Back to blog
Crypto Basics

USDT vs USDC - An in-depth Comparison between Tether and USD Coin

Compare Tether (USDT) and USD Coin (USDC) in-depth: their similarities, differences, and unique features. Learn which one is right for you in this comprehensive guide.
S. Vishwa
7 Minutes
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

In the world of cryptocurrencies, stablecoins have gained significant popularity due to their ability to provide stability and reduce volatility. Among the various stablecoins available, Tether (USDT) and USD Coin (USDC) have emerged as two prominent contenders. 

Both USDT and USDC are pegged to the US dollar, aiming to maintain a 1:1 ratio with the fiat currency. However, they differ in terms of their underlying technology, transparency, and issuer.

In this article, we will conduct an in-depth comparison between Tether and USD Coin to help you make an informed decision.

What are stablecoins?

Stablecoins are cryptocurrencies that are pegged to a stable asset, such as the US dollar. This provides stability and reduces volatility, making them a popular option for investors who want to avoid the fluctuations associated with traditional cryptocurrencies like Bitcoin and Ethereum.

There are two main types of stablecoins: fiat-backed and crypto-backed. Fiat-backed stablecoins, like USDT and USDC, are backed by fiat currencies such as the US dollar. Crypto-backed stablecoins, on the other hand, are backed by other cryptocurrencies.

Understanding USDT and USDC

USDT, or Tether, is a fiat-backed stablecoin that is pegged to the US dollar. It was created in 2014 and is managed by Tether Limited. USDT is the most widely used stablecoin in the cryptocurrency market, with a market capitalization of over $60 billion.

USDC, or USD Coin, is also a fiat-backed stablecoin that is pegged to the US dollar. It was created in 2018 by Circle and Coinbase and is managed by the Centre Consortium. USDC has a market capitalization of over $27 billion.

Both USDT and USDC are ERC-20 tokens, which means they are built on the Ethereum blockchain.

USDT vs USDC: In-Depth Comparison

While USDT and USDC are similar in many ways, there are some key differences to consider.

Technology and Blockchain Infrastructure

Both USDT and USDC are built on different blockchain networks, which play a crucial role in their functionality and operations.

USDT: Riding on the Waves of Omni Layer and Ethereum

Tether (USDT) was initially launched on the Omni Layer protocol, which operates on the Bitcoin blockchain. However, to enhance efficiency and scalability, Tether later expanded its offerings to the Ethereum blockchain using the ERC-20 standard. This move allowed for faster transactions and wider compatibility with various cryptocurrency exchanges.

USDC: The Ethereum-Based Stablecoin

USD Coin (USDC), on the other hand, is primarily based on the Ethereum blockchain. As an ERC-20 token, it benefits from the robustness and extensive developer support of the Ethereum ecosystem. The Ethereum network provides a reliable infrastructure for USDC transactions and ensures secure and transparent operations.

Issuer and Trustworthiness

The entities responsible for issuing and maintaining USDT and USDC play a crucial role in establishing trust and credibility within the cryptocurrency community.

USDT: The Controversies and Transparency Concerns

Tether Limited, a Hong Kong-based company, is the issuer of Tether (USDT). Over the years, Tether has faced scrutiny and controversies surrounding its transparency and reserves. Questions have been raised about the company's ability to fully back each USDT token with an equivalent amount of USD reserves. While Tether has taken steps to address these concerns and provide periodic audits, some investors remain cautious.

USDC: Regulated and Transparent Approach

USD Coin (USDC) is a product of Centre Consortium, a collaborative effort between Circle and Coinbase. The consortium takes a regulated and transparent approach, providing regular attestations of its USDC reserves. These attestations are conducted by independent auditors to ensure that each USDC token is backed by a corresponding amount of USD held in reserve accounts.

Supply and Market Capitalization

The supply and market capitalization of stablecoins can significantly impact their liquidity and stability.

USDT: Leading the Stablecoin Market

Tether (USDT) has been the dominant stablecoin in the market for several years. With a substantial supply of tokens in circulation, USDT has established itself as a go-to stablecoin for many cryptocurrency traders and exchanges. The market capitalization of USDT has consistently been the highest among stablecoins.

USDC: Rapid Growth and Increasing Adoption

While USD Coin (USDC) entered the market later than USDT, it has experienced rapid growth and increasing adoption. The market capitalization of USDC has been steadily rising, reflecting the growing confidence and demand for this stablecoin. The increasing support from major cryptocurrency exchanges has contributed to the expansion of its user base.

Regulatory Compliance

The regulatory landscape surrounding stablecoins is evolving, and adherence to regulatory guidelines is crucial for their long-term viability.

USDT: Regulatory Scrutiny

Tether (USDT) has faced regulatory scrutiny in the past due to concerns over its transparency, reserve backing, and potential implications for the broader cryptocurrency market. As stablecoins gain more attention from regulators worldwide, Tether's compliance measures and engagement with regulatory authorities will play a significant role in its future.

USDC: Embracing Regulatory Compliance 

USD Coin (USDC) has taken a proactive approach to regulatory compliance. It has obtained licenses from various regulatory bodies, including the U.S. Financial Crimes Enforcement Network (FinCEN). By adhering to these regulations, USDC aims to provide a stablecoin that meets the compliance requirements of traditional financial systems.

Use Cases and Integration

Stablecoins offer various use cases, ranging from facilitating transactions to providing stability within decentralized finance (DeFi) applications.

USDT: Widely adopted in trading and Investments 

Due to its long-standing presence and high liquidity, Tether (USDT) is widely adopted in cryptocurrency trading and investments. It serves as a bridge between traditional fiat currencies and the crypto market, enabling seamless transfers and minimizing exposure to volatile assets during trading.

USDC: Fostering DeFi Applications 

USD Coin (USDC) has gained significant traction within the decentralized finance (DeFi) ecosystem. Many DeFi protocols, such as lending platforms and decentralized exchanges, have integrated USDC as a stable asset for users to access the benefits of DeFi while minimizing exposure to market volatility.

The future of USDT and USDC

The future of USDT and USDC is uncertain, but both stablecoins are likely to continue to play an important role in the cryptocurrency market. As more people become interested in cryptocurrency, the demand for stablecoins is likely to increase.

There are also a number of new stablecoins being developed, such as Diem (formerly known as Libra), which is backed by Facebook. These new stablecoins could potentially challenge the dominance of USDT and USDC in the future.

Also Read - Future of Crypto in the Next 5 Years

Risks associated with USDT and USDC

While stablecoins like USDT and USDC are less volatile than traditional cryptocurrencies, they are not risk-free. One of the biggest risks is the potential for the stablecoin to lose its peg to the US dollar. This could happen if the company behind the stablecoin does not have enough reserves to back up the tokens in circulation.

There is also the risk of fraud or hacking. While USDT and USDC are considered to be relatively secure, there have been instances in the past where stablecoins have been hacked or stolen.

USDT vs USDC: Which is better for you?

Ultimately, the choice between USDT and USDC will depend on your individual needs and preferences. If you value transparency and security, USDC may be the better option for you. However, if you are looking for a stablecoin that is widely accepted in the cryptocurrency market, USDT may be the way to go.

It is also worth considering the fees associated with each stablecoin. USDT is often cheaper to use than USDC, which could be a deciding factor for some investors.

Where to buy USDT and USDC?

USDT and USDC can be bought and sold on a wide range of cryptocurrency exchanges. Some of the most popular exchanges include Binance, Coinbase, and Kraken.

Before buying either stablecoin, it is important to do your research and choose a reputable exchange. Look for an exchange that is widely used, regulated and has a good reputation in the cryptocurrency community.

Conclusion

Stablecoins like USDT and USDC have become an increasingly popular option for investors looking to mitigate volatility in the cryptocurrency market. Both stablecoins have their advantages and disadvantages, and the choice between them will ultimately depend on your individual needs and preferences. However, USDT has faced controversies and transparency concerns, while USDC takes a more transparent and regulated approach.

It is important to stay updated on the latest developments and regulatory changes surrounding stablecoins, as the cryptocurrency landscape continues to evolve. As with any investment, it is important to do your research and weigh the risks and rewards before investing in USDT, USDC or any other cryptocurrency.

If you're interested in learning more about cryptocurrency and how to invest in it, be sure to check out our other articles and resources.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Understanding APIs: How They Work and Why They Matter

Token Metrics Team
5

APIs are the invisible glue that connects software, data, and services. Whether you use a weather widget, log into an app with a social account, or power AI agents with external data, APIs make those interactions possible. This guide explains what an API is, how it works, common types, and practical steps to evaluate and use them effectively.

What an API Is — Core Concept

An API (Application Programming Interface) is a set of rules and definitions that lets one software program communicate with another. At a conceptual level, an API defines the inputs, outputs, and behavior expected when you request a resource or action from a service. It abstracts implementation details so developers can use functionality without needing to understand the underlying code.

Key elements:

  • Endpoints: URLs or addresses that expose resources or actions.
  • Requests & Responses: Clients send requests (often HTTP) and receive responses, typically in JSON or XML.
  • Methods/Verbs: Common operations (e.g., GET, POST, PUT, DELETE) indicate intent.
  • Contracts: Documentation specifies parameters, data formats, and error codes.

How APIs Work — Technical Overview

Most modern APIs use web protocols. RESTful APIs use standard HTTP methods and resource-oriented URLs. GraphQL exposes a single endpoint that accepts queries describing exactly what data the client needs. WebSockets and streaming APIs enable persistent connections for real-time updates, and webhooks allow services to push events to registered endpoints.

Practical components developers encounter:

  • Authentication: API keys, OAuth tokens, JWTs, and mutual TLS verify identity and scope access.
  • Rate limits: Protect providers by limiting request frequency; plan for retries and backoff.
  • Versioning: Maintain backward compatibility by versioning endpoints.
  • Schemas: OpenAPI/Swagger and GraphQL schemas document shapes and types to reduce integration friction.

Common API Use Cases and Patterns

APIs power a wide range of applications across industries. Typical use cases include:

  • Data aggregation: Combining price feeds, social metrics, or on-chain data from multiple providers.
  • Microservices: Breaking systems into modular services that communicate over APIs for scalability and maintainability.
  • Third-party integrations: Payments, identity providers, analytics, and cloud services expose APIs for developers to extend functionality.
  • AI and agents: Models use APIs to fetch external context, perform lookups, or execute actions when building intelligent applications.

Evaluating and Using an API — Practical Checklist

Choosing or integrating an API involves technical and operational considerations. Use this checklist when researching options:

  1. Documentation quality: Clear examples, error codes, SDKs, and interactive docs accelerate adoption.
  2. Latency & reliability: Test response times and uptime; review SLAs where applicable.
  3. Security & compliance: Inspect authentication schemes, encryption, data retention, and regulatory controls.
  4. Costs & limits: Understand free tiers, metering, and rate limits to model consumption and budget.
  5. Error handling: Standardized error responses and retry guidance reduce integration surprises.
  6. SDKs and tooling: Official libraries, Postman collections, and CLI tools shorten development cycles.

When testing an API, start with a sandbox or staging environment, use automated tests for core flows, and instrument monitoring for production use. For AI projects, prioritize APIs that offer consistent schemas and low-latency access to keep pipelines robust.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What Is an API?

Q: What is the difference between an API and a library?

A library is a collection of code you include in your project; an API describes interaction rules exposed by a service. Libraries run in-process, while APIs often operate over a network and imply a contract between client and provider.

FAQ: REST vs GraphQL — which to use?

REST is simple and cache-friendly for resource-oriented designs. GraphQL is useful when clients need flexible queries that reduce over- or under-fetching. The choice depends on payload patterns, caching needs, and team expertise.

FAQ: How do API keys and OAuth differ?

API keys are simple tokens tied to an account and scope; OAuth provides delegated access, user consent flows, and finer-grained permissions. For user-authorized actions, OAuth is typically preferable.

FAQ: Are public APIs secure?

Security depends on provider implementation. Public APIs can be secure when they enforce authentication, use HTTPS, validate inputs, and apply rate limiting. Always follow security best practices and assume any external interface could be targeted.

FAQ: Can APIs be used for real-time data?

Yes. Streaming APIs, WebSockets, server-sent events, and publish/subscribe webhooks deliver real-time data. Evaluate connection limits, reconnection logic, and message ordering guarantees for production systems.

FAQ: What is an SDK and why use one?

An SDK (Software Development Kit) wraps API calls in language-specific code, handling authentication, retries, and serialization. SDKs speed integration and reduce boilerplate, but it's still useful to understand raw API behavior.

Disclaimer

This article is for educational and informational purposes only. It does not constitute legal, financial, investment, or professional advice. Evaluate APIs and tools independently and consult appropriate professionals for specific use cases.

Research

APIs Explained: How Application Programming Interfaces Work

Token Metrics Team
5

APIs are the invisible glue that connects modern software: they let apps talk to services, fetch data, and automate workflows. Understanding what an API is and how it operates helps developers, analysts, and product teams design integrations that are robust, secure, and scalable.

What is an API? Definition, scope, and common types

An API, or application programming interface, is a defined set of rules and contracts that allow one software component to interact with another. At a basic level an API specifies the inputs (requests), outputs (responses), and the behavior expected when an operation is invoked. APIs can be exposed within a single application, between services inside a private network, or publicly for third-party developers.

Common API types include:

  • Web APIs (HTTP/HTTPS based, using REST or GraphQL) for browser, server, and mobile communication.
  • RPC and gRPC for high-performance binary communication between microservices.
  • Library or SDK APIs that surface methods within a language runtime.
  • Hardware APIs that expose device functionalities (e.g., sensors, GPU).
  • On-chain and crypto APIs that provide blockchain data, transaction broadcasting, and wallet interactions.

How APIs work: requests, endpoints, and protocols

APIs typically operate over a transport protocol with defined endpoints and methods. In HTTP-based APIs a client sends a request to an endpoint (URL) using methods like GET, POST, PUT, DELETE. The server processes that request and returns a response, often encoded as JSON or XML.

Key components to understand:

  • Endpoint: A specific URL or route that exposes a resource or operation.
  • Method: The action type (read, create, update, delete).
  • Schema / Contract: The shape of request and response payloads, headers, and status codes.
  • Authentication: How the API verifies the caller (API keys, OAuth tokens, signed requests).
  • Rate limits: Rules that prevent abuse by limiting request volume.

Protocols and styles (REST, GraphQL, gRPC) trade off simplicity, flexibility, and performance. REST emphasizes resource-based URLs and uniform verbs. GraphQL offers flexible queries from a single endpoint. gRPC uses binary protocols for lower latency and stronger typing.

Use cases and real-world examples (web, mobile, crypto, AI)

APIs appear in nearly every digital product. Typical use cases include:

  • Web & Mobile Apps: Fetching user profiles, submitting forms, or streaming media from cloud services.
  • Third-party Integrations: Payment providers, identity, and analytics platforms expose APIs to connect services.
  • Crypto & Blockchain: Nodes, indexers, and market data providers expose APIs to read chain state, broadcast transactions, or retrieve price feeds.
  • AI & Data Pipelines: Models and data services expose inference endpoints and training data APIs to enable programmatic access.

For analysts and product teams, APIs make it possible to automate data collection and combine signals from multiple services. AI-driven research tools such as Token Metrics rely on API feeds to aggregate prices, on-chain metrics, and model outputs so users can build informed analytics workflows.

Design, security, and operational best practices

Well-designed APIs are predictable, versioned, and documented. Consider these practical guidelines:

  1. Design for clarity: Use consistent naming, predictable status codes, and clear error messages.
  2. Versioning: Provide v1/v2 in paths or headers so breaking changes don’t disrupt clients.
  3. Rate limiting and quotas: Protect backend resources and provide transparent limits.
  4. Authentication & Authorization: Use proven schemes (OAuth2, signed tokens) and enforce least privilege.
  5. Input validation and sanitization: Defend against injection and malformed payloads.
  6. Observability: Implement logging, metrics, and distributed tracing to monitor performance and troubleshoot failures.
  7. Documentation and SDKs: Publish clear docs, example requests, and client libraries to reduce integration friction.

Security in particular requires ongoing attention: rotate credentials, monitor for anomalous traffic, and apply patching for underlying platforms. For teams building systems that depend on multiple external APIs, plan for retries, exponential backoff, and graceful degradation when a provider is slow or unavailable.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

Q1: What is the difference between an API and an SDK?

An API is a contract that defines how to interact with a service. An SDK is a packaged set of tools, libraries, and helpers that implement or wrap that API for a specific language or platform.

How do REST and GraphQL differ?

REST uses multiple endpoints and standard HTTP verbs to model resources; GraphQL exposes a single endpoint where clients request exactly the fields they need. REST is simpler; GraphQL can reduce over-fetching but adds query complexity.

Can APIs return real-time data?

Yes. Real-time patterns include WebSockets, server-sent events, or streaming gRPC. Polling a REST endpoint is simpler but less efficient for high-frequency updates.

What are common API security measures?

Common measures include strong authentication (OAuth2, API keys), TLS encryption, rate limiting, input validation, signed requests, and robust monitoring for abuse or anomalies.

How should teams evaluate third-party APIs?

Assess uptime history, SLAs, documentation quality, rate limits, pricing model, security posture, and whether the API provides the required schemas and latency characteristics for your use case.

Can APIs be used with AI applications?

Yes. AI models often expose inference APIs for serving predictions, and research tools consume multiple APIs to aggregate training data, features, or market signals. Designing for reproducibility and input validation is important when feeding models with API-derived data.

Disclaimer

This article is educational and informational in nature. It does not provide investment, legal, or professional advice. Implementations and integrations described here are technical examples and should be validated in your environment before deployment.

Research

Understanding APIs: A Practical Guide

Token Metrics Team
6

APIs power modern software by letting systems communicate without sharing internal code. Whether you use a weather app, social login, or an AI assistant, APIs are the invisible glue connecting services. This guide explains what an API is, how APIs work, practical use cases (including crypto and AI), and criteria to evaluate an API for research or product use.

What is an API? A clear definition

API stands for Application Programming Interface. At its simplest, an API is a set of rules and protocols that lets one program request services or data from another. Think of an API as a restaurant menu: the menu lists dishes (endpoints) you can order (requests), the kitchen prepares the dish (service), and the waiter delivers it to your table (response). The consumer of the API doesn’t see how the kitchen is organized; it only needs to know how to order.

APIs abstract complexity, standardize interactions, and enable modular design. They exist at many layers — from operating systems and libraries to web services that return JSON or XML. For developers and researchers, APIs are indispensable for integrating external data, automating workflows, and composing distributed systems.

How APIs work: architecture, formats, and types

Most modern web APIs follow request/response patterns over HTTP. Key concepts include:

  • Endpoints: URL paths that expose specific resources or actions, e.g., /prices or /users.
  • Methods: HTTP verbs like GET (retrieve), POST (create), PUT/PATCH (update), DELETE (remove).
  • Payloads: Data sent or received, often formatted as JSON for web APIs.
  • Authentication: API keys, OAuth tokens, or signed requests to control access.

Architectural styles and protocols include REST (resource-oriented, stateless), GraphQL (client-specified queries), gRPC (binary, streaming), and WebSockets (persistent full-duplex connections). Each has trade-offs: REST is simple and cache-friendly; GraphQL reduces over-fetching but can complicate caching; gRPC excels in performance for internal microservices.

APIs in crypto and AI: data, execution, and agents

In crypto and AI ecosystems, APIs serve several roles:

  • Market data APIs: Provide price feeds, order book snapshots, historical candles, and index data used for analysis and visualization.
  • Blockchain & on-chain APIs: Expose transaction data, smart contract interactions, wallet balances, and event logs for on-chain analysis.
  • Execution/trading APIs: Let platforms submit orders, query trade status, and manage accounts. These require strict auth and latency considerations.
  • AI & model APIs: Offer inference services, embeddings, or model orchestration endpoints for tasks like NLP, classification, or agent behavior.

Combining these APIs enables product capabilities such as automated research pipelines, AI agents that react to market signals, and dashboards that mix on-chain metrics with model-driven insights. Many teams use dedicated crypto APIs to aggregate exchange and chain data, and AI-driven tools to surface patterns without exposing trading recommendations.

For example, researchers might ingest price and on-chain feeds through a market API, compute custom signals with an AI model, and expose those signals via an internal API for front-end consumption. When evaluating providers, consider freshness of data, coverage across assets/chains, and documented latency characteristics.

How to evaluate, integrate, and maintain APIs

Choosing and integrating an API is not just about endpoints. Use a checklist that covers technical, operational, and governance concerns:

  1. Documentation quality: Look for clear examples, error codes, and sandbox endpoints for testing.
  2. Authentication and security: Prefer APIs that support scoped keys, granular permissions, and strong transport security (TLS).
  3. Rate limits & pricing: Understand request quotas, burst limits, and throttling behavior to design backoff strategies.
  4. Data guarantees: Check latency, update frequency, historical depth, and whether data is normalized across sources.
  5. SLA and reliability: Uptime history, status pages, and support SLAs matter for production use.
  6. Monitoring & observability: Log requests, track error rates, and monitor latency to detect regressions or abuse.

Integration tips: start with a sandbox key, write thin adapters to isolate provider-specific formats, and implement exponential backoff with jitter for retries. For analytics workflows, cache immutable historical responses and only refresh dynamic endpoints when necessary.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: common questions about APIs

What is the difference between REST and GraphQL?

REST exposes resources through fixed endpoints and relies on HTTP methods. GraphQL lets clients specify exactly what fields they need in a single query. REST is simpler and benefits from existing HTTP caching; GraphQL reduces over-fetching but can require more complex server-side tooling.

How do API keys and OAuth differ?

API keys are simple tokens issued to clients, often for server-to-server access or basic identification. OAuth is an authorization framework that issues scoped access tokens on behalf of users, enabling delegated permissions and better control over access lifecycle.

What are common API failure modes to plan for?

Rate limiting, transient network errors, schema changes, and authentication failures are typical. Design clients to retry with exponential backoff, validate responses, and fail gracefully when dependencies are degraded.

How can I secure sensitive data when using third-party APIs?

Use encrypted transport (TLS), rotate credentials regularly, scope keys to minimum permissions, and avoid embedding secrets in client-side code. For sensitive workflows, consider a server-side proxy that enforces access policies and masking.

Can AI models be accessed via APIs and how does that affect workflows?

Yes. Many AI models expose inference and embedding endpoints. Using model APIs decouples compute from your product stack, simplifies scaling, and enables A/B testing of models. Evaluate latency, cost per request, and data retention policies when choosing a provider.

How do I test and validate an API integration?

Start in a sandbox environment, create automated integration tests covering success and failure cases, mock third-party responses for unit tests, and run load tests against rate limits. Monitor post-deployment with health checks and alerts.

What are rate limits and how should clients handle them?

Rate limits cap how many requests a client can make in a time window. Clients should respect headers that indicate remaining quota, implement exponential backoff with jitter on 429 responses, and batch requests or cache results when possible.

When should I build my own API versus using a third-party API?

Use a third-party API for non-core data or services where speed-to-market and maintenance offload matter. Build an internal API when the capability is strategic, requires proprietary processing, or when you need tight control over latency, privacy, and SLAs.

How can tools like Token Metrics help with API-driven research?

Data and model platforms can centralize feeds, normalize formats, and provide analytical signals that reduce the engineering overhead of assembling multiple APIs. Token Metrics is an example of a platform that merges model-driven insights with market and on-chain data for research workflows.

Disclaimer

This content is for educational and informational purposes only. It does not constitute financial, legal, or investment advice. Evaluate APIs and services independently and consult appropriate professionals for decisions that involve risk.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products