innovative model for decentralized governance and decision-making in the blockchain space. With the increasing integration of artificial intelligence (AI) into DAOs for automating processes and enhancing efficiency, it is vital to understand the risks associated with allowing AI to control or heavily influence DAOs. This article provides a comprehensive analysis of these risks, exploring technical, ethical, and systemic factors. Additionally, it outlines how analytical platforms like Token Metrics can support informed research around such emerging intersections.

DAO and AI Basics

DAOs are blockchain-based entities designed to operate autonomously through smart contracts and collective governance, without centralized control. AI technologies can offer advanced capabilities by automating proposal evaluation, voting mechanisms, or resource allocation within these organizations. While this combination promises increased efficiency and responsiveness, it also introduces complexities and novel risks.

Technical Vulnerabilities

One significant category of risks involves technical vulnerabilities arising from AI integration into DAOs:

  • Smart Contract Exploits: AI-driven decision-making typically operates on smart contracts. Flaws or bugs in the smart contract code can be exploited, possibly amplified by AI’s autonomous execution.
  • Data Integrity and Quality: AI requires reliable data inputs to function correctly. Malicious actors might inject false or biased data, leading to misguided AI decisions that could harm DAO operations.
  • Algorithmic Errors: AI algorithms might contain bugs, incorrect assumptions, or be insufficiently tested, which could result in unintended behaviors or decisions with negative consequences.

Governance and Control Challenges

Integrating AI into DAO governance raises complex questions around control, transparency, and accountability:

  • Lack of Transparency: AI algorithms, especially those using complex machine learning models, can be opaque, making it difficult for stakeholders to audit decisions or understand governance processes fully.
  • Centralization Risks: AI models are often developed and maintained by specific teams or organizations, which could inadvertently introduce centralization points contrary to the decentralized ethos of DAOs.
  • Unintended Bias: AI systems trained on biased datasets may propagate or exacerbate existing biases within DAO decision-making, risking unfair or harmful outcomes.

Security and Manipulation Risks

The autonomous nature of AI presents unique security concerns:

  • Manipulation Attacks: Adversaries might target the AI’s learning process or input data channels to manipulate outcomes toward malicious goals.
  • Autonomy Exploits: An AI controlling critical DAO functions autonomously could make decisions that are difficult to reverse or disrupt, leading to lasting damage if exploited.
  • Emergent Behavior: Complex AI systems might develop unexpected behaviors in dynamic environments, creating risks hard to anticipate or control within DAO frameworks.

Ethical and Regulatory Concerns

Beyond technical risks, the interaction between AI and DAOs also introduces ethical and regulatory considerations:

  • Accountability Gaps: Determining liability for AI-driven decisions within DAOs is challenging, potentially leading to accountability voids in cases of harm or disputes.
  • Compliance Complexity: Evolving regulatory landscapes surrounding both AI and blockchain could create overlapping or conflicting requirements for AI-controlled DAOs.
  • User Consent and Autonomy: Members participating in DAOs may have concerns over how AI influences governance and whether adequate consent frameworks are in place.

Mitigating Risks with Analytical Tools

Understanding and managing these risks require robust research and analytical frameworks. Platforms such as Token Metrics provide data-driven insights supporting comprehensive evaluation of blockchain projects, governance models, and emerging technologies combining AI and DAOs.

  • Thorough Technical Reviews: Regular audits and reviews of AI algorithms and smart contracts can detect vulnerabilities early.
  • Transparency Initiatives: Employing explainable AI methods enhances trust and allows stakeholder scrutiny.
  • Scenario Analysis: Exploring potential failure modes and adversarial scenarios helps prepare for unexpected outcomes.
  • Community Engagement: Active and informed participation in DAO governance ensures more robust checks and balances.

Conclusion

The fusion of AI and DAOs promises innovative decentralized governance but comes with substantial risks. Technical vulnerabilities, governance challenges, security threats, and ethical concerns highlight the need for vigilant risk assessment and careful integration. Utilizing advanced research platforms like Token Metrics enables more informed and analytical approaches for stakeholders navigating this evolving landscape.

Disclaimer

This article is for educational purposes only and does not constitute financial, legal, or investment advice. Readers should perform their own due diligence and consult professionals where appropriate.

Research

How AI Enhances Vulnerability Detection in Smart Contracts

Token Metrics Team
4
MIN

Introduction: The Growing Concern of Smart Contract Vulnerabilities

Smart contracts are self-executing contracts with the terms directly written into code, widely used across blockchain platforms to automate decentralized applications (DApps) and financial protocols. However, despite their innovation and efficiency, vulnerabilities in smart contracts pose significant risks, potentially leading to loss of funds, exploits, or unauthorized actions.

With the increasing complexity and volume of smart contracts being deployed, traditional manual auditing methods struggle to keep pace. This has sparked interest in leveraging Artificial Intelligence (AI) to enhance the identification and mitigation of vulnerabilities in smart contracts.

Understanding Smart Contract Vulnerabilities

Smart contract vulnerabilities typically arise from coding errors, logic flaws, or insufficient access controls. Common categories include reentrancy attacks, integer overflows, timestamp dependencies, and unchecked external calls. Identifying such vulnerabilities requires deep code analysis, often across millions of lines of code in decentralized ecosystems.

Manual audits by security experts are thorough but time-consuming and expensive. Moreover, the human factor can result in missed weaknesses, especially in complex contracts. As the blockchain ecosystem evolves, utilizing AI to assist in this process has become a promising approach.

The Role of AI in Vulnerability Detection

AI techniques, particularly machine learning (ML) and natural language processing (NLP), can analyze smart contract code by learning from vast datasets of previously identified vulnerabilities and exploits. The primary roles of AI here include:

  • Automated Code Analysis: AI models can scan codebases rapidly to detect patterns indicative of security flaws.
  • Anomaly Detection: AI can recognize atypical or suspicious contract behaviors that deviate from standard practices.
  • Predictive Assessment: By using historical vulnerability data, AI can predict potential risk points in new contracts.
  • Continuous Learning: AI systems can improve over time by incorporating feedback from newly discovered vulnerabilities.

Techniques and Tools Used in AI-Driven Smart Contract Analysis

Several AI-based methodologies have been adopted to aid vulnerability detection:

  1. Static Code Analysis: AI algorithms break down smart contract code without execution, identifying syntactic and structural weaknesses.
  2. Dynamic Analysis and Fuzzing: Leveraging AI to simulate contract execution in varied scenarios to uncover hidden vulnerabilities.
  3. Graph Neural Networks (GNNs): Applied to model relational data within smart contract structures, improving detection of complex vulnerabilities.
  4. Transformer Models: Adapted from NLP, these analyze code semantics to spot nuanced issues beyond basic syntax errors.

Some emerging platforms integrate such AI techniques to provide developers and security teams with enhanced vulnerability scanning capabilities.

Advantages of AI Over Traditional Auditing Methods

Compared to manual or rule-based approaches, AI provides several notable benefits:

  • Scalability: AI can analyze thousands of contracts quickly, which manual teams cannot feasibly match.
  • Consistency: AI reduces human error and subjective assessment variability in vulnerability identification.
  • Real-Time Analysis: AI-powered systems can run continuous scans and provide rapid alerts for emerging threats.
  • Cost Efficiency: Automating portions of the audit process can reduce resource expenditure over time.

Despite these advantages, AI is complementary to expert review rather than a replacement, as audits require contextual understanding and judgment that AI currently cannot fully replicate.

Challenges and Limitations of AI in Smart Contract Security

While promising, AI application in this domain faces several hurdles:

  • Data Quality and Availability: Training AI models requires large, well-labeled datasets of smart contract vulnerabilities, which are limited due to the relative novelty of the field.
  • Complexity of Smart Contracts: Diverse programming languages and design patterns complicate uniform AI analysis.
  • False Positives/Negatives: AI may generate incorrect alerts or miss subtle vulnerabilities, requiring human validation.
  • Adversarial Adaptation: Malicious actors may develop exploits specifically designed to evade AI detection models.

How to Use AI Tools Effectively for Smart Contract Security

Developers and security practitioners can optimize the benefits of AI by:

  • Integrating AI Reviews Early: Employ AI analysis during development cycles to detect vulnerabilities before deployment.
  • Combining with Manual Audits: Use AI as a preliminary screening tool, followed by detailed human assessments.
  • Continuous Monitoring: Monitor deployed contracts with AI tools to detect emergent risks or unexpected behaviors.
  • Leveraging Platforms: Utilizing platforms such as Token Metrics that provide AI-driven analytics for comprehensive research on smart contracts and related assets.

Conclusion & Future Outlook

AI has a growing and important role in identifying vulnerabilities within smart contracts by providing scalable, consistent, and efficient analysis. While challenges remain, the combined application of AI tools with expert audits paves the way for stronger blockchain security.

As AI models and training data improve, and as platforms integrate these capabilities more seamlessly, users can expect increasingly proactive and precise identification of risks in smart contracts.

Disclaimer

This article is for educational and informational purposes only. It does not constitute financial, investment, or legal advice. Always conduct your own research and consider consulting professionals when dealing with blockchain security.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products